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A Convergence Rate of SVRG with Error
We first give the proof of Proposition 1, which gives a convergence rate for SVRG with an error and uniform sampling.
We then turn to the case of non-uniform sampling.

A.1 Proof of Proposition 1
We follow a similar argument to Johnson & Zhang [8], but propagating the error es through the analysis. We begin by
deriving a simple bound on the variance of the sub-optimality of the gradients.

Lemma 1. For any x,
1

n

n∑
i=1

‖f ′i(x)− f ′i(x∗)‖2 ≤ 2L[f(x)− f(x∗)].

Proof. Because each f ′i is L-Lipschitz continuous, we have [11, Theorem 2.1.5]

fi(x) ≥ fi(y) + 〈f ′i(x), x− y〉+
1

2L
‖f ′i(x)− f ′i(y)‖2.

Setting y = x∗ and summing this inequality times (1/n) over all i we obtain the result.

In this section we’ll use x̃ to denote xs, e to denote es, and we’ll use νt to denote the search direction at iteration t,

νt = f ′it(xt−1)− f ′it(x̃) + µ̃+ e.

Note that E[νt] = f ′(xt−1) + e and the next lemma bounds the variance of this value.

Lemma 2. In each iteration t of the inner loop,

E‖νt‖2 ≤ 4L[f(xt−1)− f(x∗)] + 4L[f(x̃)− f(x∗)] + 2‖e‖2

Proof. By using the inequality ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 and the property

E[f ′it(x̃)− f ′it(x
∗)] = f ′(x̃),
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we have

E‖νt‖2 = E‖f ′it(xt−1)− f ′it(x̃) + µ̃+ e‖2

≤ 2E‖f ′it(xt−1)− f ′it(x
∗)‖2 + 2E‖[f ′it(x̃)− f ′it(x

∗)]− f ′(x̃)− e‖2

= 2E‖f ′it(xt−1)− f ′it(x
∗)‖2 + 2E‖[f ′it(x̃)− f ′it(x

∗)]− E[f ′it(x̃)− f ′it(x
∗)]− e‖2

= 2E‖f ′it(xt−1)− f ′it(x
∗)‖2 + 2E‖[f ′it(x̃)− f ′it(x

∗)]− E[f ′it(x̃)− f ′it(x
∗)]‖2 + 2‖e‖2

− 4E
〈
[f ′it(x̃)− f ′it(x

∗)]− E[f ′it(x̃)− f ′it(x
∗)], e

〉
= 2E‖f ′it(xt−1)− f ′it(x

∗)‖2 + 2E‖[f ′it(x̃)− f ′it(x
∗)]− E[f ′it(x̃)− f ′it(x

∗)]‖2 + 2‖e‖2,

If we now use that E[‖X −E[X]‖2] ≤ E‖X‖2 for any random variable X , we obtain the result by applying Lemma 1
to bound E‖f ′it(xt−1)− f ′it(x

∗)‖2 and E‖[f ′it(x̃)− f ′it(x
∗)]‖2.

The following Lemma gives a bound on the distance to the optimal solution.

Lemma 3. In every iteration t of the inner loop,

E‖xt − x∗‖2 ≤ ‖xt−1 − x∗‖2 − 2η(1− 2ηL)[f(xt−1)− f(x∗)]

+ 4Lη2[f(x̃)− f(x∗)] + 2η(Z‖e‖+ η‖e‖2).

Proof. We expand the expectation and bound E‖νt‖2 using Lemma 2 to obtain

E‖xt − x∗‖2

= ‖xt−1 − x∗‖2 − 2η 〈xt−1 − x∗,E[νt]〉+ η2E‖νt‖2

= ‖xt−1 − x∗‖2 − 2η 〈xt−1 − x∗, f ′(xt−1) + e〉+ η2E‖νt‖2

= ‖xt−1 − x∗‖2 − 2η 〈xt−1 − x∗, f ′(xt−1)〉 − 2η 〈xt−1 − x∗, e〉+ η2E‖νt‖2

≤ ‖xt−1 − x∗‖2 − 2η 〈xt−1 − x∗, e〉 − 2η[f(xt−1)− f(x∗)] + 2η2‖e‖2

+ 4Lη2[f(xt−1)− f(x∗)] + 4Lη2[f(x̃)− f(x∗)]

The inequality above follows from convexity of f . The result follows from applying Cauchy-Schwartz to the linear
term in e and that ‖xt−1 − x∗‖ ≤ Z.

To prove Proposition 1 from the main paper, we first sum the inequality in Lemma 3 for all t = 1, ...,m and take the
expectation with respect to the choice of xs to get

E‖xm − x∗‖2 ≤ E‖x0 − x∗‖2 − 2η(1− 2Lη)mE[f(xt−1)− f(x∗)]

+ 4Lη2mE[f(x̃)− f(x∗)] + 2mη(ZE‖e‖+ ηE‖e‖2).

Re-arranging, and noting that x0 = x̃s−1 and E [f(xt−1)] = E [f(xs)], we have that

2η(1− 2Lη)mE[f(xs)− f(x∗)]

≤ E‖x̃s−1 − x∗‖2 + 4Lη2mE[f(x̃s−1)− f(x∗)] + 2mη(ZE‖es−1‖+ ηE‖es−1‖2)

≤ 2

µ
E[f(x̃s−1)− f(x∗)] + 4Lη2mE[f(x̃s−1)− f(x∗)] + 2mη(ZE‖e‖+ ηE‖e‖2),

where the last inequality uses strong-convexity and that f ′(x∗) = 0. By dividing both sides by 2η(1− 2Lη)m (which
is positive due to the constraint η ≤ 1/2L implied by 0 < ρ < 1 and η > 0), we get

E[f(xs)− f(x∗)]

≤
(

1

mµ(1− 2ηL)η
+

2Lη

1− 2ηL

)
E[f(x̃s−1)− f(x∗)] +

1

1− 2ηL

(
ZE‖es−1‖+ ηE‖es−1‖2

)
.
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A.2 Non-Uniform Sampling
If we sample it proportional to the individual Lipschitz constantsLi, then we have the following analogue of Lemma 1.

Lemma 4. For any x,

E
∥∥∥∥LiL̄ [f ′i(x)− f ′i(x∗)]

∥∥∥∥2

≤ 2L̄[f(x)− f(x∗)].

Proof. Because each f ′i is Li-Lipschitz continuous, we have [11, Theorem 2.1.5]

fi(x) ≥ fi(y) + 〈f ′i(x), x− y〉+
1

2Li
‖f ′i(x)− f ′i(y)‖2.

Setting y = x∗ and summing this inequality times (1/n) over all i we have

E
∥∥∥∥LiL̄ [f ′i(x)− f ′i(x∗)]

∥∥∥∥2

=

n∑
i=1

Li
nL̄

L̄2

L2
i

‖f ′i(x)− f ′i(y)‖2 =
L̄

n

n∑
i=1

1

Li
‖f ′i(x)− f ′i(y)‖2

≤ L̄

n

n∑
i=1

1

Li
2Li[fi(x)− fi(x∗)− 〈f ′i(x), x− x∗〉]

= 2L̄[f(x)− f(x∗)]

With this modified lemma, we can derive the convergence rate under this non-uniform sampling scheme by following
an identical sequence of steps but where each instance of L is replaced by L̄.

B Mixed SVRG and SG Method
We first give the proof of Proposition 2 in the paper, which analyzes a method that mixes SG and SVRG updates using
a constant step size. We then consider a variant where the SG and SVRG updates use different step sizes.

B.1 Proof of Proposition 2
Recall that the SG update is

xt = xt−1 − ηf ′it(xt−1).

Using this in Lemma 3 and following a similar argument we have

E‖xt − x∗‖2 ≤ α{‖xt−1 − x∗‖2 − 2η(1− 2ηL)[f(xt−1)− f(x∗)] + 4Lη2[f(x̃)− f(x∗)] + 2η(Z‖e‖+ η‖e‖2)}
+ β{‖xt−1 − x∗‖2 + η2E‖f ′it(xt−1)‖2 − 2η

〈
xt−1 − x∗,E[f ′it(xt−1)]

〉
}

≤ ‖xt−1 − x∗‖2 − 2η(1− 2ηL)[f(xt−1)− f(x∗)] + α4Lη2[f(x̃)− f(x∗)] + α2η(Z‖e‖+ η‖e‖2) + βη2σ2,

where the second inequality uses convexity of f and we have defined β = (1 − α). We now sum up both sides and
take the expectation with respect to the history,

E‖xm − x∗‖2 ≤ E‖x0 − x∗‖2 − 2η(1− 2Lη)mE[f(xt−1)− f(x∗)]

+ 4αLη2mE[f(x̃)− f(x∗)] + 2mαη(ZE‖e‖+ ηE‖e‖2)

+mβη2σ2.

By re-arranging the terms we get

2η(1− 2Lη)mE[f(xs)− f(x∗)] ≤ 2

µ
E[f(x̃s−1)− f(x∗)] + 4αLη2mE[f(x̃s−1)− f(x∗)]

+ 2mαη(ZE‖e‖+ ηE‖e‖2) +mβη2σ2,

and by dividing both sides by 2η(1− 2Lη)m we get the result.
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B.2 Mixed SVRG and SG with Different Step Sizes
Consider a variant where we use a step size of η in the SVRG update and a step-size ηs in the SG update (which will
decrease as the iterations proceed). Analyzing the mixed algorithm in this setting gives

E‖xt − x∗‖2 ≤ α{‖xt−1 − x∗‖2 − 2η(1− 2ηL)[f(xt−1)− f(x∗)]

+ 4Lη2[f(xs)− f(x∗)] + 2η(Z‖es‖+ η‖es‖2)}
+ β{‖xt−1 − x∗‖2 + η2

sE‖f ′it(xt−1)‖2 − 2ηs
〈
xt−1 − x∗,E[f ′it(xt−1)]

〉
}

= E
[
‖xt−1 − x∗‖2

]
− 2αη(1− 2ηL)[f(xt−1)− f(x∗)]

+ 4αLη2[f(xs)− f(x∗)] + 2αη(Z‖es‖+ η‖es‖2)

+ βη2
sE‖f ′it(xt−1)‖2 − 2βηs 〈xt−1 − x∗, f(xt−1)]〉

≤ E
[
‖xt−1 − x∗‖2

]
− {2αη(1− 2ηL) + 2βηs}[f(xt−1)− f(x∗)]

+ 4αLη2[f(xs)− f(x∗)] + 2αη(Z‖es‖+ η‖es‖2) + βη2
sσ

2.

As before, we take the expectation for all t and sum up these values, then rearranage and use strong-convexity of f to
get

2m{αη(1− 2ηL) + βηs}[f(xs)− f(x∗)]

≤
{

2

µ
+ 4mαLη2

}
[f(xs)− f(x∗)] + 2mαη(Z‖es‖+ η‖es‖2) +mβη2

sσ
2.

If we now divide both side by 2m(αη(1− 2ηL) + βηs), we get

E [f(xs)− f(x∗)]

≤
{ 1

µm(αη(1− 2ηL) + βηs)
+

2αLη2

αη(1− 2ηL) + βηs

}
[f(xs)− f(x∗)]

+
αη

αη(1− 2ηL) + βηs
(ZE [‖es‖] + ηE

[
‖es‖2

]
) +

1

2(αη(1− 2ηL) + βηs)
βη2

sσ
2.

To improve the dependence on the error es and variance σ2 compared to the basic SVRG algorithm with error es

(Proposition 1), we require that the terms depending on these values are smaller,

αη

αη(1− 2ηL) + βηs

(
ZE [‖es‖] + ηE

[
‖es‖2

])
+

1

2(αη(1− 2ηL) + βηs)
βη2

sσ
2 ≤ 1

1− 2ηL

(
ZE [‖es‖] + ηE

[
‖es‖2

])
.

Let κ = (1− 2ηL) and ζ = ZE [‖es‖] + ηE
[
‖es‖2

]
, this requires

αη

αηκ+ βηs
ζ +

βη2
s

2(αηκ+ βηs)
σ2 ≤ ζ

κ
.

Thus, it is sufficient that ηs satisfies

ηs ≤
2ζ

κσ2
.

Using the relationship between expected error and S2, while noting that S2 ≤ σ2 and (n−|B|)
n|B| ≤ 1, a step size of the

form ηs = O∗(
√

(n− |B|)/n|B|) will improve the dependence on es and σ2 compared to the dependence on es in
the pure SVRG method.
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Algorithm 1 Batching Prox SVRG
Input: update frequency m and learning rate η and sample size increasing rate α
Initialize x̃
for s = 1, 2, 3, . . . do

Choose batch size |B|
B = randomly choose |B| elements of {1, 2, . . . , n}.
µ̃=

1
|B|
∑
i∈B g

′

i(x̃)
x0=x̃
for t = 1, 2, . . . ,m do

Randomly pick it ∈ 1, . . . , n
νt = g

′

it
(xt−1)− g′it(x̃) + µ̃

xt = proxηh(xt−1 − ηνt) (∗)
end for
set x̃ = 1

m

∑m
t=1 xt

end for

C Proximal and Regularized SVRG
In this section we consider objectives of the form

f(x) = h(x) + g(x),

where g(x) = 1
n

∑n
i=1 gi(x). We first consider the case where h is non-smooth and consider a proximal-gradient

variant of SVRG where there is an error in the calculation of the gradient (Algorithm 1). We then consider smooth
functions h where we use a modified SVRG iteration,

xt+1 = xt − η
(
h′(xt) + g′it(xt)− g

′
it(x

s) + µs
)
,

where µs = g(xs).

C.1 Composite Case
Similar to the work of [12], in this section we assume that f, g and h are µ-, µg-, µh-strongly convex (respectively). As
before, we assume each gi is convex and has an L-Lipschitz continuous gradient, but h can potentially be non-smooth.
The algorithm we propose here extends the algorithm of [12], but adding an error term. In the algorithm we use the
proximal operator which is defined by

prox
h

(y) = arg min
x∈Rp

{1

2
‖x− y‖2 + h(x)}

Below, we give a convergence rate for this algorithm with an error es.

Proposition 5. If we have µ̃s = g′(xs) + es and set the step-size η and number of inner iterations m so that

ρ ≡ 1

mµ(1− 4ηL)η
+

4Lη(m+ 1)

(1− 4ηL)m
< 1,

then Algorithm 1 has

E[f(xs+1)− f(x∗)] ≤ ρE[f(x̃s)− f(x∗)] +
1

1− 4ηL
(ZE‖es‖+ ηE‖es‖2,

where‖xt − x∗‖ < Z
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To prove Proposition 5, we use Lemma 1,2 and 3 from [12], which are unchanged when we allow an error. Below we
modify their Corollary 3 and then the proof of their main theorem.

Lemma 5. Consider νt = g
′

it
(xt−1)− g′it(x̃) + g′(x̃) + e. Then,

E‖νt − g′(xt−1)‖2 ≤ ‖e‖2 + 4L[f(xt−1)− f(x∗) + f(x̃)− f(x∗)]

Proof.

E‖νt − g′(xt−1)‖2

= E‖g
′

it(xt−1)− g
′

it(x̃) + g′(x̃) + e− g′(xt−1)‖2

= ‖e‖2 + E‖g
′

it(xt−1)− g
′

it(x̃) + g′(x̃)− g′(xt−1)‖2

≤ ‖e‖2 + E‖g
′

it(xt−1)− g
′

it(x̃)‖2

≤ ‖e‖2 + 2E‖g
′

it(xt−1)− g
′

it(x
∗)‖2 + 2E‖g

′

i(x̃)− g
′

it(x
∗)‖2

Using Lemma 1 from [12] and bounding the two expectations gives the result.

Now we turn to proving Proposition 5.

Proof. Following the proof of Theroem 1 in [12], we have

‖xt − x∗‖2 ≤ ‖xt−1 − x∗‖2 − 2η[f(xt)− f(x∗)]− 2η 〈∆t, xt − x∗〉

where ∆t = νt − g′(xt−1) and E[∆t] = e. Now to bound 〈∆t, xt − x∗〉, we define

x̄t = proxh(xt−1 − ηg′(xt−1)),

and subsequently that
−2η 〈∆t, xt − x∗〉 ≤ 2η2‖∆t‖2 − 2η 〈∆t, x̄t − x∗〉

Combining with the two previous inequalities we get

‖xt − x∗‖2 ≤ ‖xt−1 − x∗‖2 − 2η[f(xt)− f(x∗)] + 2η2‖∆t‖2 − 2η 〈∆t, x̄t − x∗〉 .

If we take the expectation with respect to it we have

E‖xt − x∗‖2 ≤ ‖xt−1 − x∗‖2 − 2ηE[f(xt)− f(x∗)] + 2η2E‖∆t‖2 − 2η 〈E∆t, x̄t − x∗〉 .

Now by using the Lemma 5 and ‖x̄t − x∗‖ < Z we have

E‖xt − x∗‖2

≤ ‖xt−1 − x∗‖2 − 2ηE[f(xt)− f(x∗)] + 8η2L[f(xt−1)− f(x∗) + f(x̃)− f(x∗)] + 2η2‖e‖2 + 2η‖e‖Z.

The rest of the proof follows the argument of [12], and is simlar to the previous proofs in this appendix. We take the
expectation and sum up values, using convexity to give

2η(1− 4Lη)m[Ef(xs)− f(x∗)] ≤ (
2

µ
+ 8Lη2(m+ 1))[f(x̃s−1 − f(x∗)] + 2η2‖e‖2 + 2η‖e‖Z.

By dividing both sides to 2η(1− 4Lη)m, we get the result.
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C.2 Proof of Proposition 3
We now turn to the case where h is differentiable, and we use an iteration that incorporates the gradient h′(xt).
Recall that for this result we assume that g′ is Lg-Lipschitz continuous, h′ is Lh-Lipschitz continuous, and we defined
Lm = max{Lg, Lh}. If we let νt = h′(xt) + g′it(xt)− g

′
it

(xs) + µs, then note that we have E [νt] = f ′(xt). Now as
before we want to bound the expected second moment of νt,

E
[
‖νt‖2

]
= E

[
‖h′(xt) + g′it(xt)− g

′
it(x

s) + µs‖2
]

= E[‖h′(xt) + g′it(xt)− g
′
it(x

s) + µs + h′(x∗) + g′it(x
∗)− h′(x∗)− g′it(x

∗) + h′(xs)− h′(xs)‖2]

≤ 2‖h′(xt)− h′(x∗)‖2 + 2E
[
‖g′it(xt)− g

′
it(x

∗)‖2
]

+ 2E
[
‖ − g′it(x

s) + µs + h′(x∗) + g′it(x
∗) + h′(xs)− h′(xs)‖2

]
= 2‖h′(xt)− h′(x∗)‖2 + 2E

[
‖g′it(xt)− g

′
it(x

∗)‖2
]

+ 2E[‖g′it(x
s)− µs − h′(x∗)− g′it(x

∗)− h′(xs) + h′(xs) + h′(x∗) + g′(x∗)‖2]

= 2‖h′(xt)− h′(x∗)‖2 + 2E
[
‖g′it(xt)− g

′
it(x

∗)‖2
]

+ 2E
[
‖g′it(x

s)− µs − g′it(x
∗) + g′(x∗)‖2

]
≤ 2‖h′(xt)− h′(x∗)‖2 + 2E

[
‖g′it(xt)− g

′
it(x

∗)‖2
]

+ 2E
[
‖g′it(x

s)− g′it(x
∗)‖2

]
Now using that ‖h′(xs)− h′(x∗)‖2 ≥ 0 and ‖f(x)− f(y)‖2 ≤ 2L[f(x)− f(y)− 〈f ′(y), x− y〉],

E
[
‖νt‖2

]
≤ 2‖h′(xt)− h′(x∗)‖2 + 2E

[
‖g′it(xt)− g

′
it(x

∗)‖2
]

+ 2E
[
‖g′it(x

s)− g′it(x
∗)‖2

]
+ 2‖h′(xs)− h′(x∗)‖2

≤ 4Lh[h(xt)− h(x∗)− 〈h′(x∗), xt − x∗〉] + 4Lg[g(xt)− g(x∗)− 〈g′(x∗), xt − x∗〉]
+ 4Lh[h(xs)− h(x∗)− 〈h′(x∗), xs − x∗〉] + 4Lg[g(xs)− g(x∗)− 〈g′(x∗), xs − x∗〉]

≤ 4Lm[f(xt)− f(x∗)] + 4Lm[f(xs)− f(x∗)]

From this point, we follow the standard SVRG argument to obtain

E [f(xs+1 − f(x∗)] ≤
(

1

mµ(1− 2ηLm)
+

2Lmη

1− 2ηLm

)
[f(xs − f(x∗)].

D Mini-Batch
We first give an analysis of SVRG where mini-batches are selected by sampling propotional to the Lipschitz constants
of the gradients. We then consider the mixed deterministic/random sampling scheme described in the main paper.

D.1 SVRG with Mini-batch
Here we consider using a ‘mini-batch’ of examples in the inner SVRG loop. We use M to denote the batch size, and
we assume that the elements of the mini-batch are sampled with a probability of pi = Li/nL̄. This gives a search
direction and inner iteration of:

νt = µs +
1

M

[∑
i∈M

1

npi
(f ′i(xt)− f ′i(xs))

]
,

xt+1 = xt − ηνt.

Observe that E [νt] = f ′(xt), and since each fi is Li-smooth we still have that

‖f ′i(x)− f ′i(y)‖2 ≤ Li (fi(x)− fi(y)− 〈f ′i(y), x− y〉) , .
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It follows from the definition of pi that

E

[∥∥∥∥ 1

npi
f ′i(x)− f ′i(y)

∥∥∥∥2
]

=
1

n

∑
i

1

npi
‖f ′i(x)− f ′i(y)‖2

≤ 2L̄ (f(x)− f(y)− 〈f ′(y), x− y〉) ,

which we use to bound E
[
‖νt‖2

]
as before,

E
[
‖νt‖2

]
= E

∥∥∥∥∥ 1

M

∑
i

(
1

npi
(f ′i(xt)− f ′i(xs) + µs

)∥∥∥∥∥
2


= E

∥∥∥∥∥ 1

M

∑
i

(
1

npi
(f ′i(xt)− f ′i(x∗) + f ′i(x

∗)− f ′i(xs) + µs
)∥∥∥∥∥

2


≤ 2

M2

∑
i

E

[∥∥∥∥( 1

npi
(f ′i(xt)− f ′i(x∗))

)∥∥∥∥2
]

+
2

M2

∑
i

E

[∥∥∥∥( 1

npi
(f ′i(x

s)− f ′i(x∗))− µs
)∥∥∥∥2

]

≤ 2

M2

∑
i

E

[∥∥∥∥( 1

npi
(f ′i(xt)− f ′i(x∗))

)∥∥∥∥2
]

+
2

M2

∑
i

E

[∥∥∥∥( 1

npi
(f ′i(x

s)− f ′i(x∗))
)∥∥∥∥2

]

≤ 4L̄

M
[f(xt)− f(x∗)] +

4L̄

M
[f(xs)− f(x∗)]

It subsequently follows that

E
[
f(xs+1)− f(x∗)

]
≤
(

M

mµ(M − 2ηL̄)η
+

2L̄η

M − 2ηL̄

)
E [f(xs)− f(x∗)]

D.2 Proof of Proposition 4
We now consider the case where we have g(x) = (1/n)

∑
i/∈[Bf ] fi(x) and h(x) = (1/n)

∑
i∈[Bf ] fi(x) for some

batch Bf . We assume that we sample Mr elements of g with probability of pi = Li
(n−Mf )L̄r

and that we use:

νt = g′(xs) + h′(xt) +
1

Mr

[∑
i∈Mr

1

npi
(f ′i(xt)− f ′i(xs))

]
,

= µs + h′(xt) +
1

Mr

[∑
i∈Mr

1

npi
(f ′i(xt)− f ′i(xs))

]
− h′(xs),

xt+1 = xt − ηνt,
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where as usual µs = 1
n

∑n
i=1 f

′
i(x

s) = g′(xs) + h′(xs). Note that E [νt] = f ′(xt). We first bound E
[
‖νt‖2

]
,

E
[
‖νt‖2

]
= E

∥∥∥∥∥µs + h′(xt) + 1/Mr

[∑
i∈Mr

1

npi
(f ′i(xt)− f ′i(xs))

]
− h′(xs)

∥∥∥∥∥
2


= E[‖µs + h′(xt)− h′(x∗) + 1/Mr

[∑
i∈Mr

1

npi
(f ′i(xt)− f ′i(x∗))

]

− 1/Mr

[∑
i∈Mr

1

npi
(f ′i(x

s)− f ′i(x∗))

]
− h′(xs) + h′(x∗)‖2]

≤ 2/n2
∑
i∈Bf

‖f ′i(xt)− f ′i(x∗)‖2︸ ︷︷ ︸
Fixed part

+ 2/M2
r

∑
i∈Br

E

[∥∥∥∥ 1

npi
(f ′i(xt)− f ′i(x∗))

∥∥∥∥2
]

︸ ︷︷ ︸
Random part

+ 2E

∥∥∥∥∥1/Mr

[∑
i∈Mr

1

npi
(f ′i(x

s)− f ′i(x∗))

]
+ h′(xs)− h′(x∗)− µs

∥∥∥∥∥
2
 ,

where the inequality uses ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Now we bound each of the above terms separately,

2/n2
∑
i∈Bf

‖f ′i(xt)− f ′i(x∗)‖2 ≤ 2/n2
∑
i∈Bf

2Li(fi(xt)− fi(x∗)− 〈f ′i(x∗), xt − x∗〉)

≤ 4L1/n (h(xt)− h(x∗)− 〈h′(x∗), xt − x∗〉) ,

2/M2
r

∑
i∈Br

E
[
‖ 1

npi
(f ′i(xt)− f ′i(x∗))‖2

]
≤ 2/M2

r

∑
i∈Br

1/n2
∑
j /∈Bf

1/pi‖f ′i(xt)− f ′i(x∗)‖2

≤ 2/M2
r

∑
i∈Br

1/n2
∑
j /∈Bf

(n−Mf )L̄r (fi(xt)− fi(x∗)− 〈f ′i(x∗), xt − x∗〉)

=
4(n−Mf )L̄r

nMr
(g(xt)− g(x∗)− 〈g′(x∗), xt − x∗〉).

Finally for the last term we have,

2E


∥∥∥∥∥∥∥

1

Mr

[∑
i∈Mr

1

npi
(f ′i(x

s)− f ′i(x∗))

]
+ h′(xs)− h′(x∗)− µs︸ ︷︷ ︸

=g′(x∗)−g′(xs)

∥∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ 1

Mr

∑
i∈Mr

1

npi
(f ′i(x

s)− f ′i(x∗))

∥∥∥∥∥
2


≤ 4(n−Mf )L̄r
nMr

(g(xs)− g(x∗)− 〈g′(x∗), xs − x∗〉)

where the first inequality uses variance inequality (E‖X−EX‖2 ≤ E‖X‖2) and the second one comes from Lemma 1.
Since h is convex we can add 4(n−Mf )L̄r

nMr
(h(xs) − h(x∗) − 〈h′(x∗), xs − x∗〉) to the right side of the above term,

9



giving

2E

∥∥∥∥∥ 1

Mr

[∑
i∈M

1

npi
(f ′i(x

s)− f ′i(x∗))

]
+ h′(xs)− h′(x∗)− µs

∥∥∥∥∥
2


≤ 4(n−Mf )L̄r
nMr

(f(xs)− f(x∗)) .

Now following the proof technique we used several times, we can show that:

E
[
f(xs+1)− f(x∗)

]
≤
(

1

mµ(1− 2ηκ)η
+

2ζη

1− 2ηκ

)
E [f(xs)− f(x∗)]

where ζ =
(n−Mf )L̄r
(M−Mf )n and κ = max{L1

n , ζ}.

E Learning efficiency
In this section we closely follow Bottou and Bousquet [1, 2] to discuss the performance of SVRG, and other linearly-
convergent stochastic methods, as learning algorithms. In the typical supervised learning setting, we are giving n
independently drawn input-output pairs (xi, yi) from some distribution P (x, y) and we seek to minimize the empirical
risk,

En(f) =
1

n

n∑
i=1

`(f(xi), yi) = En[`(f(x), y)],

where ` is our loss function. However, in machine learning this is typically just a surrogate for the objective we are
ultimately interested in. In particular, we typically want to minimize the expected risk,

E(f) =

∫
`(f(x), y)dP (x, y) = E[`(f(x), y)],

which tells us how well we do on test data from the same distribution. We use f∗ to denote the minimizer of the
expected risk,

f∗(x) = arg min
ŷ

E[`(ŷ, y) |x],

which is the best that a learner can hope to achieve.
Consider a familyF of possible functions that we use to predict yi from xi. We write the minimizer of the expected

risk over this restricted set as f∗F ,
f∗F = arg min

f∈F
E(f),

while we denote the empirical risk minimizer within this family as fn,

fn = arg min
f∈F

En(f).

But, since we are applying a numerical optimizer we only assume that we find a ρ-optimal minimizer of the empirical
risk f̃n,

En(f̃n) < En(fn) + ρ,

In this setting, Bottou & Bousquet consider writing the sub-optimality of the approximate empirical risk minimizer f̃n
compared to the minimizer of the expected risk f∗ as

E = E[E(f̃n)− E(f∗)]

= E[E(f∗F )− E(f∗)]︸ ︷︷ ︸
Eapp

+E[E(fn)− E(f∗F )]︸ ︷︷ ︸
Eest

+E[E(f̃n)− E(fn)]︸ ︷︷ ︸
Eopt

, (1)

where the expectation is taken with respect to the output of the algorithm and with respect to the training examples
that we sample. This decomposition shows how three intuitive terms affect the sub-optimality:
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1. Eapp is the approximation error: it measures the effect of restricting attention to the function class F .

2. Eest is the estimation error: it measures the effect of only using a finite number of samples.

3. Eopt is the optimization error: it measures the effect of inexactly solving the optimization problem.

While choosing the family of possible approximating functions F is an interesting and important issue, for the remain-
der of this section we will assume that we are given a fixed family. In particular, Bottou & Bousquet’s assumption is
that F is linearly-parameterized by a vector w ∈ Rd, and that all quantities are bounded (xi, yi, and w). This means
that the approximation error Eapp is fixed so we can only focus on the trade-off between the estimation error Eest and
the optimization error Eopt.

All other sections of this work focus on the case of finite datasets where we can afford to do several passes through
the data (small-scale learning problems in the language of Bottou & Bousquet). In this setting, Eest is fixed so all we
can do to minimize E is drive the optimization error ρ as small as possible. In this section we consider the case where
we do not have enough time to process all available examples, or we have an infinite number of possible examples
(large-scale learning problems in the language of Bottou & Bousquet). In this setting, the time restriction means we
need to make a trade-off between the optimization error and the estimation error: should we increase n in order to
decrease the estimation error Eest or should we revisit examples to try to more quickly decrease the optimization error
Eopt while keeping the estimation error fixed?

Bottou & Bousquet discuss how under various assumptions we have the variance condition

∀f ∈ F E
[
(`(f(X), Y )− `(f∗F (X), Y ))

2
]
≤ c (E(f)− E(f∗F ))

2− 1
α ,

and how this implies the bound

E = O

(
Eapp +

(
d

n
log

n

d

)α
+ ρ

)
.

To make the second and third terms comparable, we can take ρ =
(
d
n log n

d

)α
. Then to achieve an accuracy of

O(Eapp + ε) it is sufficient to take n = O
(

d
ε1/α

log(1/ε)
)

samples:

E = O

(
Eapp +

(
d

n
log

n

d

)α
+ ρ

)
= O

(
Eapp +

(
d

n
log

n

d

)α
+

(
d

n
log

n

d

)α)
= O

(
Eapp +

(
d

n
log

n

d

)α)
= O

(
Eapp +

(
ε

1
α

log( 1
ε )

log

(
log( 1

ε )

ε
1
α

))α)

= O

(
Eapp + ε

(
log(log(1/ε))− 1

α log(ε)

log(1/ε)

)α)
= O(Eapp + ε).

The results presented in the main paper follow from noting that (i) the iteration cost of SVRG is O(d) and (ii) that the
number of iterations for SVRG to reach an accuracy of ρ is O((n+ κ) log(1/ρ)).

F Additional Experimental Results
We list properties of the dataset considered in the experiments in Table 1. In Figures 1-4, we plot the performance
on the various datasets in terms of both the training objective and test error, showing the maximum/mean/minimum
performance across 10 random trials. In these plots, we see a clear advantage for the Grow strategy on the largest
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Data set Data Points Variables Reference
quantum 50 000 78 [4]
protein 145 751 74 [4]
sido 12 678 4 932 [7]
rcv1 20 242 47 236 [10]
covertype 581 012 54 [6]
news 19 996 1 355 191 [9]
spam 92 189 823 470 [5, 3]
rcv1Full 697 641 47 236 [10]
alpha 500 000 500 Synthetic

Table 1: Binary data sets used in the experiments.

datasets (bottom row), but less of an advantage or no advantage on the smaller datasets. The advantage of using
support vectors seemed less dependent on the data size, as it helped in some small datasets as well as some large
datasets, while in some small/large datasets it did not make a big difference.

In Figures 5-6, we give the result of experiments comparing different mini-batch selection strategies. In particular,
we consider mini-batch SVRG with a batch size of 16 and compare the following methods: uniform sampling of
the mini-batch (Uniform), sampling proportional to the Lipschitz constants (Lipschitz), and a third strategy based on
Proposition 4 in the main paper (Lipschitz+). On each iteration, the Lipschitz+ strategy constructs the mini-batch using
the 100 examples with the largest Lipschitz constants (the ‘fixed’ set) in addition to 16 examples sampled according
to their Lipschitz constants from among the remaining examples. We assume that the fixed set is computed ‘for free’
by calculating these gradients on a GPU or FPGA. In these experiments, there was often no difference between the
various methods because the rows of the data were normalized. For the two Lipschitz sampling strategies, we used a
step size of 1/L̄. In some cases, the new sampling scheme may have given a small improvement, but in general the
theoretical advantage of this method was not reflected in our experiments.

In Figure 7-8, we repeat the mini-batch experiment but include two additional method: sampling example i pro-
portional to fi(xs) (Function) and sampling i proportional to ‖f ′i(xs)‖ (Gradient). For these strategies we used a step
size of 1/L̄, and on eight of the nine datasets we were surprised that these strategies had similar performance to the
Lipschitz sampling strategy (even though they do not have access to the Li). However, both of these strategies had
strange behaviour on one of the datasets. On the covertype dataset, the Function method seemed to diverge in terms of
training objective and test error while the Gradient seemed to converge to a sub-optimal solution in terms of training
objective but achieved close to the optimal test error.
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Figure 1: Comparison of training objective of logistic regression for different datasets. The top row gives results on the
quantum (left), protein (center) and sido (right) datasets. The middle row gives results on the rcv11 (left), covertype
(center) and news (right) datasets. The bottom row gives results on the spam (left), rcv1Full (center), and alpha (right)
datasets.
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Figure 2: Comparison of test error of logistic regression for different datasets. The top row gives results on the
quantum (left), protein (center) and sido (right) datasets. The middle row gives results on the rcv11 (left), covertype
(center) and news (right) datasets. The bottom row gives results on the spam (left), rcv1Full (center), and alpha (right)
datasets.
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Figure 3: Comparison of training objective of SVM for different datasets. The top row gives results on the quantum
(left), protein (center) and sido (right) datasets. The middle row gives results on the rcv11 (left), covertype (center) and
news (right) datasets. The bottom row gives results on the spam (left), rcv1Full (center), and alpha (right) datasets.
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Figure 4: Comparison of test error of SVM for different datasets. The top row gives results on the quantum (left),
protein (center) and sido (right) datasets. The middle row gives results on the rcv11 (left), covertype (center) and news
(right) datasets. The bottom row gives results on the spam (left), rcv1Full (center), and alpha (right) datasets.
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Figure 5: Comparison of training objective of logistic regression with different mini-batch strategies. The top row
gives results on the quantum (left), protein (center) and sido (right) datasets. The middle row gives results on the rcv11
(left), covertype (center) and news (right) datasets. The bottom row gives results on the spam (left), rcv1Full (center),
and alpha (right) datasets.
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Figure 6: Comparison of test error of logistic regression with different mini-batch strategies. The top row gives results
on the quantum (left), protein (center) and sido (right) datasets. The middle row gives results on the rcv11 (left),
covertype (center) and news (right) datasets. The bottom row gives results on the spam (left), rcv1Full (center), and
alpha (right) datasets.
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Figure 7: Comparison of training objective of logistic regression with different mini-batch strategies. The top row
gives results on the quantum (left), protein (center) and sido (right) datasets. The middle row gives results on the rcv11
(left), covertype (center) and news (right) datasets. The bottom row gives results on the spam (left), rcv1Full (center),
and alpha (right) datasets.

19



Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0.29

0.3

0.31

0.32

0.33

0.34
Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05 Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0.02

0.03

0.04

0.05

0.06

0.07
Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0.04

0.05

0.06

0.07

0.08

0.09
Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0.24

0.25

0.26

0.27

0.28

0.29 Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0.08

0.09

0.1

0.11

0.12

0.13

Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05
Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0.02

0.03

0.04

0.05

0.06

0.07 Uniform

Lipschitz

Function

Gradient

Effective Passes

0 5 10 15 20 25

T
e
s
t
 
E
r
r
o
r

0.21

0.22

0.23

0.24

0.25

0.26
Uniform

Lipschitz

Function

Gradient

Figure 8: Comparison of test error of logistic regression with different mini-batch strategies. The top row gives results
on the quantum (left), protein (center) and sido (right) datasets. The middle row gives results on the rcv11 (left),
covertype (center) and news (right) datasets. The bottom row gives results on the spam (left), rcv1Full (center), and
alpha (right) datasets.
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