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1 Proof of Lemma 3

Statement of Lemma: Let u∗ be a solution to the polar operator (11), and define the weighted L1

semi-norm ‖ · ‖u∗ as ‖v‖u∗ =
∑p
i=1 |u∗i | · |vi|. Then the following relation holds

TA(θ∗) ⊆ Tu∗(θ∗) ,

where Tu∗(θ∗) = cone{v ∈ Rp | ‖θ∗ + v‖u∗ ≤ ‖θ∗‖u∗}.
Proof: As both TA(θ∗) and Tu∗(θ∗) are cones, it is sufficient to show that {v | ‖v‖A ≤ ‖θ∗‖A} ⊆
{v | ‖v‖u∗ ≤ ‖θ∗‖u∗}. Since ‖θ∗‖u∗ = ‖θ∗‖A, it also suffices to show that {v | ‖v‖A ≤ 1} ⊆
{v | ‖v‖u∗ ≤ 1}, i.e., the ‖v‖A ≥ ‖v‖u∗ for v ∈ Rp. Using the dual norm definition and sign-
change invariance of ‖ · ‖∗A, we obtain

‖v‖A = sup
‖a‖∗A≤1

〈a,v〉 ≥ 〈sign(v)� |u∗|,v〉 = 〈|u∗|, |v|〉 = ‖v‖u∗ ,

thus TA(θ∗) ⊆ Tu∗(θ∗).

2 Proof of Lemma 6

Statement of Lemma: Consider a solution u∗ to (11), which satisfies supp(u′) ⊆ supp(u∗) for
any other solution u′. Under the setting of notations in Theorem 4, we define an additional set of
coordinates P = {i | u∗i = 0, θ∗i = 0}. Then the tangent cone TA(θ∗) satisfies

T1 ⊕ T2 ⊆ cl(TA(θ∗)) , (S.1)

where ⊕ denotes the direct (Minkowski) sum operation, cl(·) denotes the closure, T1 = {v ∈
Rp | vi = 0 for i /∈ P} is a |P|-dimensional subspace, and T2 = {v ∈ Rp | sign(vi) =
−sign(θ∗i ) for i ∈ supp(θ∗), vi = 0 for i /∈ supp(θ∗)} is a | supp(θ∗)|-dimensional orthant.

Proof: For any fixed θ∗ ∈ Rp and its P , we define a vector sequence {v(k) = δ(k)w} based
on a given w ∈ Rp and a monotonically decreasing positive scalar sequence {δ(k)} with δ(1) <
mini∈supp(θ∗) |θ∗i | and limk→+∞ δ(k) = 0. w satisfies

wi =

{
0 , if i /∈ P ∪ supp(θ∗)
−sign(θ∗i ) , if i ∈ supp(θ∗)
arbitrary , if i ∈ P

.

Let u(k) be one solution to the polar operator for θ∗ + v(k), and form another sequence {u(k)}.
Note that sign(θ∗i + v

(k)
i ) = sign(θ∗i − sign(θ∗i )δ(k)) = sign(θ∗i ) = sign(u

(k)
i ) for i ∈ supp(θ∗).
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Then we have

‖θ∗ + v(k)‖A − ‖θ∗‖A ≤ 〈θ∗ + v(k),u(k)〉 − 〈θ∗,u(k)〉 = 〈v(k),u(k)〉

≤ −δ(k)‖u(k)
supp(θ∗)‖1 + δ(k)〈wP ,u(k)

P 〉 ≤ −δ
(k)(‖u(k)

supp(θ∗)‖1 − ‖wP‖∞‖u
(k)
P ‖1)

As δ(k) approaches 0, θ∗+v(k) converges to θ∗, and a subsequence {u(ki)} of {u(k)}will converge
to a solution u′ to the polar operator for θ∗. Hence limi→+∞ ‖u(ki)

supp(θ∗)‖1 = ‖u′supp(θ∗)‖1 > 0,

limi→+∞ ‖u(ki)
P ‖1 = ‖u′P‖1 = 0, and for large enough ki, we have

‖θ∗ + v(ki)‖A − ‖θ∗‖A ≤ −δ(ki)(‖u(ki)
supp(θ∗)‖1 − ‖wP‖∞‖u

(ki)
P ‖1) ≤ 0,

thus v(ki) belongs to TA(θ∗). Since v(k) = δ(k)w, w also belongs to TA(θ∗).
Now we show T1 ⊆ cl(TA(θ∗)). For any a ∈ T1 = {v ∈ Rp | vi = 0 for i /∈ P} and arbitrarily
small ξ > 0, we construct w such that wi = ai

ξ for i ∈ P . Based on the argument above, this w is in

TA(θ∗). Therefore a′ , ξw ∈ TA(θ∗), and ‖a − a′‖2 ≤
√
| supp(θ∗)|ξ, which can be arbitrarily

close to 0. Therefore taking the closure of TA(θ∗) gives us T1 ⊆ cl(TA(θ∗)).
Next we show T2 ⊆ TA(θ∗). For any coordinate i ∈ supp(θ∗), construct v ∈ Rp such that
vi = −θ∗i and vj = 0 for j 6= i, and θ′ ∈ Rp such that θ′i = −θ∗i and θ′j = θ∗j for j 6= i. As the
norm ‖ · ‖A is invariant under sign-changes, we can verify that

‖θ∗ + v‖A = ‖θ
∗ + θ′

2
‖ ≤ 1

2
‖θ∗‖A +

1

2
‖θ′‖A = ‖θ∗‖A .

Thus v ∈ TA(θ∗). Repeat the construction of v for each i ∈ supp(θ∗), and then the conic combina-
tion of these v’s forms T2. Therefore we have T2 ⊆ TA(θ∗), which together with T1 ⊆ cl(TA(θ∗))
implies T1 ⊕ T2 ⊆ cl(TA(θ∗)).

3 Proof of Theorem 8

Statement of Theorem: For a given θ∗, Algorithm 1 returns a solution to polar operator (11) for
‖ · ‖sp

∗

k .

Proof: The polar operator for 2-k symmetric gauge norm is essentially

u∗ = argmax 〈u,θ∗〉 s.t. ‖u∗‖(k) ≤ 1 .

As 2-k symmetric gauge norm is sign and permutation invariant, u∗ should conform with the sign
and order of θ∗ in order to achieve maxima, i.e., 〈u∗,θ∗〉 ≤ 〈|u∗|↓, |θ∗|↓〉. W.l.o.g, we assume θ∗ =

|θ∗|↓ , z. Now we analyze the structure of the solution u∗, whose entries should be nonnegative
and sorted in descending order. Assume that u∗k takes certain fixed but unknown value β. It is easy
to see that the entries in u∗k+1:p can take the value of β, as it will always maximize 〈u∗k+1:p,θ

∗
k+1:p〉

without violating the constraint ‖u∗‖(k) ≤ 1. Generally we also assume that u∗i:k take the value of
β and u∗i−1 > u∗i . Then the maximization problem becomes

max
u1:i−1,β

〈u1:i−1, z1:i−1〉+ β‖zi:p‖1

s.t. ‖u1:i−1‖22 ≤ 1− (k − i+ 1)β2, uj > β for 1 ≤ j < i .

Then we let w = u1:i−1 and introduce the Lagrange multiplier λ ∈ Ri−1 and α ∈ R. Using strong
duality, we have the equivalent problem

min
λ�0,α≥0

max
β,w

〈w, z1:i−1〉+ β‖zi:p‖1 + 〈λ,w − b〉 − α((k − i+ 1)β2 + ‖w‖22 − 1) ,

where b = [β, β, . . . , β]T ∈ Ri−1. By complementary slackness, we know λ = 0 for the optimal
solution if it is feasible. Taking the gradient of the objective function w.r.t β and w, we obtain

‖zi:p‖1 −
∑
i

λi − 2αβ(k − i+ 1) = ‖zi:p‖1 − 2αβ(k − i+ 1) = 0 (S.2)
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z1:i−1 + λ− 2αw = z1:i−1 − 2αw = 0 . (S.3)
It is also not difficult to see that the optimal solution will make the constraint ‖u1:i−1‖22 ≤ 1− (k−
i+ 1)β2 hold with equality, i.e.,

‖w‖22 = 1− (k − i+ 1)β2 (S.4)

Combining the Equation (S.2) (S.3) (S.4), we solve β and α and w

β =
‖zi:p‖1√

‖zi:p‖21(k − i+ 1) + ‖z1:i−1‖22(k − i+ 1)2
, α =

‖z1:i−1‖2
2
√

1− (k − i+ 1)β2
, w =

z1:i−1
2α

,

which is essentially the Line 3 in Algorithm 1. As we do not know the i beforehand, we have to
check every possible 1 ≤ i ≤ k to find the one that achieves the maxima without violating the
constraint, which corresponds to the loop and if-then statement in Algorithm 1. Since the optimal w
is proportional to z1:i−1, which is sorted in descending order, we only need to ensure β < wi−1.

4 Proof of Theorem 9

Statement of Theorem: For given s-sparse θ∗ ∈ Rp, the Gaussian width w(Cspk (θ∗)) and the
restricted norm compatibility Ψsp

k (θ∗) for a specified k are given by

w(Cspk (θ∗)) ≤



√
p , if s < k√
3
2s+

2θ∗2max

θ∗
2

min

s log
(
p
s

)
, if s = k

√
3
2s+

2κ2
max

κ2
min

s log
(
p
s

)
, if s > k

, Ψsp
k (θ∗) ≤



√
2p
k , if s < k

√
2(1 +

θ∗max

θ∗min
) , if s = k

(1 + κmax

κmin
)
√

2s
k , if s > k

,

(S.5)
where θ∗max = maxi∈supp(θ∗) |θ∗i | and θ∗min = mini∈supp(θ∗) |θ∗i |.

Proof: For s < k, we note that ‖θ∗‖spk = ‖θ∗‖2, and u∗ can be obtained in a closed-form
u∗ = θ∗

‖θ∗‖2 . Applying Theorem 4, we find that the set R is empty, and thus the Gaussian width
w(Cspk (θ∗)) =

√
p. For s = k, u∗ is in closed-form as well,

u∗i =

{ θ∗i
‖θ∗‖2 , if i ∈ supp(θ∗)
|θ∗|↓k
‖θ∗‖2 =

θ∗min

‖θ∗‖2 , if otherwise
.

In this case, Q is empty, R is nonempty, and |S| = s = k. Hence Theorem 4 implies the cor-
responding Gaussian width, and κmax

κmin
=

θ∗max

θ∗min
. For s > k, the closed-form solution is generally

unavailable, but we can see from Algorithm 1 that β should be nonzero, thus Q is empty and R is
nonempty, which gives us the corresponding Gaussian width.

Given the fact that ‖ · ‖spk ≤
√

2 max{‖ · ‖2, ‖·‖1√k } shown in [1], we can choose β1 =
√

2
k and

β2 =
√

2. Base on the analysis above, the restricted norm compatibility for s ≥ k directly fol-
lows Theorem 5. For s < k, we need to compute the unrestricted norm compatibility Φ. As
‖ · ‖spk <

√
2 max{‖ · ‖2, ‖·‖1√k }, we have

Φ = sup
u∈Rp

‖u‖spk
‖u‖2

≤ sup
u∈Rp

√
2 max{‖u‖2, ‖u‖1√k }

‖u‖2
≤ max{

√
2,

√
2p

k
} =

√
2p

k
,

in which we use the inequality ‖ · ‖1 ≤
√
p‖ · ‖2.
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