A Proofs from Section 4

A.1 Proof of Theorem 4.1

We reuse notations e), i/, and s/) from Section 3. We iteratively define 0(®) = 0,0("),... o(P)

as follows. For each j € [B], we define S = supp,(0U=1) \ supp;(s~1). We have two cases
to consider:

e Suppose that () € Sl(,] ) for some 7 # i), In this case, let o) be an arbitrary element in

S (f])) Then, we define 0U~1/2) as the resulting vector obtained from oU~1) by assigning

0 to the e(7)-th element and the 0(/)-th element, and then define 0(7) as the resulting vector
obtained from oU—1/2) by a551gn1ng i(9) to the e(?)-th element and i’ to the 0(/)- th element.

e Suppose that e?) ¢ S(J) for any i’ # i), In this case, we set o) = (9 if () S(J),
and we set o) to be an arbitrary element in Sz,((]j) otherwise. Then, we define 0lU=1/2) a4
the resulting vector obtained from 0/~ by assigning 0 to the o(/)-th element, and then

define 0%) as the resulting vector obtained from 0/~1/2) by assigning i) to the e()-th
element.

Note that |supp,(0))| = B; holds for every i € [k] and j € {0,1,..., B}, and 0o(B) = s(B) = s.
Moreover, we have s~ < 0lU=1/2) for every j € [B].

Proof of Theorem 4.1. We first show that, for each j € [B],
2(f(sV)) = f(sU7)) = f(0V™V) = f(o). @)

For each j € [B], let y) = A i) ;0 f(sY~1)). We first note that f(s)) — f(sU=1)) =y,

We consider the following two cases:

e Suppose that () € Sg/j) for some i’ # (). Let a7 —1/2) = AO(_f>7i<j)f(o(j*1/2)), o) =
Aem’i(j)f(o(j‘l/m), pi—1/2) — Ae@-)}i,f(o(j‘l“)), and () = Ao(j)’i,f(o(j‘l/z)).
Note that f(oU=1) — f(oW)) = aU~1/2) — ) 4 pG~1/2) — p()  From the mono-
tonicity of £, it suffices to show that 2y() > a(0=1/2) 4 p(G=1/2) Since /) and i) are
chosen greedily, we have y/) > AO(]),Z(])f(s(J D) and y¥) > Aoy i f(s sU=1). Also,
since s~ < 0U=1/2) e have Ao(j)7i<j)f(s(j*1)) > qli=1/2) and Aem,i,f(s(j*l)) >
bU=1/2) from the orthant submodularity. Combining these inequalities, we get (2).

e Suppose that (/) ¢ S(j for any i’ # i), Let aVU=1/2) = Aom,i(]-)f(o(j’l/z)), and
al@) = AE(J)71(])f(O(J 1/2)) Note that f(oU=1) — f(0o)) = aU~1/2) — (). From
the monotonicity of f, it suffices to show that 2y¥) > aU=1/2)_ Since e() and i) are
chosen greedily, we have 39 > A ;) ;i) f(sU™D). Also, since sU~1 < 0=1/2) we
have A ;) 4 f(sY1) > aU=1/2?) from the orthant submodularity. Combining these
inequalities, we get (2).

Then, we have

B B
flo =D _(f(U™) = f(o)) < 3 2(f(s)) = f(sU71)) = 2(f(s) = £(0)) < 2f(s).
Hence, we have f(s) > f(o0)/3. O

A.2 Proof of Theorem 4.2

We reuse notations e(), ;0 SZ-(j ) and 9. Let RY) be the set of elements sampled in the j-th

iteration. We iteratively define 0¥ = 0,0V),...,0(®) as follows. If RU) N S( ) is empty, we
regard that the algorithm failed. Otherwise, we have two cases to consider:
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e Suppose that () € Sz(,J ) for some i’ # (7). In this case, let 0(%) be an arbitrary element in
RW N SZ,((J].)). Then, we define 0/~1/2) and 0l as in Section 4.1.
e Suppose that () ¢ Sg,j) for any i’ # iU). In this case, we set 0l) = (@) if ¢U S(J)

(and hence in RY) N SZ.((JIJ))), and we set 0o/) to be an arbitrary element in R(J N SZ.((jj))
otherwise. Then, we define 0 ~'/2) and 07 as in Section 4.1.

Ifo, ..., 0" are well defined, or in other words, if R() NS G ) is not empty for each j € [B], then
the rest of the analysis is completely the same as in Section 4 1 and we achieve an approximation
ratio of 1/3. Hence, it suffices to show that oM, ..., 0P are well defined with a high probability.

Lemma A.1. With probability at least 1 — 6, we have RY) N Sz,(é)) is not empty for every j € [B].

Proof. Fix j € [B]. If |RY)| = n, then we clearly have Pr[RV) N SZ.%)) # (] = 0. Otherwise we
have

. |R(j)| ) R
o 50 By — lsuppy (s9-1)y 7
PR (89 2] = [1- el _ _ (1 _ Biw — [suppi (s : ))
: [V \ supp;») (sU D)) n — [supp;i) (sU=1)|
gy — L (gl—1) — (g1
< oxp (Blm [suppc) (8 : )| _n — |supp;o (s~ 3' 1OgB> _9
n — [supp;i») (sU=V)| By — [supp;i) (sU—D)| 0 B
By the union bound over j € [B], the lemma follows. O

Proof of Theorem 4.2. By Lemma A.1 and the previous analysis in Section 4.1, we have that Algo-
rithm 4 outputs a 1/3-approximate solution with probability at least 1 — 4.

The number of evaluations of f is at most

kz — |supp,» (sV 1)) log§<kz Z n-j+l, B

o — , @)] -
e B;) — |supp;i-1) (sV e Jj+1 d
B +] B B

I log = = (k Z(Bﬂr (n — B;)log B;) log E)

i€[k] j€[Bi] i€[k]

B D ietk] Bi , . B_ B
:O<l~mlog 5 Z logBZ) = O(knlogg - klog T) = O(k nlogz log g),
i€ k]
where we used the AM-GM inequality in the last line. [

B Proofs from Section 5

B.1 k-submodularity of the influence maximization problem

In this section, we show that the function o : (k + 1)¥ — R used in the influence maximization
problem is monotone k-submodular. In order to show the k-submodularity of o, it suffices to show
that o is orthant submodular by Theorem 2.1. Pairwise monotonicity is obvious since ¢ is monotone.

To show the orthant submodularity of f, we first describe a convenient way of handling the diffusion
process. Fix topic ¢. Then for each edge (u,v) € E, we preserve it with probability pfw and discard
it with the remaining probability. Let G be the directed graph consisting of the preserved edges.
Given aseed s € (k + 1)V, the set of vertices reachable from supp; (s) in G* corresponds to the set
A;(supp,(s)). Recall that A;(supp;(s)) is a random variable. Kempe er al. [11] showed that the
function E[|A;(-)|] is submodular.
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Fix e = (Xy,...,Xg)andy = (Y7,...,Y)) with@ 2y, e & Uy Ye and i € [k]. We want to
show that A ; f(z) > A, f(y). Note that

Acif(z) — Acif(y) = E[\Az‘(Xi u{ehulJ4;x)] - |Aix)ul Aj(Xj)\]

i i
~E|lAru{ehulJ 405 - lamuJ a0 @
JFi i

Let S = ;. Aj(X;) and T' = U, ; A;(Y;). Then,
3 = E[[(A(X: U{eD \ 4:(X)\ S| - B (4 u{eD\ A\ T @
Since S C T for every fixed G7 for j # i, we have
() 2 B[ 40X U {e)\ 4:X)|| - B[JAYV U {e))\ 4v)|| 2 0.

The last inequality holds from the submodularity of A;(-).

B.2 k-submodularity of the sensor placement problem

Recall that Q = {X é}ie[kLeeV, where X represents the observation collecting from a sen-
sor of the i-th kind at the e-th location and f : (k 4+ 1)V — R, was defined as f(y) =
H( eESupp(w)~{)(é'J (e)}), where H is the entropy function. It is well known that H is monotone
submodular. In order to show that f : (k + 1)V — Ry is a k-submodular function, it suffices to
show its pairwise monotonicity and orthant submodularity by Theorem 2.1.

We first show that f is monotone, which particularly implies that f is pairwise monotone. Let
y=Y1,...,Ys) € (k+1)V. Then, we can associate y with a set S, = {X! | i € [k],e € V;}.
Then for any i € [k],and e € V' \ U, Y}, we have A; . f(y) = H{X!} | Sy). Since H(-) is
monotone, we have A; . f(y) > 0.

To see the orthant submodularity, lety = (Y7,...,Y;)andy’ = (Y{,...,Y)) withy < y’. Also, let
i€ [kJande € V\U,ep Yy Then, Acif (y) = H{X(} [ Sy) and Acif(y') = H{ X} | Sy).
Since Syr C Sy, we have A, ; f(y) > Ac,; f(y’) from the submodularity of H.
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