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1 Proof of Lemma[3]
Statement of Lemma: Ler u* be a solution to the polar operator (1)), and define the weighted L,
semi-norm || - ||ux as || V|lw = >5_, |uf] - |vi]. Then the following relation holds
Ta(0%) € Tu-(07)
where Ty~ (0*) = cone{v € R? | [|0* 4+ v ||y« < ||0*||u~}-

Proof:  Asboth T 4(0*) and Ty~ (0*) are cones, it is sufficient to show that {v | ||v||4 < ||0*]|a} C
{Vv | [[Vl]jux < |0*]|u}. Since ||0*||a= = ||0*||.4, it also suffices to show that {v | ||v]|4 < 1} C

{v ] [vllar < 1}, ie., the |[v]|a > ||V|lu+ for v € RP. Using the dual norm definition and sign-
change invariance of || - ||*;, we obtain
[vlla= sup (a,v)>({sign(v) © [u’f,v) = (u’], [v]) = [|v]u-,
llally <1
thus 74(0*) C Ty (0%). ]

2  Proof of Lemmal6

Statement of Lemma: Consider a solution u* ro (T1), which satisfies supp(u’) C supp(u*) for
any other solution u’. Under the setting of notations in Theorem 4| we define an additional set of
coordinates P = {i | ul =0, 0F = 0}. Then the tangent cone T4(0*) satisfies

Ti@ T2 € cl(Ta(07)), (S.1

where & denotes the direct (Minkowski) sum operation, cl(-) denotes the closure, Ty = {v €
RP | v; = 0 fori ¢ P} is a |P|-dimensional subspace, and T = {v € RP | sign(v;) =
—sign(67) for i € supp(0*), v; = 0 for i ¢ supp(6*)} is a | supp(0*)|-dimensional orthant.

Proof: For any fixed 8* € RP and its P, we define a vector sequence {v(k) = 5(k)w} based
on a given w € RP and a monotonically decreasing positive scalar sequence {6“”} with 61 <
07| and limp_ 1 o0 8() = 0. w satisfies

{ 0, if ¢ ¢ P Usupp(6*)
w; =

Min;esupp(6+)
—sign(6;) , if i € supp(6*)
arbitrary , if i € P

Let u'®) be one solution to the polar operator for * + v(*), and form another sequence {u(k’)}.
Note that sign(6} + vgk)) = sign(07 — sign(0;)6*)) = sign(6}) = sign(ugk)) for i € supp(6*).



Then we have
167 + vl = 8L < (67 + v, u®) — (67, u) = (v, u¥)

k k k k
< =6®Nul ol + 6@ (wp, ul’) < —5B(Jul) ol = [Welleolul 1)

As §%) approaches 0, 8* +v(*) converges to 8*, and a subsequence {u(*")} of {u*)} will converge
1> 0,

to a solution u’ to the polar operator for *. Hence lim;_, ; Huiu; )
)

1 = |[[u’s |1 = 0, and for large enough k;, we have

1= [lagppeer)

lim; 4 oo [l

A—]107]a < —6%) (Jult)

* (ks)
||0 +v supp(0*)

kz
1= [[wplleollul? 1) <0,

thus v(¥¢) belongs to 74(0*). Since v(¥) = §(")w, w also belongs to T4 (0*).

Now we show 77 C cl(74(0*)). Foranya € 71 = {v € R? | v; = 0 for i ¢ P} and arbitrarily

small £ > 0, we construct w such that w; = % for i € P. Based on the argument above, this w is in

T4(6%). Therefore a’ £ ¢w € T4(0*), and ||a — a’[|2 < /| supp(6*)]¢, which can be arbitrarily

close to 0. Therefore taking the closure of 74(0*) gives us 71 C cl(74(6%)).

Next we show T, C T4(60*). For any coordinate i € supp(0*), construct v € RP such that

v; = —0; and v; = 0 for j # 4, and " € RP such that 0] = —0; and 0; = 07 for j # i. As the

norm || - || 4 is invariant under sign-changes, we can verify that

0"+ 6 1

[

2 2

Thus v € T4(0*). Repeat the construction of v for each i € supp(60*), and then the conic combina-

tion of these v’s forms 7T5. Therefore we have T3 C T4(6*), which together with 71 C cl(74(0%))
implies 71 © T2 C cl(Ta(6%)). ]

* * 1 *
167 +v]a=| 1674 + 5116].4 = 11674 -

3 Proof of Theorem

Statement of Theorem: For a given 0*, Algorithm|[I| returns a solution to polar operator (L1)) for
-1
Proof: The polar operator for 2-k symmetric gauge norm is essentially

u* = argmax (u, 0%) s.t. [u*|[g) <1.

As 2-k symmetric gauge norm is sign and permutation invariant, u* should conform with the sign
and order of 8* in order to achieve maxima, i.e., (u*, 8*) < ([u*|%,|0*|¥). W.l.o.g, we assume * =
|0*|¥ = z. Now we analyze the structure of the solution u*, whose entries should be nonnegative
and sorted in descending order. Assume that u; takes certain fixed but unknown value 3. It is easy
to see that the entries in u;, , , can take the value of 3, as it will always maximize (uy, .., 0% ,1.,)
without violating the constraint [|[u*||zy < 1. Generally we also assume that uj,, take the value of
B and u;_; > u. Then the maximization problem becomes

max (Wi:i—1,21:i—1) + B Zipll1
Ui:i—1,

st a3 <1—(k—i+1)8% u; >3 for 1<j<i.

Then we let w = uy.;_; and introduce the Lagrange multiplier A € R?~! and a € R. Using strong
duality, we have the equivalent problem

N . . —_— _ —_— y 2 2 —
aolpinmax (W, 2z1.i-1) + Bllzipli + (A, w —b) —a((k —i+1)3° + [|w[3 - 1),

where b = [3,3,...,8]T € Ri~1. By complementary slackness, we know A = 0 for the optimal
solution if it is feasible. Taking the gradient of the objective function w.r.t 5 and w, we obtain

|Ziplls = D Ai = 20B(k — i+ 1) = [|zip|h — 208(k —i+1) =0 (8:2)



Z1i-1+A—2aw =127,,1 —2aw =0. (S.3)
It is also not difficult to see that the optimal solution will make the constraint |[uy.;_1]|3 <1 — (k —
i+ 1)32 hold with equality, i.e.,

[wl3 =1~ (k—i+1)8 (S.4)
Combining the Equation (S:2)) (S.3) (S-4), we solve 8 and « and w
8= [ Zi:p 11 o= [Z1:i-1]2 _ Zui-1
VIzipl 3k —i+1) + 2101 [3(k — i + 1) 21— (k—i+1)p? 2

which is essentially the Line [3]in Algorithm [I] As we do not know the ¢ beforehand, we have to
check every possible 1 < ¢ < k to find the one that achieves the maxima without violating the
constraint, which corresponds to the loop and if-then statement in Algorithm[I] Since the optimal w
is proportional to z1.;_1, which is sorted in descending order, we only need to ensure 5 < w;_1. ™

4 Proof of Theorem

Statement of Theorem: For given s-sparse 0* € RP, the Gaussian width w(C;”(0*)) and the
restricted norm compatibility W, (8*) for a specified k are given by

\/ﬁ,(f‘5<k Q/%,l‘.f8<k

w(czp(a*)) < \/S+ m‘“‘slog (%) , If s = k , \IJZP(O*) < f(1+ maX)7 1f s=k

m‘n mm

\/ + ‘“"‘"Slog( ),ifs>k: (1+—';‘!‘I‘)?:),/2—;,ifs>k
(S.5)
where 0%

max

= MaX;equpp(6+) |0 | and 07, = min;cgupp(o+) 107 |-
Proof: For s < k, we note that |@*;” = ||@*|2, and u* can be obtained in a closed-form

*

u = e 9* H Applying Theorem (4 we find that the set R is empty, and thus the Gaussian width
w(CP(0%)) = \/p. For s = k, u* is in closed-form as well,

0F . .
. T - if i € supp(6*)
Uy = 6% 0%, .
o = 1o if otherwise
In this case, Q is empty, R is nonempty, and |S| = s = k. Hence Theorem [4] implies the cor-

responding Gaussian width, and Zmax = g“# For s > k, the closed-form solution is generally

Kmin

unavailable, but we can see from Algorlthm‘that B should be nonzero, thus Q is empty and R is
nonempty, which gives us the corresponding Gaussian width.

Given the fact that || - [|;” < v2max{]| - [|2, ”\/HEl} shown in [1]], we can choose 3; = \/% and

B2 = /2. Base on the analysis above, the restricted norm compatibility for s > k directly fol-
lows Theorem [5] For s < k, we need to compute the unrestricted norm compatibility ®. As

- 117 < vV2max{| - [|2, ”J% }, we have

V2 max{ |5, 150} 2 )
= sup [[u[] < < max{v3,y/ 21 = /2,
uerr [[ull2 7 uere [ull2 k
in which we use the inequality || - |1 < \/p|| - [|2- u
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