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A Posterior Inference for Gibbs-CrowdSVM Estimator

Sample ®: The posterior of ® is similar as in CrowdSVM. We can derive that ¢(¢mk|ly) =
Dir(@mk |mmk + o), which is also a Dirichlet distribution.

Sample n: Given its prior po(n) = N (n;0,vI), we can show that the posterior is also a nor-
mal distribution, ¢(n|y, A) = N (n; p, £), whose meanis pp = X (¢ 3, (2 + €\, 1)g2(s;)) and

covariance matrix is ¥ = (%I +c2Y, A%giA(si)giA(si)T)_

Sample A: The conditional distribution of the augmented variables A is ¢(A|n, y) = [, a(Xi|m, vi),
where q(\i[n, y;) = GIG(Ni; —3,1,¢*(€ — n" g (s;))?) is a generalized inverse Gaussian distri-
bution. Thus, its inverse value follows an inverse Gaussian distribution

PO 90 =29 (A le(t =" g (sl 1) (16)

from which we can draw samples efficiently [13]], with O(1) time complexity.

Sample y: Finally, for the true labels we can derive that each single variable y; follows a multino-
mial distribution:

With the conditional distributions, we iterate the above steps for a number of rounds to take samples
from the posterior. In our experiments, we initially set y as the result of majority voting. After
removing burn-in samples, we use the most frequent value of y as the final outputs.

B Online Learning from Crowds

We further extend our methods to an interesting new setting of online learning-from-crowds, where
the crowdsourcing labels are collected in a stream as more tasks are distributed over the crowd-
sourcing platforms. This setting is useful for many applications [1] that require a timely response,
for which we cannot simply wait for collecting all the data before learning a model. We demonstrate
that our online models can immediately estimate the true labels of current tasks, without caching all
historical worker labels.

One seminal feature of Bayesian methods is their sequential updating. We now briefly discuss
an extension of our Bayesian max-margin estimator to the interesting setting of online learning-
from-crowds, where workers continue labeling the tasks that come in a stream. This setting is
of interest in the case where the data are generated in a stream and our model needs to respond
rapidly to provide reliable answers for further decisions. For example, a never-ending-learning
system [1]] may continue generating some suspicious facts that call for human labels in order to
justify their confidence. In this case, an online learning-from-crowds model would be useful to
quickly collect the crowd labels and estimate the true answers. Another scenario is the incremental
learning for real-time applications, such as fraud protection, target marketing and intrusion detection,
in which the underlying data distribution is likely to change. They require to update models with the
sequentially arriving data to keep the prediction results accurate. Thus collecting new labels quickly
and accurately is important to them.

Below, we present the online CrowdSVM estimator and the online Gibbs-CrowdSVM estimator,
which are the extensions for CrowdSVM and Gibbs-CrowdSVM.

B.1 Online CrowdSVM Estimator

We consider the online setting where a mini-batch of tasks, B;, are distributed to the workers for
labeling, and the goal is to estimate the true labels of these tasks from the observations X;. We
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assume that the set of workers doesn’t changeﬂ Let ¢;—1 (®, ) be the inferred posterior after seeing
the (¢-1)th mini-batch. Then, given the new mini-batch of tasks B;, we define the online CrowdSVM
as solving:

inf L' (q(@,m)iy) +e- Y& (18)

£i2>0,qt,yt B,
s.t.: By [n' g2 (d)] > ¢8(d) — &,Vi € By, d € [D],

where L*(q;; y1) = KL [q¢]|gi—1] — Eq, [log p(X;|®, y:)] . If we ignore the crowdsourcing margin
constraints (e.g., setting ¢ = 0), solving the problem gives exactly the same posterior as doing
the standard sequential Bayesian updating. By considering the extra margin constraints, our work
represents an application of the streaming RegBayes [[16] theory to online learning-from-crowds.

Variational Inference. To solve the problem, we introduce the mean-field assumption ¢;.(®,n) =
q:(®)q:(m), and develop an iterative procedure that alternatively updates each factor distribution:

Update ¢;(®): Fixing the distribution ¢;(n) and true labels y, the optimal solution has the closed-
form: ¢} (®) o gt—1(P)p(X|®, y:). Since the prior po(®) is a Dirichlet distribution, by induction
the inferred distribution at each round is also Dirichlet: ¢; (¢;r) = Dir(n§» x T o), where n? kd =

ngtk,&l) + > ien, l(yi = k, zi; = d) with the initial condition that ngkd =0.
Update ¢;(n): Given the distribution ¢;(®) and true labels y, this substep involves solving:

inf KL - +c- i 19
£:>0,q:(n) [qt(n)HQt 1(77)] iez&g ()

s.t.: By [n' g2 (d)] > ¢8(d) — &,Vi € By, d € [D).

Let w be the Lagrange multipliers. The solution is ¢; (1) o ¢;—1(n) exp (ZieBt SawinTgf(d)).
When the prior py(n7) is normal, by induction this posterior is also a normal distribution ¢} () =
N (pi,vI), where the mean is sequentially updated as o, = pe—1 + Y ;e doqwigs (d) with
the initial condition g1y = 0. Plugging the normal distributions ¢; and ¢;_; into problem and
absorbing the slacking variables, we can show that the optimal p, is the solution of the following
convex problem:

2
: P — Ht—1
g Pl S S (@) - nTgP ),
" i€B d

which can be solved by a (sub)-gradient descent method.

Update labels y;: Given the distribution ¢;(®,n), the problem of updating labels is exactly the
same as in the batch CrowdSVM. So we can use the same discriminant function to find the best label
estimation of each task in the current mini-batch.

In summary, when a new mini-batch of tasks comes, we iterate the above steps until converge, and
get the estimated true labels at the final iteration.

B.2 Online Gibbs-CrowdSVM Estimator

Similar as the Gibbs-CrowdSVM estimator, we use the expected loss for posterior regularization to
replace the average loss of the online CrowdSVM estimator. When given the new mini-batch of
tasks B;, this replacement leads to online Gibbs-CrowdSVM problem:

>, 2c(<is7.,)+] , (20)

i€ By

where £(¢;) = KL [gi]q—1] — Eq, [logp(X:|®,y)], and Ga = £2(d) — n'gP(d), si =
argmaxg.,. Gid. Note here we treat the true labels y; as variables rather than parameters.

inf £!(q,(® E
qlgpﬁ(qt( M, Y1)) + Ey

3This is reasonable sine we can simply define the set containing all web workers. If some workers were not
active, the algorithm will simply ignore them.
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To solve the online Gibbs-CrowdSVM problem, we introduce the mean-field assumption that
qt(®,m,y:) = ¢(®,M)qo(y:). And we include the augmented variables A; to explain the con-
straints. The optimal post-data posterior with augmented variables after processing ¢ mini-batches
is derived as

0 (®. 1, Y1, M) o qo(ye) g1 (B, m)p(Xe| @, ) ] (v, Ailzi,m). (21)
i€B;

Posterior inference. When ¢-th mini-batch of tasks comes, we do Gibbs sampling to infer the
post-data posterior distribution in Eq. (ZI)). The main steps are detailed as follows.

Sample global variables: Fixing all other variables, the conditional distribution of ® is

Qi (Pmr|ys) Qtfl(d)mk)p(Xt‘(I)yyt)' (22)

Similar as in the batch Gibbs-CrowdSVM, we can derive that g;(@mk|y:) = Dir(¢mi|nt . + o).
Given po(n) = N (n;0,vI), the conditional distribution for 7 is

ae(nlye M) o< q—1(m) [ (i, Milwi,m), (23)
1€EB;
which can be further derived as q;(n|y:, A\¢) = N(n; py, 2y). The distribution mean is p; =
B; ' A, and the covariance matrix is ©; = B; *, where Ag = 0 and By = %I . The updating rules
for these two notations are

1
A = _ 2 — .71 A .
1= At Y (TR (s), (24)
1€By
B=B, 1 +¢ Z )\i_lgf(si)gf(si)T. (25)
1€EBy

Sample local variables: Fix the global variables ¢ and 7, the sampling procedure for the local
variables A; and y, is the same as that of the batch Gibbs-CrowdSVM in Eq. and (I7).

B.3 Results in Online Learning

We test the online CrowdSVM on the web search dataset, which was split into a number of mini-
batches. The regularization parameters are selected by the same method used for batch CrowdSVM.
Since the data doesn’t have specific ordering, we shuffle the mini-batches for 10 times and report the
average results. For baselines, we compare with the online DS estimator, which is in fact a special
case of our online CrowdSVM by simply setting ¢ = 0.
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Figure 4: Overall error rates of online CrowdSVM estimator with different mini-batch sizes.

CrowdSVM. Fig. f] summarizes the overall error rates of CrowdSVM with different mini-batch
sizes. We can see that when the mini-batch size increases, the overall error rate decreases. This
is reasonable since larger mini-batches contain more information on the interrelationship between
workers and tasks. Furthermore, the performance of batch CrowdSVM provides a lower bound for
the performance of online estimators.

We further investigate the effectiveness of online estimators during the learning process. After
processing each mini-batch, we fix the distribution ¢(®,n), and estimate the true labels of the full
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Figure 5: Online performances of different learning methods with various mini-batch sizes.

dataset. Fig. [5] shows the estimation error rates, with various mini-batch sizes. We also train a
batch CrowdSVM on all the passed data after processing each mini-batch, whose performance acts
as a lower bound of online CrowdSVM’s error rates. Firstly, we can see that the error rates of all
estimators decrease when processed more data, this result shows that the online learners can truly
pass information through the time. Secondly, the curve of online CrowdSVM is very close to the
lower bound curve, suggesting the effectiveness of this estimator. Finally, the results again support
our observation that the online estimator’s performance will improve along with the mini-batch size
increasing.

Gibbs-CrowdSVM. We investigate the effectiveness of online Gibbs-CrowdSVM on the web search
dataset. Fig.[6(a)]shows the overall error rates of online Gibbs-CrowdSVM with different mini-batch
sizes. The results show that the error rate of online Gibbs-CrowdSVM decreases as the estimator
processes more data.
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Figure 6: (a) Performances of online Gibbs-CrowdSVM with various mini-batch sizes. (b) Overall
error rates of online Gibbs-CrowdSVM with different mini-batch sizes.

Fig. [6(b)| shows the performance of the online Gibbs-CrowdSVM with different mini-batch sizes.
Different lines in this figure show the error rates of online estimators with different mini-batch sizes.
Comparison with the performance of the online CrowdSVM in Fig. [5] and Fig. d] shows that online
Gibbs-CrowdSVM performs worse than the variational version when the mini-batch size is small,
perhaps because the Gibbs sampler on these small mini-batches of tasks possesses more uncertainty
(i.e., high variance) than the variational inference algorithm.

13



	main
	Introduction
	Preliminary
	Majority Voting Estimator
	Dawid-Skene Estimator

	Max-Margin Majority Voting
	Geometric Interpretation of Crowdsourcing Margin
	Max-Margin Majority Voting Estimator

	Bayesian Max-Margin Estimator
	Model Definition
	Variational Inference

	Gibbs CrowdSVM Estimator
	Model Definition
	Posterior Inference

	Experiments
	Datasets and Setups
	Model Selection
	Experimental Results

	Conclusions and Future Work
	Posterior Inference for Gibbs-CrowdSVM Estimator
	Online Learning from Crowds
	Online CrowdSVM Estimator
	Online Gibbs-CrowdSVM Estimator
	Results in Online Learning



