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A Results for multivariate linear regression

In multivariate regression / multitask learning, we are given a collection of n regression problems
in Rm, where the data at hand is of the form Yj ∈ Rm for each task j = 1, · · · , n, and X ∈ Rm×d
is the design matrix. If we denote the unknown regression matrix as B ∈ Rd×n, our observed data
can be written as

Y = X ·B +W

where W ∈ Rm×n is the observation noise matrix. Suppose the matrix of coefficients B has an
exact low-rank plus sparse decomposition, in which case we can write B> = L? + S? where
rank(L?) ≤ r and maxi‖S?i∗‖0 ≤ s. Then, by taking the transpose of the observation model

Y > = (L? + S?) ·X> +W> , (1)

we see that this is a special instance of our initial model (1), where compression matrix is given
by C = X> and error term is Z = W>. We emphasize here that in most multivariate regression
/ multitask learning problems, compression matrix X> cannot be controlled by the user and is
obtained through observing the specific event or phenomenon. For this section, we assume a fixed
design matrix X satisfying a restricted eigenvalue property (a standard assumption for many sparse
regression problems [2]). In this setting, we aim to recover the low-rank product P ? = L? ·X> and
the sparse matrix S? by solving the convex program (2). We state the performance of the recovered
solution, which can be obtained from Theorem 1.

Proposition 1. Assume the model (1), where B> = L? + S?, with rank(L?) ≤ r, and
maxi‖S?i∗‖0 ≤ s. Assume that X has unit-length columns and satisfies REm,d(c1, c2), where

c0 := c1 − c2 ·
√

16s log(d)

m
> 0,

and assume that Wij
iid∼ N(0, σ2). Then there exist universal constants c, c′, c′′ > 0 such that if we

choose1

α ≥ ‖L?X>X‖∞, ν ≥ 6σ
√
n+m, λ ≥ 4σ

√
log(nd) + 4α ,

and if m ≥ c · s log(nd), then the solution (P̂ , Ŝ) to the convex program (2) (with Y > in place of
Y ) satisfies

‖P̂ − P ?‖2F + ‖Ŝ − S?‖2F ≤ c′ · c−4
0 ·

(
rσ2(n+m) + (σ2 log(nd) + α2)sn

)
with probability at least 1− c′′

nd .

1Requiring that we choose α to satisfy α ≥ ‖L?X>X‖∞ is of course nontrivial since L? is not known.
However, under several natural models for L? and for X , this quantity can easily be bounded. For example,
if we treat X as fixed and assume that the singular vectors of the rank-r matrix L? are chosen uniformly at
random, one can show that ‖L?X>X‖∞ ∼

√
d log(nd)/m.
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Remark 1. If the entries of W are subgaussian rather than Gaussian, then the same result holds,
except for a change in the constants appearing in the parameters (α, ν, λ).
Remark 2. Corollary 4 in Agarwal et al [1] provides the result that leads to the same scaling as
our result. However, they essentially require m ≥ d as opposed to our case that only requires
m ≥ c · s log(nd). We also provide recovery guarantee of the compressed low-rank component
P ? = L? ·X> rather than the low-rank component of coefficients L? as in [1].

B Details for chlorine data experiment

This section gives details for the chlorine data experiment described in Section 4.2. We first in-
troduce missing entries in the data matrix D and focus on predicting those entries by solving the
convex program (2) based on the reweighted partially observed data matrix DΩ. To do this, we
follow a missing at random model, partitioning the nd entries into three sets, Ωobs ∪ Ωval ∪ Ωtest,
where Ωobs contains the observed data (80% of all entries), Ωval is a validation set for tuning (10%
of all entries), and Ωtest is the test set (10% of all entries). For each j ∈ [d], we define the set of
observed entries in column j as Oj := {i ∈ [n] : (i, j) ∈ Ωobs} and similarly for Vj and Tj .We
will then proceed as follows: Fixing ν and λ, solve the convex program (2) using the compressed
reweighted data matrix D̃Ωobs

·C to obtain an estimator (P̂ , Ŝ). According to the low-rank + sparse
decomposition, the column span of P̂ should closely approximate D− ρ · Ŝ, and so we should have
(D − ρ · Ŝ)∗j ≈ P̂ · wj for some wj . We compute wj using least squares on the observed data, i.e.

wj = (P̂>Oj∗P̂Oj∗)
−1P̂Oj∗(D − ρ · Ŝ)Oj ,j .

We then predict the missing entries located at the validation set entries Vj as

D̂Vj ,j = P̂Vj∗ · wj + ŜVj ,j .

Since we have no information for recovering S?ij for (i, j) /∈ Ωobs, we remove the largest 1% of
entries of prediction error D̂Ωval

− DΩval
and evaluate the prediction performance only using the

remaining 99% of the entries:

‖(D̂Ωval
−DΩval

)bottom 99%‖2F .
With this prediction performance criteria, we choose the optimal regularization parameters νopt, λopt
and finally outputs the prediction error evaluated on the test set:

‖(D̂Ωtest −DΩtest)bottom 99%‖2F .

C Proofs of theorems

C.1 Proof of Theorem 1

Background First we introduce a few definitions which are now standard for the analysis of this
type of structured problem, using the decomposability of the `1 norm and the nuclear norm. Let
Ω ⊂ [n]× [d] be the support of the true sparse component S?, and let Ωi ⊂ [d] be the i-th row of Ω,
i.e. Ωi = {j : S?ij 6= 0}. Let T be the tangent space to the nuclear norm at P ?, which is given by [3]

T = {AV > + UB> : any matrices A ∈ Rn×r, B ∈ Rm×r} ,
where P ? = UΣV > is a singular value decomposition of P ? with U ∈ Rn×r and V ∈ Rm×r. It is
known [2] that, for any S ∈ Rn×d, for each row i ∈ [n],

‖S?i∗‖1 − ‖Si∗‖1 ≤ ‖(S − S?)iΩi‖1 − ‖(S − S?)iΩc
i
‖1 , (2)

which trivially yields

‖S?‖1 − ‖S‖1 ≤ ‖PΩ (S − S?)‖1 − ‖P⊥Ω (S − S?)‖1 , (3)
where PΩ () and P⊥Ω () denote projection onto the subspace of matrices supported on Ω, and onto
the orthogonal subspace. Furthermore for any P ∈ Rn×m,

‖P ?‖∗ − ‖P‖∗ ≤ ‖PT (P − P ?)‖∗ − ‖P⊥T (P − P ?)‖∗ , (4)
where PT () and P⊥T () denote projection onto the subspace T ⊂ Rn×m, and onto its orthogonal
complement T⊥. Throughout, we will use the facts that ‖M‖∗ ≤ ‖PT (M)‖∗ + ‖P⊥T (M)‖∗ and
similarly ‖M‖1 ≤ ‖PΩ (M)‖1 + ‖P⊥Ω (M)‖1 without comment.
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Notation Definition Name
[n] {1, . . . , n}

‖v‖0 or ‖M‖0
∑
i 1vi 6=0 or

∑
ij 1Mij 6=0 number of nonzeros in vector v or matrix M

M∗j (M1j ,M2j , . . . ) jth column of the matrix M
Mi∗ (Mi1,Mi2, . . . ) ith row of the matrix M

(always treated as a column vector)
MAB (Mij)i∈A,j∈B the submatrix of M indexed by A×B
‖M‖F

√∑
ijM

2
ij Frobenius norm

‖M‖1
∑
ij |Mij | elementwise `1 norm

‖M‖∞ maxij |Mij | elementwise `∞ norm
‖M‖2,∞ maxi‖Mi∗‖2 largest row `2 norm
‖M‖ maxv

‖Mv‖2
‖v‖2 spectral norm (a.k.a. operator norm)

‖M‖∗
∑
i σi(M) where σ1(M), σ2(M), . . . nuclear norm (a.k.a. trace norm)

are the singular values of M
c, c′, c′′, . . . universal constants (whose definitions may

change from one result to another)

Table 1: Notation used throughout the proofs.

Basic inequality By optimality,

1

2
‖Y − P̂ − ŜC‖2F + ν‖P̂‖∗ + λ‖Ŝ‖1 ≤

1

2
‖Y − P ? − S?G‖2F + ν‖P ?‖∗ + λ‖S?‖1 . (5)

Define errors ∆P = P̂ −P ? and ∆S = Ŝ−S?. Using our model (1) for Y , and applying (3) and (4),
we rearrange terms to obtain

1

2
‖∆P + ∆SC‖2F ≤ 〈Z,∆P + ∆SC〉+ ν

(
‖PT

(
∆P
)
‖∗ − ‖P⊥T

(
∆P
)
‖∗
)

+ λ
(
‖PΩ

(
∆S
)
‖1 − ‖P⊥Ω

(
∆S
)
‖1
)

≤ ‖Z‖ · ‖∆P ‖∗ + ‖ZC>‖∞ · ‖∆S‖1 + ν
(
‖PT

(
∆P
)
‖∗ − ‖P⊥T

(
∆P
)
‖∗
)

+ λ
(
‖PΩ

(
∆S
)
‖1 − ‖P⊥Ω

(
∆S
)
‖1
)

≤ ‖PT
(
∆P
)
‖∗(ν + ‖Z‖)− ‖P⊥T

(
∆P
)
‖∗(ν − ‖Z‖)

+ ‖PΩ

(
∆S
)
‖1(λ+ ‖ZC>‖∞)− ‖P⊥Ω

(
∆S
)
‖1(λ− ‖ZC>‖∞) .

Now we consider the left-hand side. We have

1

2
‖∆P + ∆SC‖2F =

1

2
‖∆P ‖2F +

1

2
‖∆SC‖2F + 〈∆P ,∆SC〉

≥ 1

2
‖∆P ‖2F +

1

2
‖∆SC‖2F − ‖∆PC>‖∞ · ‖∆S‖1

≥ 1

2
‖∆P ‖2F +

1

2
‖∆SC‖2F − 2α‖∆S‖1 ,

where the last step uses ‖∆PC>‖∞ ≤ ‖P̂C>‖∞ + ‖P ?C>‖∞ ≤ 2α by the assumption
‖P ?C>‖∞ ≤ α (6) and the constraint ‖P̂C>‖∞ ≤ α in the optimization problem (2). Includ-
ing this into the work above, then,

1

2
‖∆P ‖2F +

1

2
‖∆SC‖2F ≤ ‖PT

(
∆P
)
‖∗(ν + ‖Z‖)− ‖P⊥T

(
∆P
)
‖∗(ν − ‖Z‖)

+ ‖PΩ

(
∆S
)
‖1(λ+ ‖ZC>‖∞ + 2α)− ‖P⊥Ω

(
∆S
)
‖1(λ− ‖ZC>‖∞ − 2α)

≤ ν(1.5‖PT
(
∆P
)
‖∗ − 0.5‖P⊥T

(
∆P
)
‖∗) + λ(1.5‖PΩ

(
∆S
)
‖1 − 0.5‖P⊥Ω

(
∆S
)
‖1) , (6)

where the last step uses the assumptions (6) on the parameters (α, ν, λ).
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Strong convexity Next, we need to use the restricted strong convexity assumption on C. First, we
consider the rows of Ŝ individually. Fixing P̂ , we note that the optimization problem (2) separates
over the rows of Ŝ: ignoring the term ν‖P̂‖∗ which is constant with respect to S, we have

1

2
‖Y − P̂ − ŜC‖2F + λ‖Ŝ‖1 =

∑
i

(
1

2
‖Yi∗ − P̂i∗ − C>Ŝi∗‖22 + λ‖Ŝi∗‖1

)
.

Therefore, Ŝi∗ is the minimizer of the term in parentheses, for each i, and in particular we have
1

2
‖Yi∗ − P̂i∗ − C>Ŝi∗‖22 + λ‖Ŝi∗‖1 ≤

1

2
‖Yi∗ − P̂i∗ − C>S?i∗‖22 + λ‖S?i∗‖1 .

Rearranging terms and applying (2), we get
1

2
‖C>(Ŝi∗ − S?i∗)‖22 ≤ 〈Yi∗ − P̂i∗ − C>S?i∗,∆Si∗〉+ λ

(
‖∆SiΩi

‖1 − ‖∆SiΩc
i
‖1
)

≤ ‖C(Yi∗ − P̂i∗ − C>S?i∗)‖∞ · ‖∆Si∗‖1 + λ
(
‖∆SiΩi

‖1 − ‖∆SiΩc
i
‖1
)
.

We also have

‖C(Yi∗ − P̂i∗ − C>S?i∗)‖∞ = ‖C(Zi∗ − (P̂ − P ?)i∗)‖∞ ≤ ‖(Z − (P̂ − P ?))C>‖∞
≤ ‖ZC>‖∞ + ‖P̂C>‖∞ + ‖P ?C>‖∞ ≤ ‖ZC>‖∞ + 2α ≤ λ/2 ,

by the assumption (6) on λ. Combining this with the above, we then have
1

2
‖C>∆Si∗‖22 ≤ λ

(
1.5‖∆SiΩi

‖1 − 0.5‖∆SiΩc
i
‖1
)
,

and since the left-hand side is nonnegative, we therefore have

‖∆SiΩc
i
‖1 ≤ 3‖∆SiΩi

‖1 ,
that is, for every row of the sparse matrix, a substantial portion of the `1 norm of the error is located
on the correct support. Therefore,

‖∆Si∗‖1 = ‖∆SiΩc
i
‖1 + ‖∆SiΩi

‖1 ≤ 4‖∆SiΩi
‖1 ≤ 4

√
s‖∆SiΩi

‖2 ≤ 4
√
s‖∆Si∗‖2 ,

where the next-to-last inequality holds because |Ωi| ≤ s by assumption on the sparsity of the row
S?i∗.

Next, by assumption of the theorem, C> satisfies REm,d(c1, c2). We then have

‖C>∆Si∗‖2 ≥ c1‖∆Si∗‖2−c2·
√

log(d)

m
‖∆Si∗‖1 ≥

(
c1 − c2 · 4

√
s ·
√

log(d)

m

)
‖∆Si∗‖2 = c0‖∆Si∗‖2 ,

where the last step uses the definition of c0 in the theorem. (Recall that c0 > 0 by assumption.)
Summing over the rows, we then have

‖∆SC‖2F =
∑
i

‖C>∆Si∗‖2 ≥
∑
i

c20‖∆Si∗‖22 = c20‖∆S‖2F . (7)

Combining everything Now we return to (6) and plug in our result in (7), to obtain
1

2
‖∆P ‖2F+

c20
2
‖∆S‖2F ≤ ν(1.5‖PT

(
∆P
)
‖∗−0.5‖P⊥T

(
∆P
)
‖∗)+λ(1.5‖PΩ

(
∆S
)
‖1−0.5‖P⊥Ω

(
∆S
)
‖1) .

Removing negative terms from the right-hand side and multiplying by 2,

‖∆P ‖2F + c20‖∆S‖2F ≤ 3ν‖PT
(
∆P
)
‖∗ + 3λ‖PΩ

(
∆S
)
‖1 .

Since rank(PT
(
∆P
)
) ≤ 2r by definition of T , and similarly since ‖PΩ

(
∆S
)
‖0 ≤ sn by definition

of Ω, we have
‖∆P ‖2F + c20‖∆S‖2F ≤ 3ν‖PT

(
∆P
)
‖F ·
√

2r + 3λ‖PΩ

(
∆S
)
‖F ·
√
sn

≤ 3ν‖∆P ‖F ·
√

2r + 3λ‖∆S‖F ·
√
sn

≤
√
‖∆P ‖2F + c20‖∆S‖2F ·

√
18rν2 + 9c−2

0 snλ2 ,

where the last step uses the Cauchy-Schwarz inequality. In particular, this implies that

‖∆P ‖2F + c20‖∆S‖2F ≤ 18rν2 + 9c−2
0 snλ2 ,

which proves the desired result.
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C.2 Proof of Theorem 2

This result is a straightforward application of Theorem 1. It will be sufficient to check that, with the
stated probability, the following statements all hold:

C> satisfies REm,d(c1, c2), with c0 := c1 − c2

√
16s log(d)

m
> 0, (8)

and
α ≥ ‖L?CC>‖∞, ν ≥ 2‖Z‖, λ ≥ 2‖ZC>‖∞ + 4α. (9)

To prove that (8) holds, the following lemma is sufficient (along with the assumption m ≥ c ·
s log(nd)):
Lemma 1. Under either the Gaussian model (3) or the orthogonal model (4) for the compression
matrix C, for any δ > 0, C> satisfies REm,d(c1, c2) for constants

c1 =
1

4(2 +
√

2)
and c2 =

9

2 +
√

2

with probability at least 1− c′e−cm, where c, c′ > 0 are universal constants.

To prove (9), we consider the first inequality by treating L? as fixed and analysing the random model
for C:
Lemma 2. Under either the Gaussian model (3) or the orthogonal model (4) for C, for any fixed
matrix L? ∈ Rn×d and fixed δ > 0, if m ≥ 16 log(nd), then

P

{
‖L?CC>‖∞ > ‖L?‖∞ ·

(
1 +

√
16d log(nd)

m

)}
≤ 4

nd
.

For the second and third inequalities in (9), we first have the following bound on C:
Lemma 3. Under either the Gaussian (3) or orthogonal (4) model for C, with probability at least
1− 2de−m/8,

‖C‖ ≤
√

12d/m and ‖C‖2,∞ ≤ 2 .

Next, we consider C as fixed and analyse the random model for the noise terms Zpre and Zpost (we
can treat C as fixed since the noise is generated independently from C). Fixing C, the rows of
Z = ZpreC + Zpost are i.i.d. draws from the distribution N(0, σ2

preC
>C + σ2

postIm). Then, writing
Σ = σ2

preC
>C + σ2

postIm, we have

‖Z‖ ≤ ‖Z · Σ−1/2‖ ·
√
‖Σ‖ ≤ 3

√
n+m ·

√
‖Σ‖ ,

with probability at least 1−e−m, where the last step uses the fact thatZ ·Σ−1/2 is a n×mmatrix with
i.i.d. standard normal entries, and applies Davidson and Szarek [4, Theorem II.13]. Furthermore,

‖Σ‖ ≤ σ2
pre‖C‖2 + σ2

post ≤ σ2
max · (12d/m+ 1) ≤

(
4σmax

√
d/m

)2

,

where the last step follows from Lemma 3. Combining these steps,

‖Z‖ ≤ 12σmax

√
n+m ·

√
d/m .

Next, we need to bound ‖ZC>‖∞. Note that the entries are distributed as

(ZC>)ij ∼ N(0, σ2
pre(CC

>CC>)jj + σ2
post(CC

>)jj) ,

and this variance term is bounded as

σ2
pre(CC

>CC>)jj + σ2
post(CC

>)jj = σ2
pree
>
j CC

>CC>ej + σ2
poste

>
j CC

>ej

≤ σ2
max

(
‖C‖2 + 1

)
‖C>ej‖22 ≤ σ2

max · (12d/m+ 1) · 22 ≤
(

8σmax

√
d/m

)2

,

where the last step follows from Lemma 3. Therefore, using standard tail bounds on the normal
distribution, with probability at least 1− 2

nd ,

‖ZC>‖∞ = max
ij

∣∣(ZC>)ij
∣∣ ≤ 8σmax

√
d/m · 2

√
log(nd) .
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C.3 Proof of Theorem 3

This result is another immediate consequence of Theorem 1, with S̃?Ω in place of S? (note that
maxi‖(S̃?Ω)i∗‖0 ≤ maxi‖S?i∗‖0 ≤ s by assumption) . Since the restricted eigenvalue property and
the condition α ≥ ‖L?CC>‖∞ follow from Lemma 1 and Lemma 2 respectively, it is sufficient to
check that, with the stated probability, the following statements both hold:

ν ≥ 2‖Z‖, λ ≥ 2‖ZC>‖∞ + 4α, (10)

where Z = (L̃?Ω − L?) · C as defined before. Let Bij
⊥⊥∼ Bernoulli(ρij) be an indicator variable for

(i, j) ∈ Ω, that is, for whether we observe entry (i, j). Then we can write L̃?Ω as

(L̃?Ω)ij =
Bij
ρij
· L?ij

for each (i, j) ∈ [n]× [d], and so Z can be written as

Z =
∑
ij

(
Bij
ρij
− 1

)
· Eij (11)

where Eij = L?ij · eiC>j∗ ∈ Rn×m, and where ei ∈ Rn is the i-th standard basis vector and
Cj∗ ∈ Rm is j-th row of the compression matrix C. To prove the first inequality in (10), we
consider C as fixed and analyse the random model for Bij’s. We first have the following bound on
the sum of random scalars times fixed matrices:
Lemma 4 (Adapted from Tropp [8, Theorem 4.1.1]). Let A1, . . . , AL ∈ Rd1×d2 be fixed matrices,
and let B1, . . . , BL be independent mean-zero random variables, such that for each ` = 1, . . . , L,
B` is σ2-subgaussian, that is,

E
[
etB`

]
≤ eσ

2t2/2 for all t ∈ R .

Then

P

{∥∥∥∥ L∑
`=1

B`A`

∥∥∥∥ ≥ t
}
≤ (d1 + d2) exp

− t2

2σ2 max
{
‖
∑L
`=1A`A

>
` ‖, ‖

∑L
`=1A

>
` A`‖

}
 .

To apply Lemma 4 to the error term expression Z in (11), we first show that the random scalar,
defined by

B̃ij =
Bij
ρij
− 1 ,

is σ2-subgaussian with σ2 = 2µ2 for all (i, j) ∈ [n] × [d]. To see this, first note that E
[
B̃ij

]
= 0

and |B̃ij | is bounded by µ for all (i, j) ∈ [n]× [d]. If |t| ≥ (2µ)−1, then

E
[
etB̃ij

]
≤ E

[
e(2µ2t2+B̃2

ij/2µ
2)/2
]

= eµ
2t2E

[
eB̃

2
ij/4µ

2
]
≤ eµ

2t2e1/4 ≤ e2µ2t2

where the last inequality holds due to |t| ≥ (2µ)−1. If |t| ≤ (2µ)−1, we have |tB̃ij | ≤ 1/2, and so

E
[
etB̃ij

]
≤ 1 + tE

[
B̃ij

]
+ t2E

[
B̃2
ij

]
= 1 + t2E

[
B̃2
ij

]
≤ et

2E[B̃2
ij] ≤ eµ

2t2

where the first inequality follows from the fact that ex ≤ 1 + x + x2 for |x| ≤ 1/2. Therefore,
we apply Lemma 4 to the error term expression (11) so that, with probability at least 1 − 1

nd (with
respect to the randomness of the Bij’s),

‖Z‖ ≤

√√√√√4µ2 max

‖∑
ij

EijE>ij‖, ‖
∑
ij

E>ijEij‖

 log (nd · (n+m)) .

Next, we derive the probabilistic bound on max
{
‖
∑
ij EijE

>
ij‖, ‖

∑
ij E

>
ijEij‖

}
. We first state the

following bound on C:
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Lemma 5. Under either the Gaussian (3) or orthogonal (4) model for C, with probability at least
1− 2e−m,

‖C‖ ≤
√

12d/m and ‖C‖F ≤
√

3d .

Direct calculation shows that

‖
∑
ij

EijE
>
ij‖ = max

i

 d∑
j=1

‖Cj∗‖22L?ij2

 ≤ α2
0 · ‖C‖2F

and
‖
∑
ij

E>ijEij‖ = ‖
∑
ij

L?ij
2Cj∗C

>
j∗‖ ≤ α2

0 · n‖C‖2.

Then, applying Lemma 5, with probability at least 1− 2e−m,

max

‖∑
ij

EijE
>
ij‖, ‖

∑
ij

E>ijEij‖

 ≤ α2
0 max

{
‖C‖2F, n‖C‖2

}
≤ α2

0 · 12
d(n+m)

m
.

In total, we have with probability at least 1− 2
nd ,

‖Z‖ ≤ µα0

√
48
d(n+m)

m
log (nd(n+m)) .

Since m ≤ d, we can write log(nd(n + m)) ≤ log(nd(n + d)) ≤ max{log(2n2d), log(2nd2)} ≤
2 log(nd), where we assume n, d ≥ 2 to avoid triviality. So,

‖Z‖ ≤ 10µα0

√
d(n+m)

m
log(nd) . (12)

Next, we need to bound on ‖ZC>‖∞. Note that

‖ZC>‖∞ = ‖(L̃?Ω − L?)CC>‖∞ ≤ ‖L̃?Ω − L?‖∞ + ‖(L̃?Ω − L?)(CC> − Id)‖∞ .

By our assumptions, we can immediately bound ‖L̃?Ω − L?‖∞ ≤ µα0. Next consider the term
‖(L̃?Ω − L?)(CC> − Id)‖∞. We first consider C as fixed and analyse the random model for Bij’s.
The (i, `)-th entry of (L̃?Ω − L?)(CC> − Id) can be written as[

(L̃?Ω − L?)(CC> − Id)
]
i`

=
∑
j

B̃ij · L?ij(CC> − Id)j` ,

which is mean zero random scalar and bounded above by µα0‖CC> − Id‖∞. Therefore, applying
Hoeffding’s Lemma and union bound, with probability at least 1− 1

nd (with respect to the random-
ness of the Bij’s),

‖(L̃?Ω − L?)(CC> − Id)‖∞ ≤
√

2d(α0 + α1)2µ2‖CC> − Id‖2∞ log (2n2d2) . (13)

For the bound on ‖CC> − Id‖∞, we have the following result:

Lemma 6. Under either the Gaussian (3) or orthogonal (4) model for C, with probability at least
1− 4

nd ,

‖CC> − Id‖∞ ≤
√

24 log (nd)

m
.

Combining (13) with Lemma 6, we have with probability at least 1− 5
nd ,

‖ZC>‖∞ ≤ 7µα0

√
d log (nd) log (2n2d2)

m
≤ 12µα0

√
d log2(nd)

m
.
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C.4 Proof of Proposition 1

In order to apply Theorem 1, it is sufficient to check the conditions

α ≥ ‖L?CC>‖∞ = ‖L?X>X‖∞, ν ≥ 2‖Z‖ = 2‖W>‖, λ ≥ 2‖ZC>‖∞+4α = 2‖W>X‖∞+4α.

The lower bound on α is true by definition. For the lower bound on ν, the following result from
Davidson and Szarek [4, Theorem II.13]: if entries of W ∈ Rm×n are generated as i.i.d. N(0, σ2),
then with probability at least 1− e−m,

‖W‖ ≤ 3σ
√
n+m .

Finally, we bound ‖W>X‖∞. The entries of W>X are distributed as

(W>X)ij ∼ N(0, σ2‖X∗j‖22) = N(0, σ2) ,

where the last step holds since the columns of X are normalized. Therefore, using the standard tail
bounds on the normal distribution, with probability at least 1− 2

nd ,

‖W>X‖∞ = max
ij
|(W>X)ij | ≤ 2σ

√
log(nd) .

D Proofs of lemmas

D.1 Concentration lemma

We first state a concentration result under the Gaussian model (3) or the orthogonal model (4):
Lemma 7. Under either the Gaussian model (3) or the orthogonal model (4), for any fixed vector
w ∈ Rd and any ε > 0,

P
{
‖C>w‖22
‖w‖22

− 1 > ε

}
≤ exp

{
−m

8
·min{ε, ε2}

}
,P
{
‖C>w‖22
‖w‖22

− 1 < −ε
}
≤ exp

{
−m

4
ε2
}
.

(14)

Proof. Under the Gaussian model,

m · ‖C
>w‖22
‖w‖22

∼ χ2
m

and therefore, by the χ2 tail bounds of Laurent and Massart [6, Lemma 1], for any t > 0,

P
{
m · ‖C

>w‖22
‖w‖22

> m+ 2
√
mt+ 2t

}
≤ e−t and P

{
m · ‖C

>w‖22
‖w‖22

< m− 2
√
mt

}
≤ e−t .

Setting t = m
8 ·min{ε, ε2}, we obtain the desired result (14). Next, turning to the orthogonal model,

we have G =
√

d
m · U where U ∈ Rd×m is an orthonormal matrix chosen uniformly at random.

Let v ∈ Rd be a random unit vector. Then ‖U>w‖22 is equal in distribution to v2
1 + · · ·+ v2

m. In this
setting, Dubhashi and Panconesi [5, Lemma 2.4] states that, for any 0 < β0 < 1,

P
{
v2

1 + · · ·+ v2
m < β0

m

d

}
≤ exp

{m
2

(1− β0 + log(β0))
}

and for any β1 > 1,

P
{
v2

1 + · · ·+ v2
m > β1

m

d

}
≤ exp

{m
2

(1− β1 + log(β1))
}
.

Next, set β1 = 1 + ε. Then, since for all x > 0 we have log(1 + x) ≤ x− min{x,x2}
4 , then

1− β1 + log(β1) ≤ 1− (1 + ε) + ε− min{ε, ε2}
4

= −min{ε, ε2}
4

.

Therefore,

P
{
‖C>w‖22
‖w‖22

> 1 + ε

}
≤ exp

{
−m

8
·min{ε, ε2}

}
.
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Next we want to bound the probability of the event ‖C
>w‖22
‖w‖22

< 1 − ε. If ε ≥ 1 then trivially this

cannot occur. If instead ε < 1, then we set β0 = 1 − ε. Since log(1 − x) ≤ −x − x2

2 for all
0 < x < 1, we have

1− β0 + log(β0) = 1− (1− ε)− ε− ε2

2
= −ε

2

2
,

and so

P
{
‖C>w‖22
‖w‖22

< 1− ε
}
≤ exp

{
−m

4
· ε2
}
.

This is sufficient to prove the desired bound.

D.2 Proof of Lemma 2 (elementwise bounds)

Set ε =
√

16 log(nd)
m and note that ε ≤ 1 by assumption. For each i ∈ [n], define the unit vector

vi =
L?

i∗
‖L?

i∗‖2
(treated as a column vector). Now fix any i ∈ [n] and any j ∈ [d]. Then(

L?CC>
)
ij

= ‖L?i∗‖2 · v>i CC>ej = ‖L?i∗‖2 ·
1

4

(
‖C>(vi + ej)‖22 − ‖C>(vi − ej)‖22

)
.

By Lemma 7, with probability at least 1− 4e−mε
2/8,∣∣∣∣‖C>(vi + ej)‖22

‖vi + ej‖22
− 1

∣∣∣∣ ≤ ε and
∣∣∣∣‖C>(vi − ej)‖22
‖vi − ej‖22

− 1

∣∣∣∣ ≤ ε .
If these bounds hold, then(

L?CC>
)
ij

= ‖L?i∗‖2 ·
1

4

(
‖C>(vi + ej)‖22 − ‖C>(vi − ej)‖22

)
≤ ‖L?i∗‖2 ·

1

4

(
(1 + ε) · ‖vi + ej‖22 − (1− ε) · ‖vi − ej‖22

)
= ‖L?i∗‖2 ·

1

4

((
‖vi + ej‖22 − ‖vi − ej‖22

)
+ ε
(
‖vi + ej‖22 + ‖vi − ej‖22

))
= ‖L?i∗‖2 ·

1

4

(
4〈vi, ej〉+ ε

(
2‖vi‖22 + 2‖ej‖22

))
= ‖L?i∗‖2 · (〈vi, ej〉+ ε) since ‖vi‖2 = ‖ej‖2 = 1

= 〈L?i∗, ej〉+ ε‖L?i∗‖2 by definition of vi
= L?ij + ε‖L?i∗‖2

≤ ‖L?‖∞
(

1 + ε
√
d
)
.

Using the same arguments, the same bound holds for −(L?CC>)ij , and therefore,∣∣(L?CC>)ij
∣∣ ≤ ‖L?‖∞ (1 + ε

√
d
)
.

Applying the union bound over each i ∈ [n] and each j ∈ [d], we see that

‖L?CC>‖∞ ≤ ‖L?‖∞(1 + ε
√
d)

with probability at least

1− nd · 4e−mε
2/8 = 1− 4nd exp

m8
(√

16 log(nd)

m

)2
 = 1− 4

nd
.

D.3 Proof of Lemma 3 (bounds on random compression matrix)

First we treat ‖C‖. Under the orthogonal model, ‖C‖ ≤
√
d/m trivially, while under the Gaussian

model for C (3), ‖C‖ ≤
√
d/m(2 +

√
2) with probability at least 1 − e−m by again applying [4,

Theorem II.13]. Next consider ‖C‖2,∞ = maxi=1,...,d‖C>ei‖2. For each i, by Lemma 7,

P
{
‖C>ej‖2 > 2

}
≤ e−m/8 .

Therefore,
P {‖C‖2,∞ > 2} ≤ d · e−m/8 .
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D.4 Proof of Lemma 4 (bounds on matrix subgaussian series)

Tropp [8, Theorem 4.1.1] proves this exact statement for the special case that either B`
iid∼ N(0, 1)

(Gaussian variables) or B`
iid∼ {±1} (Rademacher variables). To see why the statement holds in this

more general case, we observe that for Corollary 4.2 in Tropp, the distribution of the B`’s is used
only once: to prove the bound

E
[
etB`A

]
� et

2A2/2

for each ` and for any fixed Hermitian matrix A. For the general case, take a fixed Hermitian matrix
A, with A = QΛQ> its eigendecomposition. We have

E
[
etB`A

]
= E

[
eQ·(tB`Λ)·Q>

]
= Q · diag{E

[
etB`λi

]
} ·Q>

� Q · diag{eσ
2t2λ2

i /2} ·Q>

= eQ·(σ
2t2Λ2/2)·Q>

= eσ
2t2A2/2 .

Therefore, this is sufficient to see that Corollary 4.2 of Tropp holds in this case also.

D.5 Proof of Lemma 5 (bounds on random compression matrix)

The result for ‖C‖ follows from Lemma 3. Next consider ‖C‖2F. Under the orthogonal model,
‖C‖2F = tr(C>C) = d holds. Under the Gaussian model for C, we note that ‖C‖2F ∼ χ2

md/m. By
the χ2 tail bounds of Laurent and Massart [6, Lemma 1], we have

P
{
‖C‖2F ≥ d+ 2

√
d+ 2

}
≤ e−m .

Since 3d ≥ d+ 2
√
d+ 2 for d ≥ 1, with probability at least 1− e−m, we have ‖C‖2F ≤ 3d.

D.6 Proof of Lemma 6 (bounds on random compression matrix)

This result is the consequence of Lemma 7 and union bound. Set ε =
√

24 log(nd)
m and ε ≤ 1.

By Lemma 7, with probability at least 1− 2e−mε
2/8, for i 6= j,

(CC> − Id)ij = e>i (CC> − Id)ej =
1

4
(‖C>(ei + ej)‖2 − ‖C>(ei − ej)‖2)

≤ 1

4
((1 + ε)‖ei + ej‖2 − (1− ε)‖ei − ej‖2) ≤ ε .

The same bound holds for −(CC>− Id)ij if we use the same arguments, and so with probability at
least 1− 4e−mε

2/8,
|(CC> − Id)ij | ≤ ε .

For i = j, applying Lemma 7 again, with probability at least 1− 2e−mε
2/8,

|(CC> − Id)ij | = |e>i (CC> − Id)ej | = |‖C>ej‖22 − 1| ≤ ε .

Applying the union bound over each (i, j) ∈ [d]× [d], we have that

‖CC> − Id‖∞ ≤
√

24 log(nd)

m

with probability at least 1− 4d2e−mε
2/8 ≥ 1− 4

nd .
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D.7 Proof of Lemma 1 (restricted strong convexity)

First, for the Gaussian model (3), by Raskutti et al. [7, Theorem 1], for universal constants c, c′ > 0,

P

{
‖C>x‖2 ≥

1

4
‖x‖2 − 9

√
log(d)

m
‖x‖1 for all x ∈ R

}
≥ 1− c′e−cm .

Next, we turn to the orthogonal model (4). Let H ∈ Rd×m be a matrix with Hij
iid∼ N(0, 1/m), let

H = UDV > be its singular value decomposition, and without loss of generality take C =
√

d
m ·U

(since H is rotation invariant and so U is uniformly distributed over the space of uniform matrices,
this satisfies the orthogonal model (4)). Then for any x ∈ Rd,

‖H>x‖22 = ‖V DU>x‖22 ≤ ‖V D‖2‖U>x‖22 = ‖H‖2 · m
d
· ‖C>x‖22 .

By the work above for the Gaussian model, with probability at least 1− c′e−cm,

‖H>x‖2 ≥
1

4
‖x‖2 − 9

√
log(d)

m
‖x‖1 for all x ∈ Rd ,

and by Davidson and Szarek [4, Theorem II.13], with probability at least 1− e−m,

‖H‖ ≤
√
d

m
+ 1 +

√
2m

d
≤
√
d

m

(
2 +
√

2
)
.

Combining all these bounds, with probability at least 1−c′e−cm−e−m ≥ 1−(c′+1)e−min{c,1}·m,
for all x ∈ Rd,

‖C>x‖2 ≥
1

4(2 +
√

2)
‖x‖2 −

9

2 +
√

2

√
log(d)

m
‖x‖1 .

Clearly, this statement holds also for the Gaussian model as well (since this is a strictly weaker result
than the one stated above.)
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