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Abstract

Deep learning has recently been introduced to the field ofléwm&l computer
vision and image processing. Promising results have betineld in a num-
ber of tasks including super-resolution, inpainting, deaution, filtering, etc.
However, previously adopted neural network approachels ascconvolutional
neural networks and sparse auto-encoders are inhereilyramnslation invariant
operators. We found this property prevents the deep legiraproaches from
outperforming the state-of-the-art if the task itself riegsi translation variant in-
terpolation (TVI). In this paper, we draw on Shepard intéafion and design
Shepard Convolutional Neural Networks (ShCNN) which edfitly realizes end-
to-end trainable TVI operators in the network. We show tlyadbding only a few
feature maps in the new Shepard layers, the network is aldetieve stronger
results than a much deeper architecture. Superior perfurenan both image in-
painting and super-resolution is obtained where our systgtmerforms previous
ones while keeping the running time competitive.

1 Introduction

In the past a few years, deep learning has been very suctiesafldressing many aspects of visual
perception problems such as image classification, objéettien, face recognition[1L] 2| 3], to name
a few. Inspired by the breakthrough in high-level computsion, several attempts have been made
very recently to apply deep learning methods in low-levsion as well as image processing tasks.
Encouraging results has been obtained in a number of tasksling image super-resolution|[4],
inpainting [5], denosingd [6], image deconvolution [7],tdiemoval [8], edge-aware filteringl[9] etc.
Powerful models with multiple layers of nonlinearity suchcmnvolutional neural networks (CNN),
sparse auto-encoders, etc. were used in the previousstinbevithstanding the rapid progress and
promising performance, we notice that the building blodkihese models are inherently translation
invariant when applying to images. The property makes theari architecture less efficient in
handling translation variant operators, exemplified byith&ge interpolation operation.

Figurel illustrates the problem of image inpainting, a¢gptranslation variant interpolation (TVI)
task. The black region in figufg 1(a) indicates the missingorewhere the four selected patches
with missing parts are visualized in figure 1(b). The intéagion process for the central pixel in
each patch is done by four different weighting functionsvahdn the bottom of figur€l1(b). This
process cannot be simply modeled by a single kernel due tfoltleeent spatially varying property.

In fact, the TVI operations are common in many vision appi@s. Image super-resolution, which
aims to interpolate a high resolution image with a low resoluobservation also suffers from the
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Figure 1: lllustration of translation variant interpotati (a) The application of inpainting. The black regions
indicate the missing part. (b) Four selected patches. Therhaow shows the kernels for interpolating the
central pixel of each patch.

same problem: different local patches have different patté anchor points. We will show that it
is thus less optimal to use the traditional convolutionalraénetwork to do the translation variant
operations for super-resolution task.

In this paper, we draw on Shepard methiod [10] and devise d @M architecture named Shep-
ard Convolutional Neural Networks (ShCNN) which efficignglquips conventional CNN with the
ability to learn translation variant operations for irrégyly spaced data. By adding only a few
feature maps in the new Shepard layer and optimizing a maoseifol TVI procedure in the end-
to-end fashion, the network is able to achieve strongeitsehian a much deeper architecture. We
demonstrate that the resulting system is general enouginifiba number of applications with TVI
operations.

2 Reated Work

Deep learning methods have recently been introduced torézedd low-level computer vision and
image processing. Burger et al.] [6] used a simple multiflaygiral network to directly learn a
mapping between noisy and clear image patches. Xie etlahdépted a sparse auto-encoder and
demonstrated its ability to do blind image inpainting. Aabdayer CNN was used inl[8] to tackle
of problem of rain drop and dirt. It demonstrated the abitifyCNN to blindly handle translation
variant problem in real world challenges.

Xu et al. [7] advocated the use of generative approachesitie goe design of the CNN for decon-
volution tasks. In[[9], edge-aware filters can be well apprmated using CNN. While it is feasible
to use the translation invariant operators, such as cotiwaluo obtain the translation variant results
in a deep neural network architecture, it is less effectivadhieving high quality results for inter-
polation operations. The first attempt using CNN to perfamage super-resolution|[4] connected
the CNN approach to the sparse coding ones. But it failed &b the state-of-the-art super resolu-
tion systeml[111]. In this paper, we focus on the design of derpal network layer that better fits
the translation variant interpolation tasks. We note thati$ the essential step for a wide range of



low-level vision applications including inpainting, digmoval, noise suppression, super-resolution,
to name a few.

3 Analysis

Deep learning approaches without explicit TVI mechanismegated reasonable results in a few
tasks requiring translation variant property. To somemxtieep architecture with multiple layers of
nonlinearity is expressive to approximate certain TVI gpiens given sufficient amount of training
data. Itis, however, non-trivial to beat non-CNN based apphes while ensuring the high efficiency
and simplicity.

To see this, we experimented with the CNN architecturelimfd] [8] and trained a CNN with three
convolutional layers by using 1 million synthetic corrugidear image pairs. Network and training
details as well as the concrete statistics of the data witldwered in the experiment section. Typical
test images are shown in the left column of figure 2 whereassthdts of this model are displayed
in the mid-left column of the same figure. We found that visuaéry similar results as ir [5] are
obtained, namely obvious residues of the text are stillitetie images. We also experimented with
a much deeper network by adding more convolutional layeargjally replicating the network in
[8] by 2,3, and 4 times. Although slight visual differences found in the results, no fundamental
improvement in the missing regions is observed, namelguesstill remains.

A sensible next step is to explicitly inform the network abwinere the missing pixels are so that
the network has the opportunity to figure out more plausibletons for TVI operations. For many
applications, the underlying mask indicating the procgssgions can be detected or be known
in advance. Sample applications include image complétipainting, image matting, dirt/impulse
noise removal, etc. Other applications such as sparse pmpggation and super resolution by
nature have the masks for unknown regions.

One way to incorporate the mask into the network is to tress @n additional channel of the input.
We tested this idea with the same set of network and expetahsettings as the previous trial.
The results showed that such additional piece of informadid bring about improvement but still
considerably far from satisfactory in removing the resglugesults are visualized in the mid-right
column of figuré&R. To learn a tractable TVI model, we devistagnext session a novel architecture
with an effective mechanism to exploit the information @néd in the mask.

4 Shepard Convolutional Neural Networks

We initiate the attempt to leverage the traditional intéaion framework to guide the design of
neural network architecture for TVI. We turn to the Shepaaairfework [10] which weighs known
pixels differently according to their spatial distanceshe processed pixel. Specifically, Shepard
method can be re-written in a convolution form

Jp:{g{*f)p/(K*NDp :]]: ﬁzz? (1)

wherel and.J are the input and output images, respectiveliyndexes the image coordinatéd is
the binary indicatorM,, = 0 indicates the pixel values are unknowis the convolution operation.
K is the kernel function with its weights inversely proporta to the distance between a pixel
with M,, = 1 and the pixel to process. The element-wise division betwikerconvolved image
and the convolved mask naturally controls the way how pixirimation is propagated across the
regions. It thus enables the capability to handle intetpmiefor irregularly-spaced data and make
it possible translation variant. The key element in Shepaethod affecting the interpolation result
is the definition of the convolution kernel. We thus proposewa convolutional layer in the light of
Shepard method but allow for a more flexible, data-drivemé&kedesign. The layer is referred to as
the Shepard interpolation layer.



Figure 2: Comparison between ShCNN and CNN in image inpaintinput images (Left). Results from a
regular CNN (Mid-left). Results from a regular CNN trainedtwmasks (Mid-right). Our results (Right).

4.1 The Shepard Interpolation Layer

The feed-forward pass of the trainable interpolation layar be mathematically described as the
following equation,

n n—1
Kij *-7:;'

b" =1,2,3,... 2
KZ*M7 + )7 n ) 737 ()

FHFHLM™) = o
J

wheren is the index of layers. The subscripin F}* is the index of feature maps in layer j
in ]-‘J’?‘l index the feature maps in layer— 1. 7»~! andM™" are the input and the mask of the

current layer respectivelyz"~! represents all the feature maps in layer 1. K;; are the trainable
kernels which are shared in both numerator and denominmatmrputing the fraction. Concretely,
samekK;; is to be convolved with both the activations of the last layethe numerator and the
mask of the current lay@vI™ in the denominatotZ7" ! could be the output feature maps of regular
layers in a CNN such as a convolutional layer or a poolingrayeould also be a previous Shepard
interpolation layer which is a function of boff”~2 andM"~!. Thus Shepard interpolation layers
can actually be stacked together to form a highly nonlinaterpolation operators is the bias
term ando is the nonlinearity imposed to the network. is a smooth and differentiable function,
therefore standard back-propagation can be used to tmipatameters.

Figurel3 illustrates our neural network architecture witle@ard interpolation layers. The inputs of
the Shepard interpolation layer are images/feature mapglhas masks indicating where interpo-
lation should occur. Note that the interpolation layer carapplied repeatedly to construct more
complex interpolation functions with multiple layers ofniimearity. The mask is a binary map of
value one for the known area, zero for the missing area. Sammeekis applied to the image and
the mask. We note that the mask for layes- 1 can be automatically generated by the result of
previous convolved masK™ « M", by zeroing out insignificant values and thresholding itisIt
important for tasks with relative large missing areas suimpainting where sophisticated ways of
propagation may be learned from data by multi-stage Sheptngholation layer with nonlinearity.
This is also a flexible way to balance the kernel size and tipthdef the network. We refer to
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Figure 3: lllustration of ShCNN architecture for multipkykrs of interpolation.

a convolutional neural network with Shepard interpolati@yers as Shepard convolutional neural
network (ShCNN).

4.2 Discussion

Although standard back-propagation can be used, becAuse function of bothKs in the frac-
tion, matrix form of the quotient rule for derivatives needt used in deriving the back-propagation
equations of the interpolation layer. To make the impleragon efficient, we unroll the two con-
volution operation¥ * F andK x M into two matrix multiplications denoteWw - Z andW - M
whereZ andM are the unrolled versions &f andM. W is the rearrangement of the kernels where
each kernel is listed in a single row. is the error function to compute the distance between the

network output and the ground truth. L2 norm is used to comhis distance. We also denote
Zn = % The derivative of the error functiofi with respect toZ”, 6» = 2., can be
computed the same way as in previous CNN papers [12, 1]. iegdlue is computed, we show
that the derivative of with respect to the kerneMv connectingj*” node in(n — 1)** layer toit"

node inn'" layer can be computed by,

o 3 (W2 M) - Zim — (W3 - Ljm) - My,
oW 4 (W - Mijm)?

“Jim, 3)

wherem is the column index i, M andd.

The denominator of each element in the outer summation in[&ées different. Therefore, the
numerator of each summation element has to be computechselyakVhile this operation can still
be efficiently parallelized by vectorization, it requirégrsficantly more memory and computations
than the regular CNNs. Though it brings extra workload imirey, the new interpolation layer only
adds a fraction of more computation during the test time. #ediscern this from Ed.] 2, the only
added operations are the convolution of the mask with/fhend the point-wise division. Because
the two convolutions shares the same kernel, it can be effigisnplemented by convolving with
samples with the batch size of 2. It thus keeps the computaticShepard interpolation layer
competitive compare to the traditional convolution layer.

We note that it is also natural to integrate the interpotat&yer to any previous CNN architecture.
This is because the new layer only adds a mask input to theotdional layer, keeping all other
interfaces the same. This layer can also degenerate toyechrihected layer because the unrolled
version of Eq[R2 merely contains matrix multiplication irethiaction. Therefore, as long as the TVI
operators are necessary in the task, no matter where it éeder the architecture and the type of
layer before or after it, the interpolation layer can be deasty plugged in.



Last but not least, the interpolation kernels in the layézasned from data rather than hand-crafted,
therefore it is more flexible and could be more powerful thegrgesigned kernels. On the other
hand, it is end-to-end trainable so that the learned intatiom operators are embedded in the overall
optimization objective of the model.

5 Experiments

We conducted experiments on two applications involving Ttle inpainting and the super-
resolution. The training data was generated by randomlypBagi1l million patches from 1000
natural images scraped from Flickr. Grayscale patcheszef48x48 were used for both tasks to
facilitate the comparison with previous studies. All PSNfRparison in the experiment is based on
grayscale results. Our model can be directly extended togssocolor images.

5.1 Inpainting

The natural images are contaminated by masks containihgtteifferent sizes and fonts as shown
in figure[2. We assume the binary masks indicating missingpnsgare known in advance. The
ShCNN for inpainting is consists of five layers, two of whiale &hepard interpolation layers. We
use ReLU function]1] to impose nonlinearity in all our exipeents. 4x4 filters were used in the
first Shepard layer to generate 8 feature maps, followed bthen Shepard interpolation layer with
4xA4 filters. The rest of the ShCNN is conventional CNN ardattitee. The filters for the third layer is
with size 9x9x8, which are use to generate 128 feature maqix128 filters are used in the fourth
layer. 8x8 filters are used to carry out the reconstructiomafye details. Visual results are shown
in the last column in figurg]2. The results of the comparisoagianerated using the architecture in
[8]. More examples are provided in the project webpage.

(e) ANR / 23.52dB (f) A+ / 24.42dB (g) SRCNN/25.07dB  (h) ShCNR5.63dB

Figure 4: Visual comparison. Factor 4 upscaling of the bfiyténage in Set5[[14].

5.2 Super Resolution

The quantitative evaluation of super resolution is conedietsing synthetic data where the high
resolution images are first downscaled by a factor to geaéwat resolution patches. To perform
super resolution, we upscale the low resolution patcheszanal out the pixels in the upscaled
images, leaving one copy of pixels from low resolution imade this regard, super resolution can
be seemed as a special form of inpainting with repeatedrpatté missing area.



Setl4 (x2) | Bicubic | K-SVD | NE+NNLS | NE+LLE | ANR A+ SRCNN | ShCNN
baboon 24.86dB 25.47dB 25.40dB 25.52dB | 25.54dB | 25.65dB 25.62dB 25.79dB
barbara 28.00dB 28.70dB 28.56dB 28.63dB | 28.59dB | 28.70dB 28.59dB 28.59dB

bridge 26.58dB 27.55dB 27.38dB 27.51dB | 27.54dB | 27.78dB 27.70dB 27.92dB
coastguard| 29.12dB 30.41dB 30.23dB 30.38dB | 30.44dB | 30.57dB 30.49dB 30.82dB
comic 26.46dB | 27.89dB 27.61dB 27.72dB | 27.80dB | 28.65dB 28.27dB 28.70dB
face 34.83dB | 35.57dB 35.46dB 35.61dB | 35.63dB | 35.74dB 35.61dB 35.75dB
flowers 30.37dB | 32.28dB 31.93dB 32.19dB | 32.29dB | 33.02dB 33.03dB 33.53dB
foreman 34.14dB | 36.18dB 35.93dB 36.41dB | 36.40dB | 36.94dB 36.20dB 36.14dB
lenna 34.70dB | 36.21dB 36.00dB 36.30dB | 36.32dB | 36.60dB 36.50dB 36.71dB
man 29.25dB | 30.44dB 30.29dB 30.43dB | 30.47dB | 30.87dB 30.82dB 31.06dB
monarch 32.94dB | 35.75dB 35.26dB 35.58dB | 35.71dB | 37.01dB 37.18dB 38.09dB
pepper 34.97dB | 36.59dB 36.18dB 36.36dB | 36.39dB | 37.02dB 36.75dB 37.03dB
ppt3 26.87dB | 29.30dB 28.98dB 28.97dB | 28.97dB | 30.09dB 30.40dB 31.07dB
zebra 30.63dB 33.21dB 32.59dB 33.00dB | 33.07dB | 33.59dB 33.29dB 33.51dB

Avg PSNR 30.23dB 31.81dB 31.55dB 31.76dB | 31.80dB | 32.28dB 32.18dB 32.48dB

Setl4 (x3) | Bicubic | K-SVD | NE+NNLS | NE+LLE | ANR A+ SRCNN | ShCNN
baboon 23.21dB 23.52dB 23.49dB 23.55dB | 23.56dB | 23.62dB 23.60dB 23.69dB
barbara 26.25dB 26.76dB 26.67dB 26.74dB | 26.69dB | 26.47dB 26.66dB 26.54dB

bridge 24.40dB 25.02dB 24.86dB 24.98dB | 25.01dB | 25.17dB 25.07dB 25.28dB
coastguard| 26.55dB 27.15dB 27.00dB 27.07dB | 27.08dB | 27.27dB 27.20dB 27.43dB
comic 23.12dB 23.96dB 23.83dB 23.98dB | 24.04dB | 24.38dB 24.39dB 24.70dB
face 32.82dB 33.53dB 33.45dB 33.56dB | 33.62dB | 33.76dB 33.58dB 33.71dB
flowers 27.23dB 28.43dB 28.21dB 28.38dB | 28.49dB | 29.05dB 28.97dB 29.42dB
foreman 31.18dB 33.19dB 32.87dB 33.21dB | 33.23dB | 34.30dB 33.35dB 34.45dB
lenna 31.68dB 33.00dB 32.82dB 33.01dB | 33.08dB | 33.52dB 33.39dB 33.68dB
man 27.01dB 27.90dB 27.72dB 27.87dB | 27.92dB | 28.28dB 28.18dB 28.41dB
monarch 29.43dB 31.10dB 30.76dB 30.95dB | 31.09dB | 32.14dB 32.39dB 33.37dB
pepper 32.39dB 34.07dB 33.56dB 33.80dB | 33.82dB | 34.74dB 34.35dB 34.77dB
ppt3 23.71dB 25.23dB 24.81dB 24.94dB | 25.03dB | 26.09dB 26.02dB 26.89dB
zebra 26.63dB 28.49dB 28.12dB 28.31dB | 28.43dB | 28.98dB 28.87dB 29.10dB

Avg PSNR 27.54dB 28.67dB 28.44dB 28.60dB | 28.65dB | 29.13dB 29.00dB 29.39dB

Setl4 (x4) | Bicubic | K-SVD | NE+NNLS | NE+LLE | ANR A+ SRCNN | ShCNN
baboon 22.44dB 22.66dB 22.63dB 22.67dB | 22.69dB | 22.74dB 22.70dB 22.75dB
barbara 25.15dB 25.58dB 25.53dB 25.58dB | 25.60dB | 25.74dB 25.70dB 25.80dB

bridge 23.15dB 23.65dB 23.54dB 23.60dB | 23.63dB | 23.77dB 23.66dB 23.83dB
coastguard| 25.48dB 25.81dB 25.82dB 25.81dB | 25.80dB | 25.98dB 25.93dB 26.13dB
comic 21.69dB 22.31dB 22.19dB 22.26dB | 22.33dB | 22.59dB 22.53dB 22.74dB
face 31.55dB 32.18dB 32.09dB 32.19dB | 32.23dB | 32.44dB 32.12dB 32.35dB
flowers 25.52dB 26.44dB 26.28dB 26.38dB | 26.47dB | 26.90dB 26.84dB 27.18dB
foreman 29.41dB 31.01dB 30.90dB 30.90dB | 30.83dB | 32.24dB 31.47dB 32.30dB
lenna 29.84dB 30.92dB 30.82dB 30.93dB | 30.99dB | 31.41dB 31.20dB 31.45dB
man 25.70dB 26.46dB 26.30dB 26.38dB | 26.43dB | 26.78dB 26.65dB 26.82dB
monarch 27.46dB 28.72dB 28.48dB 28.58dB | 28.70dB | 29.39dB 29.89dB 30.30dB
pepper 30.60dB 32.13dB 31.78dB 31.87dB | 31.93dB | 32.87dB 32.34dB 32.82dB
ppt3 21.98dB 23.05dB 22.61dB 22.77dB | 22.85dB | 23.64dB 23.84dB 24.49dB
zebra 24.08dB 25.47dB 25.17dB 25.36dB | 25.47dB | 25.94dB 25.97dB 26.21dB

Avg PSNR 26.00dB 26.88dB 26.72dB 26.81dB | 26.85dB | 27.32dB 27.20dB 27.51dB

Table 1: PSNR comparison on the Set14| [13] image set for lipgaaf factor 2, 3 and 4. Methods compared:
Bicubic, K-SVD [13], NE+NNLS[[14], NE+LLE[15], ANRI[16], AHLI], SRCNN [4], Our ShCNN

We use one Shepard interpolation layer at the top with kesizel of 8x8 and feature map number
16. Other configuration of the network is the same as thatimew network for inpainting. During
training, weights were randomly initialized by drawingrin@ Gaussian distribution with zero mean
and standard deviation of 0.03. AdaGrad![17] was used inxgéements with learning rate of
0.001 and fudge factor of 1e-6. Talble 1 show the quantitaggelts of our ShCNN in a widely
used super-resolution data getl[13] for upscaling imag@s&st 3 times and 4 times respectively.
We compared our method with 7 methods including the two clistate-of-the-art systemis [11, 4].
Clear improvement over the state-of-the-art systems casbberved. Visual comparison between
our method and the previous methods is illustrated in figlaedifigurd .

6 Conclusions

In this paper, we disclosed the limitation of previous CNMhtiectures in image processing tasks
in need of translation variant interpolation. New architiee based on Shepard interpolation was
proposed and successfully applied to image inpainting apérsresolution. The effectiveness of
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Figure 5: Visual comparison. Factor 2 upscaling of the hindge in Set5[14].

the ShCNN with Shepard interpolation layers have been dstraird by the state-of-the-art perfor-
mance.
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