
A Pseudo-Euclidean Iteration for Optimal Recovery
in Noisy ICA

James Voss
The Ohio State University
vossj@cse.ohio-state.edu

Mikhail Belkin
The Ohio State University

mbelkin@cse.ohio-state.edu

Luis Rademacher
The Ohio State University

lrademac@cse.ohio-state.edu

Abstract

Independent Component Analysis (ICA) is a popular model for blind signal sepa-
ration. The ICA model assumes that a number of independent source signals are
linearly mixed to form the observed signals. We propose a new algorithm, PEGI
(for pseudo-Euclidean Gradient Iteration), for provable model recovery for ICA
with Gaussian noise. The main technical innovation of the algorithm is to use a
fixed point iteration in a pseudo-Euclidean (indefinite “inner product”) space. The
use of this indefinite “inner product” resolves technical issues common to several
existing algorithms for noisy ICA. This leads to an algorithm which is conceptually
simple, efficient and accurate in testing.
Our second contribution is combining PEGI with the analysis of objectives for
optimal recovery in the noisy ICA model. It has been observed that the direct
approach of demixing with the inverse of the mixing matrix is suboptimal for signal
recovery in terms of the natural Signal to Interference plus Noise Ratio (SINR)
criterion. There have been several partial solutions proposed in the ICA literature.
It turns out that any solution to the mixing matrix reconstruction problem can be
used to construct an SINR-optimal ICA demixing, despite the fact that SINR itself
cannot be computed from data. That allows us to obtain a practical and provably
SINR-optimal recovery method for ICA with arbitrary Gaussian noise.

1 Introduction
Independent Component Analysis refers to a class of methods aiming at recovering statistically
independent signals by observing their unknown linear combination. There is an extensive literature
on this and a number of related problems [7].

In the ICA model, we observe n-dimensional realizations x(1), . . . ,x(N) of a latent variable model
X =

∑m
k=1 SkAk = AS where Ak denotes the kth column of the n × m mixing matrix A and

S = (S1, . . . , Sm)T is the unseen latent random vector of “signals”. It is assumed that S1, . . . , Sm
are independent and non-Gaussian. The source signals and entries of A may be either real- or
complex-valued. For simplicity, we will assume throughout that S has zero mean, as this may be
achieved in practice by centering the observed data.

Many ICA algorithms use the preprocessing “whitening” step whose goal is to orthogonalize the
independent components. In the noiseless, case this is commonly done by computing the square
root of the covariance matrix of X. Consider now the noisy ICA model X = AS + η with additive
0-mean noise η independent of S. It turns out that the introduction of noise makes accurate recovery
of the signals significantly more involved. Specifically, whitening using the covariance matrix does
not work in the noisy ICA model as the covariance matrix combines both signal and noise. For
the case when the noise is Gaussian, matrices constructed from higher order statistics (specifically,
cumulants) can be used instead of the covariance matrix. However, these matrices are not in general
positive definite and thus the square root cannot always be extracted. This limits the applicability of

1

mailto:vossj@cse.ohio-state.edu
mailto:mbelkin@cse.ohio-state.edu
mailto:lrademac@cse.ohio-state.edu

several previous methods, such as [1, 2, 9]. The GI-ICA algorithm proposed in [21] addresses this
issue by using a complicated quasi-orthogonalization step followed by an iterative method.

In this paper (section 2), we develop a simple and practical one-step algorithm, PEGI (for pseudo-
Euclidean Gradient Iteration) for provably recovering A (up to the unavoidable ambiguities of the
model) in the case when the noise is Gaussian (with an arbitrary, unknown covariance matrix). The
main technical innovation of our approach is to formulate the recovery problem as a fixed point
method in an indefinite (pseudo-Euclidean) “inner product” space.

The second contribution of the paper is combining PEGI with the analysis of objectives for optimal
recovery in the noisy ICA model. In most applications of ICA (e.g., speech separation [18], MEG/EEG
artifact removal [20] and others) one cares about recovering the signals s(1), . . . , s(N). This is known
as the source recovery problem. This is typically done by first recovering the matrix A (up to an
appropriate scaling of the column directions).

At first, source recovery and recovering the mixing matrix A appear to be essentially equivalent. In
the noiseless ICA model, if A in invertible1 then s(t) = A−1x(t) recovers the sources. On the other
hand, in the noisy model, the exact recovery of the latent sources s(t) becomes impossible even if A
is known exactly. Part of the “noise” can be incorporated into the “signal” preserving the form of the
model. Even worse, neither A nor S are defined uniquely as there is an inherent ambiguity in the
setting. There could be many equivalent decompositions of the observed signal as X = A′S′ + η′

(see the discussion in section 3).

We consider recovered signals of the form Ŝ(B) := BX for a choice of m× n demixing matrix B.
Signal recovery is considered optimal if the coordinates of Ŝ(B) = (Ŝ1(B), . . . , Ŝm(B)) maximize
Signal to Interference plus Noise Ratio (SINR) within any fixed model X = AS + η. Note that
the value of SINR depends on the decomposition of the observed data into “noise” and “signal”:
X = A′S′ + η′.

Surprisingly, the SINR optimal demixing matrix does not depend on the decomposition of data into
signal plus noise. As such, SINR optimal ICA recovery is well defined given access to data despite
the inherent ambiguity in the model. Further, it will be seen that the SINR optimal demixing can be
constructed from cov(X) and the directions of the columns of A (which are also well-defined across
signal/noise decompositions).

Our SINR-optimal demixing approach combined with the PEGI algorithm provides a complete
SINR-optimal recovery algorithm in the ICA model with arbitrary Gaussian noise. We note that the
ICA papers of which we are aware that discuss optimal demixing do not observe that SINR optimal
demixing is invariant to the choice of signal/noise decomposition. Instead, they propose more limited
strategies for improving the demixing quality within a fixed ICA model. For instance, Joho et al.
[14] show how SINR-optimal demixing can be approximated with extra sensors when assuming a
white additive noise, and Koldovskỳ and Tichavskỳ [16] discuss how to achieve asymptotically low
bias ICA demixing assuming white noise within a fixed ICA model. However, the invariance of the
SINR-optimal demixing matrix appears in the array sensor systems literature [6].

Finally, in section 4, we demonstrate experimentally that our proposed algorithm for ICA outperforms
existing practical algorithms at the task of noisy signal recovery, including those specifically designed
for beamforming, when given sufficiently many samples. Moreover, most existing practical algorithms
for noisy source recovery have a bias and cannot recover the optimal demixing matrix even with
infinite samples. We also show that PEGI requires significantly fewer samples than GI-ICA [21] to
perform ICA accurately.

1.1 The Indeterminacies of ICA
Notation: We use M∗ to denote the entry-wise complex conjugate of a matrix M , MT to denote its
transpose, MH to denote its conjugate transpose, and M† to denote its Moore-Penrose pseudoinverse.

Before proceeding with our results, we discuss the somewhat subtle issue of indeterminacies in ICA.
These ambiguities arise from the fact that the observed X may have multiple decompositions into
ICA models X = AS + η and X = A′S′ + η′.

1A−1 can be replaced with A† (A’s pseudoinverse) in the discussion below for over-determined ICA.

2

Noise-free ICA has two natural indeterminacies. For any nonzero constant α, the contribution of
the kth component AkSk to the model can equivalently be obtained by replacing Ak with αAk and
Sk with the rescaled signal 1

αSk. To lessen this scaling indeterminacy, we use the convention2 that
cov(S) = I throughout this paper. As such, each source Sk (or equivalently each Ak) is defined up
to a choice of sign (a unit modulus factor in the complex case). In addition, there is an ambiguity
in the order of the latent signals. For any permutation π of [m] (where [m] := {1, . . . ,m}), the
ICA models X =

∑m
k=1 SkAk and X =

∑m
k=1 Sπ(k)Aπ(k) are indistinguishable. In the noise free

setting, A is said to be recovered if we recover each column of A up to a choice of sign (or up to a unit
modulus factor in the complex case) and an unknown permutation. As the sources S1, . . . , Sm are
only defined up to the same indeterminacies, inverting the recovered matrix Ã to obtain a demixing
matrix works for signal recovery.

In the noisy ICA setting, there is an additional indeterminacy in the definition of the sources. Consider
a 0-mean axis-aligned Gaussian random vector ξ. Then, the noisy ICA model X = A(S + ξ) + η in
which ξ is considered part of the latent source signal S′ = S+ξ, and the model X = AS+ (Aξ+η)
in which ξ is part of the noise are indistinguishable. In particular, the latent source S and its covariance
are ill-defined. Due to this extra indeterminacy, the lengths of the columns of A no longer have a fully
defined meaning even when we assume cov(S) = I . In the noisy setting, A is said to be recovered if
we obtain the columns of A up to non-zero scalar multiplicative factors and an arbitrary permutation.

The last indeterminacy is the most troubling as it suggests that the power of each source signal is itself
ill-defined in the noisy setting. Despite this indeterminacy, it is possible to perform an SINR-optimal
demixing without additional assumptions about what portion of the signal is source and what portion
is noise. In section 3, we will see that SINR-optimal source recovery takes on a simple form: Given
any solution Ã which recovers A up to the inherent ambiguities of noisy ICA, then ÃH cov(X)† is
an SINR-optimal demixing matrix.

1.2 Related Work and Contributions
Independent Component Analysis is probably the most used model for Blind Signal Separation.
It has seen numerous applications and has generated a vast literature, including in the noisy and
underdetermined settings. We refer the reader to the books [7, 13] for a broad overview of the subject.

It was observed early on by Cardoso [4] that ICA algorithms based soley on higher order cumulant
statistics are invariant to additive Gaussian noise. This observation has allowed the creation of many
algorithms for recovering the ICA mixing matrix in the noisy and often underdetermined settings.
Despite the significant work on noisy ICA algorithms, they remain less efficient, more specialized, or
less practical than the most popular noise free ICA algorithms.

Research on cumulant-based noisy ICA can largely be split into several lines of work which we only
highlight here. Some algorithms such as FOOBI [4] and BIOME [1] directly use the tensor structure
of higher order cumulants. In another line of work, De Lathauwer et al. [8] and Yeredor [23] have
suggested algorithms which jointly diagonalize cumulant matrices in a manner reminiscent of the
noise-free JADE algorithm [3]. In addition, Yeredor [22] and Goyal et al. [11] have proposed ICA
algorithms based on random directional derivatives of the second characteristic function.

Each line of work has its advantages and disadvantages. The joint diagonalization algorithms and
the tensor based algorithms tend to be practical in the sense that they use redundant cumulant infor-
mation in order to achieve more accurate results. However, they have a higher memory complexity
than popular noise free ICA algorithms such as FastICA [12]. While the tensor methods (FOOBI
and BIOME) can be used when there are more sources than the dimensionality of the space (the
underdetermined ICA setting), they require all the latent source signals to have positive order 2k
cumulants (k ≥ 2, a predetermined fixed integer) as they rely on taking a matrix square root. Finally,
the methods based on random directional derivatives of the second characteristic function rely heavily
upon randomness in a manner not required by the most popular noise free ICA algorithms.

We continue a line of research started by Arora et al. [2] and Voss et al. [21] on fully determined noisy
ICA which addresses some of these practical issues by using a deflationary approach reminiscent
of FastICA. Their algorithms thus have lower memory complexity and are more scalable to high
dimensional data than the joint diagonalization and tensor methods. However, both works require

2Alternatively, one may place the scaling information in the signals by setting ‖Ak‖ = 1 for each k.

3

a preprocessing step (quasi-orthogonalization) to orthogonalize the latent signals which is based
on taking a matrix square root. Arora et al. [2] require each latent signal to have positive fourth
cumulant in order to carry out this preprocessing step. In contrast, Voss et al. [21] are able to
perform quasi-orthogonalization with source signals of mixed sign fourth cumulants; but their quase-
orthogonalization step is more complicated and can run into numerical issues under sampling error.
We demonstrate that quasi-orthogonalization is unnecessary. We introduce the PEGI algorithm to
work within a (not necessarily positive definite) inner product space instead. Experimentally, this
leads to improved demixing performance. In addition, we handle the case of complex signals.

Finally, another line of work attempts to perform SINR-optimal source recovery in the noisy ICA
setting. It was noted by Koldovskỳ and Tichavskỳ [15] that for noisy ICA, traditional ICA algorithms
such as FastICA and JADE actually outperform algorithms which first recover A in the noisy setting
and then use the resulting approximation of A† to perform demixing. It was further observed that
A† is not the optimal demixing matrix for source recovery. Later, Koldovskỳ and Tichavskỳ [17]
proposed an algorithm based on FastICA which performs a low SINR-bias beamforming.

2 Pseudo-Euclidean Gradient Iteration ICA
In this section, we introduce the PEGI algorithm for recovering A in the “fully determined” noisy
ICA setting where m ≤ n. PEGI relies on the idea of Gradient Iteration introduced Voss et al. [21].
However, unlike GI-ICA Voss et al. [21], PEGI does not require the source signals to be orthogonal-
ized. As such, PEGI does not require the complicated quasi-orthogonalization preprocessing step of
GI-ICA which can be inaccurate to compute in practice. We sketch the Gradient Iteration algorithm
in Section 2.1, and then introduce PEGI in Section 2.2. For simplicity, we limit this discussion
to the case of real-valued signals. We show how to construct PEGI for complex-valued signals in
Appendix A.

In this section we assume a noisy ICA model X = AS + η such that η is arbitrary Gaussian and
independent of S. We also assume that m ≤ n, that m is known, and that the columns of A are
linearly independent.

2.1 Gradient Iteration with Orthogonality
The gradient iteration relies on the properties of cumulants. We will focus on the fourth cumulant,
though similar constructions may be given using other even order cumulants of higher order. For
a zero-mean random variable X , the fourth order cumulant may be defined as κ4(X) := E[X4]−
3E[X2]2 [see 7, Chapter 5, Section 1.2]. Higher order cumulants have nice algebraic properties
which make them useful for ICA. In particular, κ4 has the following properties: (1) (Independence) If
X and Y are independent, then κ4(X + Y) = κ4(X) + κ4(Y). (2) (Homogeneity) If α is a scalar,
then κ4(αX) = α4κ4(X). (3) (Vanishing Gaussians) If X is normally distributed then κ4(X) = 0.

We consider the following function defined on the unit sphere: f(u) := κ4(〈X,u〉). Expanding f(u)
using the above properties we obtain:

f(u) = κ4
(∑m

k=1
〈Ak,u〉Sk + 〈u,η〉

)
=
∑m

k=1
〈Ak,u〉4κ4(Sk) .

Taking derivatives we obtain:

∇f(u) = 4
∑m

k=1
〈Ak,u〉3κ4(Sk)Ak (1)

Hf(u) = 12
∑m

k=1
〈Ak,u〉2κ4(Sk)AkA

T
k = AD(u)AT (2)

where D(u) is a diagonal matrix with entries D(u)kk = 12〈Ak,u〉2κ4(Sk). We also note that f(u),
∇f(u), andHf(u) have natural sample estimates (see [21]).

Voss et al. [21] introduced GI-ICA as a fixed point algorithm under the assumption that the
columns of A are orthogonal but not necessarily unit vectors. The main idea is that the update
u← ∇f(u)/‖∇f(u)‖ is a form of a generalized power iteration. From equation (1), each Ak may
be considered as a direction in a hidden orthogonal basis of the space. During each iteration, the Ak
coordinate of u is raised to the 3rd power and multiplied by a constant. Treating this iteration as a
fixed point update, it was shown that given a random starting point, this iterative procedure converges
rapidly to one of the columns of A (up to a choice of sign). The rate of convergence is cubic.

4

However, the GI-ICA algorithm requires a somewhat complicated preprocessing step called
quasi-orthogonalization to linearly transform the data to make columns of A orthogonal. Quasi-
orthogonalization makes use of evaluations of Hessians of the fourth cumulant function to construct
a matrix of the form C = ADAT where D has all positive diagonal entries—a task which is com-
plicated by the possibility that the latent signals Si may have fourth order cumulants of differing
signs—and requires taking the matrix square root of a positive definite matrix of this form. How-
ever, the algorithm used for constructing C under sampling error is not always positive definite in
practice, which can make the preprocessing step fail. We will show how our PEGI algorithm makes
quasi-orthogonalization unnecessary, in particular, resolving this issue.

2.2 Gradient Iteration in a Pseudo-Euclidean Space
We now show that the gradient iteration can be performed using in a pseudo-Euclidean space
in which the columns of A are orthogonal. The natural candidate for the “inner product space”
would be to use 〈·, ·〉∗ defined as 〈u,v〉∗ := uT (AAT)†v. Clearly, 〈Ai, Aj〉∗ = δij gives the
desired orthogonality property. However, there are two issues with this “inner product space”:
First, it is only an inner product space when A is invertible. This turns out not to be a major
issue, and we move forward largely ignoring this point. The second issue is more fundamen-
tal: We only have access to AAT in the noise free setting where cov(X) = AAT . In the noisy
setting, we have access to matrices of the form Hf(u) = AD(u)AT from equation (2) instead.
Algorithm 1 Recovers a column of A up to a
scaling factor if u0 is generically chosen.

Inputs: Unit vector u0, C,∇f
k ← 1
repeat

uk ← ∇f(C†uk−1)/‖∇f(C†uk−1)‖
k ← k + 1

until Convergence (up to sign)
return uk

We consider a pseudo-Euclidean inner product de-
fined as follows: Let C = ADAT where D is a
diagonal matrix with non-zero diagonal entries, and
define 〈·, ·〉C by 〈u,v〉C = uTC†v. When D con-
tains negative entries, this is not a proper inner prod-
uct since C is not positive definite. In particular,
〈Ak, Ak〉C = ATk (ADAT)†Ak = d−1kk may be neg-
ative. Nevertheless, when k 6= j, 〈Ak, Aj〉C =
ATk (ADAT)†Aj = 0 gives that the columns of A
are orthogonal in this space.

We define functions αk : Rn → R by αk(u) = (A†u)k such that for any u ∈ span(A1, . . . , Am),
then u =

∑m
i=1 αi(u)Ai is the expansion of u in its Ai basis. Continuing from equation (1), for any

u ∈ Sn−1 we see ∇f(C†u) = 4
∑n
k=1〈Ak, C†u〉3κ4(Sk)Ak = 4

∑n
k=1〈Ak,u〉3Cκ4(Sk)Ak is the

gradient iteration recast in the 〈·, ·〉C space. Expanding u in its Ak basis, we obtain

∇f(C†u) = 4
∑m

k=1
(αk(u)〈Ak, Ak〉C)3κ4(Sk)Ak = 4

∑m

k=1
αk(u)3(d−3kk κ4(Sk))Ak , (3)

which is a power iteration in the unseen Ak coordinate system. As no assumptions are made upon the
κ4(Sk) values, the d−3kk scalings which were not present in eq. (1) cause no issues. Using this update,
we obtain Alg. 1, a fixed point method for recovering a single column of A up to an unknown scaling.

Before proceeding, we should clarify the notion of fixed point convergence in Algorithm 1. We say
that the sequence {uk}∞k=0 converges to v up to sign if there exists a sequence {ck}∞k=0 such that
each ck ∈ {±1} and ckuk → v as k →∞. We have the following convergence guarantee.

Theorem 1. If u0 is chosen uniformly at random from Sn−1, then with probability 1, there exists
` ∈ [m] such that the sequence {uk}∞k=0 defined as in Algorithm 1 converges to A`/‖A`‖ up to sign.
Further, the rate of convergence is cubic.

Due to limited space, we omit the proof of Theorem 1. It is similar to the proof of [21, Theorem 4].

In practice, we test near convergence by checking if we are still making significant progress. In
particular, for some predefined ε > 0, if there exists a sign value ck ∈ {±1} such that ‖uk −
ckuk−1‖ < ε, then we declare convergence achieved and return the result. As there are only two
choices for ck, this is easily checked, and we exit the loop if this condition is met.

Full ICA Recovery Via the Pseudo-Euclidean GI-Update. We are able to recover a single column
of A up to its unknown scale. However, for full recovery of A, we would like (given recovered
columns A`1 , . . . , A`j) to be able to recover a column Ak such that k 6∈ {`1, . . . , `j} on demand.

The idea behind the simultaneous recovery of all columns of A is two-fold. First, instead of just
finding columns of A using Algorithm 1, we simultaneously find rows of A†. Then, using the

5

recovered columns of A and rows of A†, we project u onto the orthogonal complement of the
recovered columns of A within the 〈·, ·〉C pseudo-inner product space.
Recovering rows of A†. Suppose we have access to a column Ak (which may be achieved using
Algorithm 1). Let A†k· denote the kth row of A†. Then, we note that C†Ak = (ADAT)†Ak =

d−1kk (AT)†k = d−1kk (A†k·)
T recovers A†k· up to an arbitrary, unknown constant d−1kk . However, the

constant d−1kk may be recovered by noting that 〈Ak, Ak〉C = (C†Ak)TAk = d−1kk . As such, we may
estimate A†k· as [C†Ak/((C

†Ak)TAk)]T .

Algorithm 2 Full ICA matrix recovery algorithm.
Returns two matrices: (1) Ã is the recovered mix-
ing matrix for the noisy ICA model X = AS + η,
and (2) B̃ is a running estimate of Ã†.

1: Inputs: C,∇f
2: Ã← 0, B̃ ← 0
3: for j ← 1 to m do
4: Draw u uniformly at random from Sn−1.
5: repeat
6: u← u− ÃB̃u
7: u← ∇f(C†u)/‖∇f(C†u)‖.
8: until Convergence (up to sign)
9: Ãj ← u

10: B̃j· ← [C†Aj/((C
†Aj)

TAj)]
T

11: end for
12: return Ã, B̃

Enforcing Orthogonality During the GI
Update. Given access to a vector u =∑m
k=1 αk(u)Ak + PA⊥u (where PA⊥ is the

projection onto the orthogonal complements
of the range of A), some recovered columns
A`1 , . . . , A`r , and corresponding rows of A†,
we may zero out the components of u corre-
sponding to the recovered columns of A. Let-
ting u′ = u −

∑r
j=1A`jA

†
`j ·u, then u′ =∑

k∈[m]\{`1,...,`r} αk(u)Ak + PA⊥u. In partic-
ular, u′ is orthogonal (in the 〈·, ·〉C space) to the
previously recovered columns of A. This allows
the non-orthogonal gradient iteration algorithm
to recover a new column of A.

Using these ideas, we obtain Algorithm 2, which
is the PEGI algorithm for recovery of the mix-
ing matrix A in noisy ICA up to the inherent

ambiguities of the problem. Within this Algorithm, step 6 enforces orthogonality with previously
found columns of A, guaranteeing that convergence to a new column of A.
Practical Construction of C. In our implementation, we set C = 1

12

∑n
k=1Hf(ek), as it can be

shown from equation (2) that
∑n
k=1Hf(ek) = ADAT with dkk = ‖Ak‖2κ4(Sk). This determinis-

tically guarantees that each latent signal has a significant contribution to C.

3 SINR Optimal Recovery in Noisy ICA
In this section, we demonstrate how to perform SINR optimal ICA within the noisy ICA framework
given access to an algorithm (such as PEGI) to recover the directions of the columns of A. To this
end, we first discuss the SINR optimal demixing solution within any decomposition of the ICA model
into signal and noise as X = AS + η. We then demonstrate that the SINR optimal demixing matrix
is actually the same across all possible model decompositions, and that it can be recovered. The
results in this section hold in greater generality than in section 2. They hold even if m ≥ n (the
underdetermined setting) and even if the additive noise η is non-Gaussian.

Consider B an m × n demixing matrix, and define Ŝ(B) := BX the resulting approximation to
S. It will also be convenient to estimate the source signal S one coordinate at a time: Given a row
vector b, we define Ŝ(b) := bX. If b = Bk· (the kth row of B), then Ŝ(b) = [Ŝ(B)]k = Ŝk(B)
is our estimate to the kth latent signal Sk. Within a specific ICA model X = AS + η, signal to
intereference-plus-noise ratio (SINR) is defined by the following equation:

SINRk(b) :=
var(bAkSk)

var(bAS− bAkSk) + var(bη)
=

var(bAkSk)

var(bAX)− var(bAkSk)
. (4)

SINRk is the variance of the contribution of kth source divided by the variance of the noise and
interference contributions within the signal.

Given access to the mixing matrix A, we define Bopt = AH(AAH + cov(η))†. Since cov(X) =
AAH + cov(η), it follows that Bopt = AH cov(X)†. Here, cov(X)† may be estimated from data,
but due to the ambiguities of the noisy ICA model, A (and specifically its column norms) cannot be.

Koldovskỳ and Tichavskỳ [15] observed that when η is a white Gaussian noise, Bopt jointly maxi-
mizes SINRk for each k ∈ [m], i.e., SINRk takes on its maximal value at (Bopt)k·. We generalize
this result in Proposition 2 below to include arbitrary non-spherical, potentially non-Gaussian noise.

6

(a) Accuracy under additive Gaussian noise. (b) Bias under additive Gaussian noise.
Figure 1: SINR performance comparison of ICA algorithms.

It is interesting to note that even after the data is whitened, i.e. cov(X) = I, the optimal SINR
solution is different from the optimal solution in the noiseless case unless A is an orthogonal matrix,
i.e. A† = AH . This is generally not the case, even if η is white Gaussian noise.
Proposition 2. For each k ∈ [m], (Bopt)k· is a maximizer of SINRk.

The proof of Proposition 2 can be found in appendix B.

Since SINR is scale invariant, Proposition 2 implies that any matrix of the form DBopt =
DAH cov(X)† where D is a diagonal scaling matrix (with non-zero diagonal entries) is an SINR-
optimal demixing matrix. More formally, we have the following result.

Theorem 3. Let Ã be an n×m matrix containing the columns of A up to scale and an arbitrary
permutation. That is, there exists a permutation π of [m] and non-zero constants α1, . . . , αm such
that αkÃπ(k) = Ak for each k ∈ [m]. Then, (ÃH cov(X)†)π(k)· is a maximizer of SINRk.

By Theorem 3, given access to a matrix Ã which recovers the directions of the columns of A, then
ÃH cov(X)† is the SINR-optimal demixing matrix. For ICA in the presence of Gaussian noise, the
directions of the columns of A are well defined simply from X, that is, the directions of the columns
of A do not depend on the decomposition of X into signal and noise (see the discussion in section 1.1
on ICA indeterminacies). The problem of SINR optimal demixing is thus well defined for ICA in
the presence of Gaussian noise, and the SINR optimal demixing matrix can be estimated from data
without any additional assumptions on the magnitude of the noise in the data.

Finally, we note that in the noise-free case, the SINR-optimal source recovery simplifies to be Ã†.
Corollary 4. Suppose that X = AS is a noise free (possibly underdetermined) ICA model. Suppose
that Ã ∈ Rn×m contains the columns of A up to scale and permutation, i.e., there exists diagonal
matrix D with non-zero entries and a permutation matrix Π such that Ã = ADΠ. Then Ã† is an
SINR-optimal demixing matrix.

Proof. By Theorem 3, (AD−1Π)H cov(X)† is an SINR-optimal demixing matrix. Expanding, we
obtain: (AD−1Π)H cov(X)† = ΠHD−1AH(AAH)† = ΠHD−1A† = (ADΠ)† = Ã†.

Corollary 4 is consistent with known beamforming results. In particular, it is known thatA† is optimal
(in terms of minimum mean squared error) for underdetermined ICA [19, section 3B].

4 Experimental Results
We compare the proposed PEGI algorithm with existing ICA algorithms. In addition to qorth+GI-ICA
(i.e., GI-ICA with quasi-orthogonalization for preprocessing), we use the following baselines:
JADE [3] is a popular fourth cumulant based ICA algorithm designed for the noise free setting. We
use the implementation of Cardoso and Souloumiac [5].
FastICA [12] is a popular ICA algorithm designed for the noise free setting based on a deflationary

7

approach of recovering one component at a time. We use the implementation of Gävert et al. [10].
1FICA [16, 17] is a variation of FastICA with the tanh contrast function designed to have low bias
for performing SINR-optimal beamforming in the presence of Gaussian noise.
Ainv performs oracle demixing algorithm which uses A† as the demixing matrix.
SINR-opt performs oracle demixing using AH cov(X)† to achieve SINR-optimal demixing.

We compare these algorithms on simulated data with n = m. We constructed mixing matrices A
with condition number 3 via a reverse singular value decomposition (A = UΛV T). The matrices U
and V were random orthogonal matrices, and Λ was chosen to have 1 as its minimum and 3 as its
maximum singular values, with the intermediate singular values chosen uniformly at random. We
drew data from a noisy ICA model X = AS + η where cov(η) = Σ was chosen to be malaligned
with cov(AS) = AAT . We set Σ = p(10I −AAT) where p is a constant defining the noise power.
It can be shown that p = maxv var(vTη)

maxv var(vTAS)
is the ratio of the maximum directional noise variance to

the maximum directional signal variance. We generated 100 matrices A for our experiments with
100 corresponding ICA data sets for each sample size and noise power. When reporting results, we
apply each algorithm to each of the 100 data sets for the corresponding sample size and noise power
and we report the mean performance. The source distributions used in our ICA experiments were the
Laplace and Bernoulli distribution with parameters 0.05 and 0.5 respectively, the t-distribution with
3 and 5 degrees of freedom respectively, the exponential distribution, and the uniform distribution.
Each distribution was normalized to have unit variance, and the distributions were each used twice to
create 14-dimensional data. We compare the algorithms using either SINR or the SINR loss from the
optimal demixing matrix (defined by SINR Loss = [Optimal SINR − Achieved SINR]).

In Figure 1b, we compare our proprosed ICA algorithm with various ICA algorithms for signal
recovery. In the PEGI-κ4+SINR algorithm, we use PEGI-κ4 to estimate A, and then perform
demixing using the resulting estimate of AH cov(X)−1, the formula for SINR-optimal demixing. It
is apparent that when given sufficient samples, PEGI-κ4+SINR provides the best SINR demixing.
JADE, FastICA-tanh, and 1FICA each have a bias in the presence of additive Gaussian noise which
keeps them from being SINR-optimal even when given many samples.

Figure 2: Accuracy comparison of PEGI using
pseudo-inner product spaces and GI-ICA using
quasi-orthogonalization.

In Figure 1a, we compare algorithms at vari-
ous sample sizes. The PEGI-κ4+SINR algo-
rithm relies more heavily on accurate estimates
of fourth order statistics than JADE, and the
FastICA-tanh and 1FICA algorithms do not re-
quire the estimation of fourth order statistics.
For this reason, PEGI-κ4+SINR requires more
samples than the other algorithms in order to be
run accurately. However, once sufficient sam-
ples are taken, PEGI-κ4+SINR outperforms the
other algorithms including 1FICA, which is de-
signed to have low SINR bias. We also note
that while not reported in order to avoid clut-
ter, the kurtosis-based FastICA performed very
similarly to FastICA-tanh in our experiments.

In order to avoid clutter, we did not include
qorth+GI-ICA-κ4+SINR (the SINR optimal
demixing estimate constructed using qorth+GI-

ICA-κ4 to estimate A) in the figures 1b and 1a. It is also assymptotically unbiased in estimating
the directions of the columns of A, and similar conclusions could be drawn using qorth+GI-ICA-κ4
in place of PEGI-κ4. However, in Figure 2, we see that PEGI-κ4+SINR requires fewer samples
than qorth+GI-ICA-κ4+SINR to achieve good performance. This is particularly highlighted in the
medium sample regime.

On the Performance of Traditional ICA Algorithms for Noisy ICA. An interesting observation
[first made in 15] is that the popular noise free ICA algorithms JADE and FastICA perform reasonably
well in the noisy setting. In Figures 1b and 1a, they significantly outperform demixing using A−1 for
source recovery. It turns out that this may be explained by a shared preprocessing step. Both JADE
and FastICA rely on a whitening preprocessing step in which the data are linearly transformed to
have identity covariance. It can be shown in the noise free setting that after whitening, the mixing

8

matrix A is a rotation matrix. These algorithms proceed by recovering an orthogonal matrix Ã to
approximate the true mixing matrix A. Demixing is performed using Ã−1 = ÃH . Since the data is
white (has identity covariance), then the demixing matrix ÃH = ÃH cov(X)−1 is an estimate of the
SINR-optimal demixing matrix. Nevertheless, the traditional ICA algorithms give a biased estimate
of A under additive Gaussian noise.

References
[1] L. Albera, A. Ferréol, P. Comon, and P. Chevalier. Blind identification of overcomplete mixtures of sources

(BIOME). Linear algebra and its applications, 391:3–30, 2004.

[2] S. Arora, R. Ge, A. Moitra, and S. Sachdeva. Provable ICA with unknown Gaussian noise, with implications
for Gaussian mixtures and autoencoders. In NIPS, pages 2384–2392, 2012.

[3] J. Cardoso and A. Souloumiac. Blind beamforming for non-Gaussian signals. In Radar and Signal
Processing, IEE Proceedings F, volume 140(6), pages 362–370. IET, 1993.

[4] J.-F. Cardoso. Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of
more sources than sensors. In ICASSP, pages 3109–3112. IEEE, 1991.

[5] J.-F. Cardoso and A. Souloumiac. Matlab JADE for real-valued data v 1.8. http://perso.
telecom-paristech.fr/˜cardoso/Algo/Jade/jadeR.m, 2005. [Online; accessed 8-May-
2013].

[6] P. Chevalier. Optimal separation of independent narrow-band sources: Concept and performance 1. Signal
Processing, 73(12):27 – 47, 1999. ISSN 0165-1684.

[7] P. Comon and C. Jutten, editors. Handbook of Blind Source Separation. Academic Press, 2010.

[8] L. De Lathauwer, B. De Moor, and J. Vandewalle. Independent component analysis based on higher-order
statistics only. In Statistical Signal and Array Processing, 1996. Proceedings., 8th IEEE Signal Processing
Workshop on, pages 356–359. IEEE, 1996.

[9] L. De Lathauwer, J. Castaing, and J. Cardoso. Fourth-order cumulant-based blind identification of
underdetermined mixtures. Signal Processing, IEEE Transactions on, 55(6):2965–2973, June 2007. ISSN
1053-587X. doi: 10.1109/TSP.2007.893943.

[10] H. Gävert, J. Hurri, J. Särelä, and A. Hyvärinen. Matlab FastICA v 2.5. http://research.ics.
aalto.fi/ica/fastica/code/dlcode.shtml, 2005. [Online; accessed 1-May-2013].

[11] N. Goyal, S. Vempala, and Y. Xiao. Fourier PCA and robust tensor decomposition. In STOC, pages
584–593, 2014.

[12] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks,
13(4-5):411–430, 2000.

[13] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis. John Wiley & Sons, 2001.

[14] M. Joho, H. Mathis, and R. H. Lambert. Overdetermined blind source separation: Using more sensors than
source signals in a noisy mixture. In Proc. International Conference on Independent Component Analysis
and Blind Signal Separation. Helsinki, Finland, pages 81–86, 2000.

[15] Z. Koldovskỳ and P. Tichavskỳ. Methods of fair comparison of performance of linear ICA techniques in
presence of additive noise. In ICASSP, pages 873–876, 2006.

[16] Z. Koldovskỳ and P. Tichavskỳ. Asymptotic analysis of bias of fastica-based algorithms in presence of
additive noise. Technical report, Technical report, 2007.

[17] Z. Koldovskỳ and P. Tichavskỳ. Blind instantaneous noisy mixture separation with best interference-plus-
noise rejection. In Independent Component Analysis and Signal Separation, pages 730–737. Springer,
2007.

[18] S. Makino, T.-W. Lee, and H. Sawada. Blind speech separation. Springer, 2007.

[19] B. D. Van Veen and K. M. Buckley. Beamforming: A versatile approach to spatial filtering. IEEE assp
magazine, 5(2):4–24, 1988.

9

http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml
http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml

[20] R. Vigário, J. Sarela, V. Jousmiki, M. Hamalainen, and E. Oja. Independent component approach to the
analysis of EEG and MEG recordings. Biomedical Engineering, IEEE Transactions on, 47(5):589–593,
2000.

[21] J. R. Voss, L. Rademacher, and M. Belkin. Fast algorithms for Gaussian noise invariant independent
component analysis. In Advances in Neural Information Processing Systems 26, pages 2544–2552. 2013.

[22] A. Yeredor. Blind source separation via the second characteristic function. Signal Processing, 80(5):
897–902, 2000.

[23] A. Yeredor. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source
separation. Signal Processing, IEEE Transactions on, 50(7):1545–1553, 2002.

A PEGI for Complex Signals
In Section 2, we showed how to perform gradient iteration ICA within a pseudo-Euclidean inner
product space. In this appendix, we show how this PEGI algorithm can be extended to include complex
valued signals. For clarity, we repeat the entire PEGI algorithmic construction from Section 2 with
the necessary modifications to handle the complex setting.

Throughout this appendix, we assume a noisy ICA model X = AS + η where η is an arbitrary
Gaussian noise independent of S. We also assume that m ≤ n, that m is known, and that the columns
of A are linearly dependent.

A.1 Fourth Cumulants of Complex Variables
The gradient iteration relies on the properties of cumulants. We will focus on the fourth cumulant,
though similar constructions may be given using other even order cumulants of higher order. We will
use two versions of the fourth cumulant which capture slightly different fourth order information.
For a zero-mean random variable X , they may be defined as κ4(X) := E[X4] − 3E[X2]2 and
κ?4(X) := E[X2X∗2]−2E[XX∗]2−E[X2]E[X∗2]. For real random variables, these two definitions
are equivalent, and they come from two different conjugation schemes when constructing the fourth
order cumulant [see 7, Chapter 5, Section 1.2]. However, in general, only κ?4 is guaranteed to be real
valued. The higher order cumulants have nice algebraic properties which make them useful for ICA:

1. (Independence) If X and Y are independent random variables, then κ4(X + Y) = κ4(X) +
κ4(Y) and κ?4(X + Y) = κ4(X + Y).

2. (Homogeneity) If α is a scalar, then κ4(αX) = α4κ4(X) and κ?4(αX) = |α|4κ?4(X).
3. (Vanishing Gaussians) If X is normally distributed then κ4(X) = 0 and κ?4(X) = 0.

In this appendix, we consider a noisy ICA model X = AS + η where η is a 0-mean (possibly
complex) Gaussian and independent of S. We consider the following functions defined on the unit
sphere: f(u) := κ4(〈X,u〉) and f?(u) := κ?4(〈X,u〉). Then, expanding using the above properties
we obtain:

f(u) = κ4

(∑m

k=1
〈Ak,u〉Sk + 〈u,η〉

)
=
∑m

k=1
〈Ak,u〉4κ4(Sk)

Using similar reasoning, it can be seen that f?(u) =
∑m
k=1 |〈Ak,u〉|

4
κ?4(Sk).

It turns out that some slightly non-standard notions of derivatives are most useful in constructing
the gradient iteration in the complex setting. We use real derivatives for the gradient and we
use the complex Hessian. In particular, expanding uk = xk + iyk, we use the gradient operator
∇ :=

∑n
k=1 ek

∂
∂xk

. We make use of the operators ∂uk := 1
2 (∂
∂xk
−i ∂

∂yk
) and ∂u∗k := 1

2 (∂
∂xk

+i ∂
∂yk

)

to define H :=
∑n
j=1

∑n
k=1 eke

T
j ∂uk∂u

∗
j . Applying this version of the Hessian is different than

using real derivatives as in the gradient operation.

Taking derivatives, we obtain:

∇f(u) = 4
∑m

k=1
〈Ak,u〉3κ4(Sk)Ak (5)

Hf?(u) = 4
∑m

k=1
|〈Ak,u〉|2κ?4(Sk)A∗kA

T
k = A∗D(u)AT (6)

where D(u) is a diagonal matrix with entries D(u)kk = 4|〈Ak,u〉|2κ?4(Sk).

10

Algorithm 3 Recovers a column of A up to an unknown scaling factor when u0 is generically chosen.

Inputs: u0 (A unit vector), C,∇f
k ← 1
repeat

uk ← ∇f(C†
∗
uk−1)/‖∇f(C†

∗
uk−1)‖

k ← k + 1
until Convergence (up to a unit modulus factor)
return uk

A.2 Gradient Iteration in a Pseudo-Euclidean Space
We now demonstrate that the gradient iteration can be performed using a generalized notion of an
inner product space in which the columns of A are orthogonal. The natural candidate for the “inner
product space” would be to use 〈·, ·〉∗ defined as 〈u,v〉∗ := uT (A∗AT)†v∗. Clearly, 〈Ai, Aj〉∗ = δij
gives the desired orthogonality property. However, there are two issues with this “inner product
space”: First, it is only an inner product space when A is non-singular (invertible). This turns out
not to be a major issue, and we will move forward largely ignoring this point. The second issue
is more fundamental: We only have access to the matrix A∗AT in the noise free setting where
cov(X)T = (AAH)T = A∗AT . In the noisy setting, we have access to matrices of the form
Hf?(u) = A∗D(u)AT from equation (6) instead.

We consider a pseudo-Euclidean inner product defined as follows: Let C = A∗DAT where D is
a diagonal matrix with non-zero diagonal entries, and define 〈·, ·〉C by 〈u,v〉C = uTC†v∗. When
D contains negative entries, this is not a proper inner product since C is not positive definite. In
particular, 〈Ak, Ak〉C = ATk (A∗DAT)†A∗k = d−1kk may be negative. Nevertheless, when k 6= j,
〈Ak, Aj〉C = ATk (A∗DAT)†A∗j = 0 gives that the columns of A are orthogonal in this space.

We define functions αk : Cn → C by αk(u) = (A†u)k such that for any u ∈ span(A1, . . . , Am),
then u =

∑m
i=1 αi(u)Ai is the expansion of u in its Ai basis. Continuing from equation (5), for any

u ∈ Sn−1 we see

∇f(C†
∗
u) = 4

∑n

k=1
〈Ak, C†

∗
u〉3κ4(Sk)Ak

= 4
∑n

k=1
〈Ak,u〉3Cκ4(Sk)Ak

is the gradient iteration recast in the 〈·, ·〉C space. Expanding u in its Ak basis, we obtain

∇f(C†
∗
u) = 4

∑m

k=1
(αk(u)〈Ak, Ak〉C)3κ4(Sk)Ak

= 4
∑m

k=1
αk(u)3(d−3kk κ4(Sk))Ak , (7)

which is a power iteration in the unseen Ak coordinate system. As no assumptions are made upon the
κ4(Sk) values, the d−3kk scalings which were not present in equation (5) cause no issues. Using this
update, we obtain Algorithm 3, a fixed point method for recovering a single column of A up to an
unknown scaling.

Before proceeding, we should clarify the notion of fixed point convergence in Algorithm 3. We say
that the sequence {uk}∞k=0 converges to v up to a unit modulus factor if there exists a sequence
of constants {ck}∞k=0 such that each |ck| = 1 and ckuk → v as k → ∞. We have the following
convergence guarantee.
Theorem 5. If u0 is chosen uniformly at random from Sn−1. Then with probability 1, there exists
` ∈ [m] such that the sequence {uk}∞k=0 defined as in Algorithm 3 converges to a A`/‖A`‖ up to a
unit modulus factor. Further, the rate of convergence is cubic.

Due to space limitations, we omit the proof of Theorem 5. However, its proof is very similar that of
an analogous result for the GI-ICA algorithm [21, Theorem 4].

In practice, we test near convergence by testing if we are still making significant progress. In particular,
for some predefined ε > 0, if there exists a unit modulus constant ck such that ‖uk − ckuk−1‖ < ε,
then we declare convergence achieved and return the result. We may determine ck using the following
fact.

11

Algorithm 4 Full ICA matrix recovery algorithm. Estimates and returns two matrices: (1) Ã is the
recovered mixing matrix for the noisy ICA model X = AS + η, and (2) B̃ is a running estimate of
Ã†.

1: Inputs: C,∇f
2: Ã← 0, B̃ ← 0
3: for j ← 1 to m do
4: Draw u uniformly at random from Sn−1.
5: repeat
6: u← u− ÃB̃u
7: u← ∇f(C†

∗
u)/‖∇f(C†

∗
u)‖.

8: until Convergence (up to a unit modulus factor)
9: Ãj ← u

10: B̃j· ← [C†Aj/((C
†Aj)

TAj)]
T

11: end for
12: return Ã, B̃

Fact 6. Suppose that u and v are non-orthogonal unit modulus vectors. The expression ‖u− eiθv‖
is minimized by the choice of θ = atan2(Im(〈u,v〉),Re(〈u,v〉)).

Letting θ = atan2(Im(〈uk,uk−1〉),Re(〈uk,uk−1〉), we exit the loop if ‖uk − eiθuk−1‖ < ε.

A.3 Full ICA Recovery Via the Pseudo-Euclidean GI-Update
We are able to recover a single column of A in noisy ICA. However, for full matrix recovery, we
would like (given recovered columns A`1 , . . . , A`j) to be able to recover a column Ak such that
k 6∈ {`1, . . . , `j} on demand.

The main idea behind the simultaneous recovery of all columns of A is two-fold. First, instead of
just finding columns of A using Algorithm 3, we simultaneously find rows of A†. Then, using the
recovered columns of A and rows of A†, we may project u onto the orthogonal complement of the
recovered columns of A within the 〈·, ·〉C pseudo-Euclidean inner product space.
Recovering rows of A†. Suppose we have access to a column Ak (which may be achieved using
Algorithm 3). Let A†k· denote the kth row of A†. Then, we note that C†A∗k = (A∗DAT)†A∗k =

d−1kk (AT)†k = d−1kk (A†k·)
T recovers A†k· up to an arbitrary, unknown constant d−1kk . However, the

constant d−1kk may be recovered by noting that 〈Ak, Ak〉C = (C†Ak)TAk = d−1kk . As such, we may
estimate A†k· as [C†Ak/((C

†Ak)TAk)]T .

Enforcing Orthogonality During the GI Update. Given access to u =
∑m
k=1 αk(u)Ak+PA⊥u,

some recovered columns A`1 , . . . , A`r , and corresponding rows of A†, we may zero out the compo-
nents of u corresponding to the recovered columns of A. Letting u′ = u−

∑r
j=1A`jA

†
`j ·u, then

u′ =
∑
k∈[m]\{`1,...,`r} αk(u)Ak +PA⊥u. In particular, u′ is orthogonal (in the 〈·, ·〉C space) to the

previously recovered columns of A. This allows us to modify the non-orthogonal gradient iteration
algorithm to recover a new column of A.

Using these ideas, we obtain the Algorithm 4 for recovery of the ICA mixing matrix. Within this
Algorithm, step 6 enforces orthogonality with previously found columns of A, guaranteeing that
convergence is to a new column of A.
Practical Construction of C We suggest the choice of C = 1

4

∑n
k=1Hf?(ek), as it can be shown

from equation (6) that
∑n
k=1Hf?(ek) = A∗DAT with dkk = ‖Ak‖2κ?4(Sk). This deterministically

guarantees that each latent signal has a significant contribution to C.

B Proof of Proposition 2
Proof. This proof is based on the connection between two notions of optimality, minimum mean
squared error and SINR. The mean squared error of the recovered signal Ŝ(b) from kth latent signal
is defined as MSEk(b) := E[|Sk − Ŝ(b)|

2
]. It has been shown [14, equation 39] that Bopt jointly

12

minimizes the mean squared errors of the recovered signals. In particular, if b = (Bopt)k·, then b is
a minimizer of MSEk(b).

We will first show that finding a matrix B which minimizes the mean squared error has the side
effect of maximizing the magnitude of the Pearson correlations ρSk,Ŝk(B) for each k ∈ [m], where

ρSk,Ŝk(B) :=
E[SkŜ

∗
k(B)]

σSk
σŜk(B)

. We will then demonstrate that if B is a maximizer of |ρSk,Ŝk(B)|, then Bk·
is a maximizer of SINRk. These two facts imply the desired result. We will use the convention that
ρSk,Ŝk(B) is 0 if σŜk(B) = 0.

We fix a k ∈ [m]. We have:

MSEk(b) = E[SkS
∗
k − 2 Re(SkŜ

∗(b)) + Ŝ(b)Ŝ∗(b)]

= 1− 2σŜ(b) Re(ρSk,Ŝ(b)
) + σ2

Ŝ(b)
.

Letting ω = sgn(ρSk,Ŝ(b)
), we obtain

ρSk,Ŝ(ωb)
=

E[SkŜ
∗(ωb)]

σSk
σŜ(ωb)

= ω∗
E[SkŜ

∗(b)]

σSk
σŜ(b)

= |ρSk,Ŝ(b)
| . (8)

Further, MSEk(ωb) = 1 − 2σŜ(b)|ρSk,Ŝ(b)
| + σ2

Ŝ(b)
≤ MSEk(b) with equality if and only if

ρSk,Ŝ(b)
is real and non-negative. As such, all global minima of MSEk are contained in the set

A = {b | ρSk,Ŝ(b)
∈ [0, 1]}, and we may restrict our investigation to this set.

We define a function g(x, y) := 1−2xy+y2 such that under the change of variable x(b) = σŜ(b) and
y(b) = ρSk,Ŝ(b)

, we obtain MSEk(b) = g(x, y). Let M = maxb∈A ρSk,Ŝ(b)
and let y0 ∈ [0,M]

be fixed. Then, arg minx∈R g(x, y0) = y0 with the resulting value g(y0, y0) = 1− y20 . As such, the
minimum of g(x, y) over the domain R × [0,M] occurs when x = y = M . If M = 0, then the
choice of ξ = 0 satisfies that x(ξ) = y(ξ) = 0, making MSEk(ξ) = g(x, y) the global minimum of
MSEk. If M 6= 0, then we may choose ξ such that y(ξ) = ρSk,Ŝ(ξ)

= M . As σŜ(ξ) > 0 must hold,
it follows that there exists α ∈ (0,∞) such that setting ζ = αξ, we obtain (σŜ(ζ) =)x(ζ) = y(ξ).
Since y(b) = ρSk,Ŝ(b)

is scale invariant, we obtain that x(ζ) = y(ζ) = y(ξ) = M , making ζ a
global minimum of MSEk. In both cases, it follows that if b minimizes MSEk(b), then b maximizes
ρSk,Ŝ(b)

over A.

From equation (8), we see that maxb∈Cn |ρSk,Ŝ(b)
| = maxb∈A ρSk,Ŝ(b)

. Thus if b is a minimizer
of MSEk(ωb), then b is also a maximizer of |ρSk,Ŝ(b)

| as claimed.

We now demonstrate that b is a maximizer of |ρSk,Ŝ(b)
| if and only if it is also a maximizer of

SINRk(b). Under the conventions that x0 = +∞ when x > 0 and that 0
0 = s∞ where s = −1

for maximization problems and s = +1 for minimization problems, the following problems have
equivalent solution sets over choices of b:

max
b

SINRk(b) ≡ max
b

E[|bAkSk|2]

var(Ŝ(b))− E[|bAkSk|2]
≡ max

b

|E[SkŜ
∗(b)]|

2

var(Ŝ(b))− |E[SkŜ∗(b)]|
2

≡ min
b

var(Ŝ(b))− |E[SkŜ
∗(b)]|

2

|E[SkŜ∗(b)]|
2 ≡ min

b

var(Ŝ(b))

|E[SkŜ∗(b)]|
2

≡ max
b

|E[SkŜ
∗(b)]|

2

var(Ŝ(b))
≡ max

b
|ρSk,Ŝ(b)

|2 .

In the above, the first equivalence is a rewriting of equation (4). To see the second equivalence, we
note that |E[SkŜ

∗(b)]|
2

= |E[Sk(bAS + bη)
∗
]|2 = |bAk|2 using the independence of Sk from all

other terms. Then, noting that |bAk|2 = E[|bAkSk|2] gives the equivalence. The fourth equivalence
is only changing the problem by the additive constant −1.

13

	Introduction
	The Indeterminacies of ICA
	Related Work and Contributions

	Pseudo-Euclidean Gradient Iteration ICA
	Gradient Iteration with Orthogonality
	Gradient Iteration in a Pseudo-Euclidean Space

	SINR Optimal Recovery in Noisy ICA
	Experimental Results
	PEGI for Complex Signals
	Fourth Cumulants of Complex Variables
	Gradient Iteration in a Pseudo-Euclidean Space
	Full ICA Recovery Via the Pseudo-Euclidean GI-Update

	Proof of Proposition 2

