
Mathematical Arguments

Critical time definition: proofs of Theorem 1 and Proposition 1

Proof of Theorem 1. Let S = {T ∈ R+|σn(T ) = o(n)}. S is an interval containing 0 since
σn(0) = 0 and, if T ∈ S, then ∀T ′ ≤ T , σn(T ′) ≤ σn(T ) and T ′ ∈ S. Thus S is of the form
[0, T c[ or [0, T c], and let T c = supS (where T c ∈ R ∪ {+∞}).
For all time sequences (Tn)n∈N such that lim supn→+∞ Tn < T c, ∃T < T c and n′ ≥ 0 s.t. ,
∀n ≥ n′, Tn ≤ T . Hence, by definition of T c, σn(Tn) ≤ σn(T ) = o(n).

Conversely, if σn(Tn) = o(n), then lim infn→+∞ Tn ∈ S, and lim infn→+∞ Tn ≤ T c.
Now let T c′ verify the two constraints of Theorem 1. The first constraint implies that ∀T < T c′,
T ∈ S and T ≤ T c, which leads to T c′ ≤ T c. Moreover, ∀T < T c, T ∈ S by definition of T c, and
T ≤ T c′ using the second constraint. As a result, T c′ = T c and the critical time is unique.

Proof of Proposition 1. Let (Tn)n∈N be such that lim infn→+∞ Tn > T c. Then ∃T > T c and
n′ ≥ 0 s.t. ∀n ≥ n′, Tn ≥ T . However, T /∈ S and lim infn→+∞ σn(T )/n > 0, which directly
implies that lim infn→+∞ σn(Tn)/n ≥ lim infn→+∞ σn(T )/n > 0.

Conversely, if (Tn)n∈N is such that lim infn→+∞ σn(Tn)/n > 0, then lim supn→+∞ Tn /∈ S and
lim supn→+∞ Tn ≥ T c.

Upper bound on the influence: proofs of Proposition 2 and Corollary 1

Let τi ∈ R+ ∪ {+∞} be the infection time of node i, and τij ∈ R+ ∪ {+∞} the transmission time
from node i to node j. Let A ⊂ V be a set of influencers, i.e. nodes that are infected at time 0:
∀i ∈ A, τi = 0. Due to the infection dynamic of CTIC, a node i /∈ A is infected when at least one
of its neighbors is infected, and the respective ingoing edge transmitted the contagion. We thus have
the following equation relating infection times τi and τji (see for example [1]): ∀i /∈ A,

τi = min
j∈V

τj + τji. (1)

Let Xi(t) = 1{τi<t} be the infection state of node i at time t. Eq. 1 implies the following equation:
∀t > 0 and i /∈ A,

Xi(t) = 1−
∏
j∈V

(
1− 1{τj+τji<t}

)
. (2)

We now develop the proofs for Proposition 2 and Corollary 1, which rely on upper bounding the
Laplace transform of σA(T ).

Lemma 1. Define ρ(s) = ρ(H(s)+H(s)>

2 ). Then, for any A such that |A| = n0 < n, denoting by
σ̂A(s) =

∫ +∞
0

σA(t)e
−stdt the Laplace transform of the expected number of nodes reached by the

cascade starting from A at time T :

sσ̂A(s) ≤ n0 + γ(s)(n− n0), (3)

where γ(s) is the smallest solution in [0, 1] of the following equation:

γ(s)− 1 + exp

(
−ρ(s)γ(s)− ρ(s)n0

γ(s)(n− n0)

)
= 0. (4)

This result requires two intermediate lemmas: Lemma 2, that proves for i ∈ V and t > 0 a positive
correlation between the events ’node j did not infect node i before time t’ and Lemma 4, that bounds
the probability that a given node gets infected before t.

Lemma 2. ∀i /∈ A and t > 0, {1− 1{τj+τji<t}}j∈V are positively correlated.
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Proof. Denoting by Qi the collection of directed paths in G from the influencers A to node i, we
get the following expression for variables (τi)i∈V [1]:

τi = min
q∈Qi

∑
(j,l)∈q

τjl (5)

Therefore, for all i /∈ A and t > 0, the functions fij(τkl)(k,l)∈E = {1 − 1{τj+τji<t}}j∈V are
increasing with the partial order on (τkl)(k,l)∈E . We will then make use of the FKG inequality [2] :

Lemma 3. (FKG inequality) Let L be a finite distributive lattice, and µ a nonnegative function on
L, such that, for any (x, y) ∈ L2,

µ(x ∨ y)µ(x ∧ y) ≤ µ(x)µ(y) (6)

Then, for any non-decreasing function f and g on L(∑
x∈L

f(x)g(x)

)(∑
x∈L

µ(x)

)
≥

(∑
x∈L

f(x)µ(x)

)(∑
x∈L

g(x)µ(x)

)
(7)

Due to the independence of (τkl)(k,l)∈E , the condition in Lemma 3 is met by their joint distribution,
which is a product measure on the product space RE . Lemma 2 is then obtained by applying Lemma
3 to any couple of functions (fij , fik)(i,j)∈E,(i,k)∈E . More specifically, in our problem setting, L is
the set of all (τkl)(k,l)∈E , µ(x) =

∏
(k,l)∈E P(τkl = tkl) is the joint probability distribution of the

τkl when x = (tkl)(k,l)∈E .

We then show the following lemma that reveals an implicit inequation satisfied by the Xi.

Lemma 4. For all (i, j) ∈ V2, let pij be an integrable function such that
∫ +∞
0

pij(t)dt < 1. For
any A such that |A| = n0 < n and for any i /∈ A, the probability E[Xi(t)] that node i will be
reached by the contagion originating from A verifies:

E[Xi(t)] ≤ 1− exp

(
−
∑
j

(Hji ∗ E[Xj ])(t)

)
, (8)

where (f ∗ g)(t) =
∫
f(s)g(t − s)ds stands for the convolution of f with g and Hji(t) =

ln(1−
∫ +∞
0

pji(s)ds)∫ +∞
0

pji(s)ds
pji(t).

Proof. Eq. 2 and the positive correlation of {1− 1{τj+τji<t}}j∈{1,...,N} (Lemma 2) imply that

E[Xi(t)] = 1− E[
∏
j

(1− 1{τj+τji<t})] ≤ 1−
∏
j

E[1− 1{τj+τji<t}] (9)

which leads to

E[Xi(t)] ≤ 1−
∏
j

(
1− E[1{τj+τji<t}]

)
= 1−

∏
j (1− E[E[Xj(t− τji)|τji]]) ,

= 1−
∏
j

(
1−

∫ +∞
0

E[Xj(s)]pji(t− s)ds
)
,

(10)

since ∀i, j ∈ V , τj and τji are independent and pji is the probability density of τji. Note that, in our
setting, we consider that influencer nodes are infected at time 0, and thus are not infectious before
t = 0. We then linearize the product in Eq. 10:

E[Xi(t)] ≤ 1− exp
(∑

j ln(1−
∫ +∞
0

E[Xj(s)]pji(t− s)ds)
)

≤ 1− exp
(∑

j
ln(1−

∫ +∞
0

pji(s)ds)∫ +∞
0

pji(s)ds

∫ +∞
0

E[Xj(s)]pji(t− s)ds
)

= 1− exp
(
−
∑
j(Hji ∗ E[Xj ])(t)

)
,

(11)
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since we have on the one hand, for any x ∈ [0, 1] and a < 1, ln(1 − ax) ≥ ln(1 − a)x (in Eq. 11,

we chose a =
∫ +∞
0

pji(s)ds and x =
∫ +∞
0

E[Xj(s)]pji(t−s)ds∫ +∞
0

pji(s)ds
), and on the other hand Hji(t) =

ln(1−
∫ +∞
0

pji(s)ds)∫ +∞
0

pji(s)ds
pji(t) by definition of H. Note that ln(1−

∫ +∞
0

pji(s)ds)∫ +∞
0

pji(s)ds
is approximately 1 when∫ +∞

0
pji(s)ds is close to 0.

Proof of Lemma 1. From here, Proposition 1 follow from Lemma 4 in the exact same way than, in
[3], the proof of Proposition 1 is deduced from Lemma 8. However, we give here the fully detailed
proof for sake of completeness.

Let fi(s) =
∫ +∞
0

E[Xi(t)]se
−stdt, then, using Jensen’s inequality, ∀i /∈ A and s ≥ 0,

fi(s) ≤ 1− exp

(
−
∑
j

LHji(s)fj(s)
)
, (12)

where LHji(s) =
∫ +∞
0
Hji(t)e−stdt is the Laplace transform of Hji. Note also that ∀i ∈

A, fi(s) = 1.

For every i ∈ [1...n], we define Zi =
(
fi(s))i and the vector Z = (Zi)i∈[1...n]. Using lemma 4

and convexity of exponential function, we have for any u ∈ Rn such that ∀i ∈ A, ui = 0 and
∀i /∈ A, ui ≥ 0,

u>Z ≤ |u|1
(
1−

∑n−1
i=1

ui
|u|1 exp(−(LH

>Z)i)

)
≤ |u|1

(
1− exp

(
− Z>LHu

|u|1

))
(13)

where |u|1 =
∑
i |ui| is the L1-norm of u.

Now taking u = (1i/∈AZi)i and noting that ∀i, ui ≤ Zi, we have

Z>Z−n0

|Z|1−n0
≤ 1− exp

(
− Z>LHZ
|Z|1−n0

)
≤ 1− exp

(
− ρ(s)(Z>Z−n0)

|Z|1−n0
− ρ(s)n0

|Z|1−n0

)
(14)

where ρ(s) = ρ(LH+LH>
2 ). Defining y = Z>Z−n0

|Z|1−n0
and z = |Z|1 − n0 = sσ̂A(s) − n0, the

inequation above rewrites

y ≤ 1− exp

(
− ρ(s)y − ρ(s)n0

z

)
(15)

But by Cauchy-Schwarz inequality applied to u, (n−n0)(Z>Z−n0) ≥ (|Z|1−n0)2, which means
that z ≤ y(n− n0). We now consider the equation

x− 1 + exp

(
− ρ(s)x− ρ(s)n0

x(n− n0)

)
= 0 (16)

Because the function f : x → x − 1 + exp
(
− ρ(s)x + ρ(s)n0

x(n−n0)

)
is continuous, verifies f(1) > 0

and limx→0+ f(x) = −1, equation 16 admits a solution γ(s) in ]0, 1[.

We then prove by contradiction that z ≤ γ(s)(n − n0). Let us assume z > γ(s)(n − n0). Then
y ≤ 1−exp

(
−ρ(s)y− ρ(s)n0

γ(s)(n−n0)

)
. But the function h : x→ x−1+exp

(
−ρ(s)x+ ρ(s)n0

γ(s)(n−n0)

)
is

convex and verifies h(0) < 0 and h(γ(s)) = 0. Therefore, for any y > γ1, 0 = f(γ1) ≤ γ(s)
y f(y)+

(1− γ(s)
y )f(0), and therefore f(y) > 0. Thus, y ≤ γ(s). But z ≤ y(n−n0) ≤ γ(s)(n−n0) which

yields the contradiction.

Using Lemma 1, we may now prove Proposition 2:

Proof of Proposition 2. ∀s ≥ 0, T ≥ 0 and t ≥ 0, e−st ≥ e−sT1{t<T}, hence, using Lemma 1,
sσ̂A(s) =

∑
i E[e−sτi ] ≥ n0 + (σA(T )− n0)e−sT which leads to the desired inequality.
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Proof of Corollary 1. Using Eq. 16 and the fact that 1 − e−x ≤ x, we get γ(s) ≤ ρ(s)γ(s) +
ρ(s)n0

γ(s)(n−n0)
which rewrites γ(s) ≤

√
ρ(s)n0

(1−ρ(s))(n−n0)
in the case ρ(s) < 1. Therefore,

σA(T ) ≤ n0 +
√
n0(n− n0) min

{s≥0|ρ(s)<1}

(√
ρ(s)

1− ρ(s)
esT

)
. (17)

Upper bounds on the critical time: proofs of Corollary 2 and Corollary 3

Proof of Corollary 2. Since e−st is decreasing w.r.t. s, LHij(s) is decreasing. Thus, the Perron-
Frobenius theorem implies that ρ(s) is decreasing. When ρ(0) ≥ 1, ρ−1(1 − ε) exists and is
uniquely defined, and using Corollary 1 and 2, σA(T ) ≤ n0 +(n−n0)γ(ρ−1(1− ε))eρ

−1(1−ε)T ≤
n0 +

√
n0(n−n0)

ε eρ
−1(1−ε)T .

Proof of Corollary 3. If lim supn→+∞
2ρ−1(1)Tn

lnn < 1, then ∃α > 0 and n′ ≥ 0 s.t. ∀n ≥ n′,

ρ−1(1)Tn ≤ (1−α) lnn
2 . Furthermore, limn→+∞

ρ−1(1− 1
lnn )

ρ−1(1) = 1, thus ∃n′′ ≥ n′ s.t. ∀n ≥
n′′, ρ−1(1 − 1

lnn ) ≤
1−α/2
1−α ρ−1(1). Using Corollary 2 with ε = 1

lnn , σA(T ) ≤ 1 +√
lnn(n− 1)eρ

−1(1− 1
lnn )T ≤ 1 +

√
lnnn1−α/4 = o(n).

Application to particular contagion model: proofs of Corollary 4, Proposition 3, Proposition 5
and Corollary 5

Proof of Corollary 4. Taking ρ(s) = λ
λ+sρα, Corollary 1 rewrites

σA(T ) ≤ n0 +
√
n0(n− n0)min

s≥0

(√
λ

s+ λ(1− ρα)
esT

)
. (18)

The function f(s) =
√

λ
s+λ(1−ρα)e

sT admits a unique minimum in smin = 1
2T + λ(ρα − 1). The

minimum for s ≥ 0 is therefore met for s = smin if λT (1 − ρα) < 1
2 and s = 0 otherwise. The

results follow immediately.

Proof of Proposition 3. In order to prove Proposition 3, it is sufficient to show that Lemma 4 still
holds for the SIR model, with pij(t) = β exp(−(δ + β)t) for (i, j) ∈ E . For i ∈ V , let θi be the
random removal time of node i. Infection times τi are then given by the following expression, where
Qi is the collection of directed paths in G from the influencers A to node i:

τi = min
q∈Qi

∑
(j,l)∈q

τjl1{τjl<θj} (19)

Therefore ∀i /∈ A and t > 0, the functions fij(τ, θ) = {1−1{τj+τji<t}1{τji<θj}}j∈V are increasing
with respect to the partial order on RE × RV defined for any X1 = (τ11 , ...τ

1
m, θ

1
1...θ

1
n) ∈ RE × RV

and X2 = (τ21 , ...τ
2
m, θ

2
1...θ

2
n) ∈ RE × RV by:

X1 ≥ X2 ⇐⇒
{
τ1ij ≥ τ2ij for any (i, j) ∈ E
θ1i ≤ θ2j for any i ∈ V . (20)

Variables (τij)(i,j)∈E and (θi)i∈V being independent, we can still apply FKG inequality (Lemma
3) and deduce the positive correlation, for any i /∈ A and t > 0, of the random variables {1 −
1{τj+τji<t}1{τji<θj}}j∈V . We then introduce, for any (i, j) ∈ E :

τji =

{
τji if τji < θj
+∞ if τji ≥ θj . (21)
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It is straightforward that each τji is a random variable over R+∪{+∞}with probability distribution
pij , and that τji is independent of τj . We also have, for any i /∈ A, t > 0 and (i, j) ∈ E :

{1− 1{τj+τji<t}1{τji<θj}} = {1− 1{τj+τji<t}} (22)

Lemma 4 for the SIR case (and therefore Proposition 3 and its subsequent corollaries) are then
proved from following the same steps than in the independent transmission events case, except
replacing (τji)(i,j)∈E by (τji)(i,j)∈E

Proof of Proposition 5. ρ(s) = βTn
1−e−βTn

β
β+s (1 − e

−(β+s)Tn)ρ(A) ≤ β2Tnρ(A)
(1−e−βTn )s , which implies

ρ−1(1)Tn ≤ (βTn)
2ρ(A)

1−e−βTn . Let f(x) = x2

1−e−x , f is increasing and ∀a ≥ 0, f(x) = a =⇒
x ≥
√
a(1− e−

√
a). Hence, if lim supn→+∞

βTn√
lnn

2ρ(An)
(1−e

−
√

lnn
2ρ(An) )

< 1, then ∃α > 0 s.t. βTn ≤

(1−α)
√

lnn
2ρ(An) (1−e

−
√

lnn
2ρ(An) ), and the concavity of 1−e−x implies that βTn ≤

√
(1−α) lnn
2ρ(An) (1−

e
−
√

(1−α) lnn
2ρ(An) ). Finally, f(βTn) ≤ (1−α) lnn

2ρ(An) and 2ρ−1(1)Tn
lnn ≤ 1− α. Applying Corollary 3 proves

the desired result.

Proof of Corollary 5. Taking ρ(s) = ραe
−sT0 , Corollary 1 rewrites

σA(T ) ≤ n0 +
√
n0(n− n0)min

s≥0

√ ραe−sT0

1− ραe−sT0
esT

 . (23)

and s = 1
T0

(
ln ρα − ln(1− T0

2T )
)

gives

σA(T ) ≤ n0 +
√
n0(n− n0)

√
2T

T0
− 1

(
ρα

1− T0

2T

) T
T0

. (24)

The final result follows by upper bounding
(
1− T0

2T

) 1
2−

T
T0 by

√
e due to the monotonic increase of

x→ (x− 1) ln(1− 1
x ) on [1,+∞[ and its limit when x→ +∞.
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