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Outline. In this document, we provide the complete proof of the recovery theorem (Section 1), as
well as experimental validation of the argument (Section 2).

1 Complete Proof of the Recovery Theorem

In this section, we show that the greedy strategy is expected to perform well on a hidden co-cluster
input.

1.1 Balanced Recovery of Hidden Co-Clusters

We recall the definition of our hidden co-cluster model. This model is a generalization of the graph
Stochastic Block Model to the case of hypergraphs.

Generative Process. We consider a set of topics R, partitioned into ℓ clusters C1, C2, . . . , Cℓ, each
of which contains r topics. Based on these hidden clusters, an incoming item τ is associated with
topics as follows. The item τ is first assigned to a “home” cluster Ch, chosen uniformly at random
among the hidden clusters. The item then subscribes to topics inside its cluster, picking each topic
independently with some probability p. Further, the item subscribes to topics from a fixed arbitrary
“noise” set Qh of size ≤ r/2 outside its home cluster Ch, where each topic in Qh is subscribed to
uniformly at random, with some probability q.1

Definition 1 (Hidden Co-Clustering). A bipartite graph is in HC(n, r, ℓ, p, q) if it is constructed
using the above process, with n items and ℓ clusters with r topics per cluster, where each item
subscribes to topics inside its randomly chosen home cluster with probability p, and to topics from
the noise set with probability q.

Online Allocation of Items. We iterate the generative process over time, where at each time step
t we generate a new item, and consider a set of k partitions S1, S2, . . . , Sk. At each time step,
the incoming item is immediately assigned to one of the k partitions, together with all its topics,
according to some algorithm. Algorithms do not know the number of hidden clusters or their size,
but can examine previous assignments.

∗Work performed in part while an intern with Microsoft Research.
1Sampling outside topics from the set of all possible topics would eventually lead every partition to con-

tain all possible topics, which renders the problem trivial. However, we do not impose this limitation in the
experimental validation of our analysis.
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Data: Hypergraph H = (V,E), received one item (vertex) at a time, k partitions, capacity bound c
Result: A partition of V into k parts

1 Set initial partition assignments S1, S2, . . . , Sk to be empty sets
2 while there are incoming items do
3 Receive the next item t, and its topics R
4 I ← {i : |Si| ≤ minj |Sj |+ c} /* partitions not exceeding capacity */
5 Compute ri = |Si ∩R| ∀i ∈ I /* size of topic intersection */
6 j ← argmaxi∈I ri /* if tied, choose least loaded partition */
7 Sj ← Sj ∪R /* item t has been assigned to partition Sj */
8 return S1, S2, . . . , Sk

Algorithm 1: The greedy algorithm.

Definition 2 (Asymptotic Balanced Recovery.). Given a hidden co-clustering HC(n, r, ℓ, p, q), we
say an algorithm asymptotically recovers the hidden clusters C1, C2, . . . , Cℓ if there exists a recov-
ery time tR during its execution after which, for each hidden cluster Ci, there exists a partition Sj

such that each item with home cluster Ci is assigned to partition Sj with probability that goes to 1.

Moreover, recovery is balanced if the ratio between the maximum partition cost and the average
partition cost is upper bounded by a constant B > 0.

1.2 The Greedy Online Algorithm

We recall the structure of the greedy strategy, described in Algorithm 1.

1.3 Theorem Statement and Proof Outline

Our main technical result provides sufficient conditions on the cluster parameters for the greedy
strategy to provide balanced recovery of hidden clusters, with high probability.

Theorem 1 (The Recovery Theorem). For a random input consisting of a hidden co-cluster graph
G in HC(n, r, ℓ, p, q) to be distributed across k ≥ 2 partitions, if the number of clusters is ℓ ≥
k log k, and the probabilities p and q satisfy p ≥ 2 log r/r, and q ≤ log r/(rk), then greedy ensures
balanced asymptotic recovery of the hidden clusters.

Coupling and High Probability. In the following, we say that two random processes are coupled
to mean that their random choices are the same. We say that an event occurs with high probability
(w.h.p.) if it occurs with probability at least 1− 1/rc, where c ≥ 1 is a constant.

Proof Overview. The proof of this result can be summarized as follows. The first step will be
to prove that greedy recovers a single cluster w.h.p. when assigning to just two partitions. More
precisely, given a sequence of items generated from a single home cluster, and two partitions, a
version of the algorithm without balancing constraints will eventually converge to assigning all
incoming items to a single partition. This is a main technical step of the proof, and it is based on
a coupling of greedy assignment with a “rich get richer” Polya urn process [1], and then using the
convergence properties of such processes. Further, we extend this coupling claim from two partitions
to k > 2 partitions, again for a single cluster, showing that, when the input consists of items from a
single cluster, greedy will quickly converge to assigning all items to a single partition, w.h.p.

In the next step, we prove that the algorithm will in fact recover ℓ clusters of items in parallel,
assigning each of them (i.e., most of their corresponding items) independently at random to one of
the partitions, and that this convergence is not adversely affected by the fact that items also subscribe
to topics from outside their home cluster. The problem of determining the maximum partition load
is then reduced to showing that the maximum number of clusters that may be randomly assigned to
a partition is balanced, as well as bounding the extra load due on a server to topics outside the home
cluster and miss-assignments.

Polya Urn Processes. For reference, a Polya urn process [1] works as follows. We start each of
k ≥ 2 urns with one ball, and, at each step t, observe a new ball. We assign the new ball to urn
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i ∈ {1, . . . , k} with probability proportional to (bi)
γ , where γ > 0 is a fixed real constant, and bi is

the number of balls in urn i at time t. We shall employ the following classic result.
Lemma 1 (Polya Urn Convergence [1]). Consider a finite k-bin Polya urn process with exponent
γ > 1, and let xt

i be the fraction of balls in urn i at time t. Then, almost surely, the limit Xi =
limt→∞ xt

i exists for each 1 ≤ i ≤ k. Moreover, we have that there exists an urn j such that
Xj = 1, and that Xi = 0, for all i ̸= j.

1.4 Step 1: Recovering a Single Cluster

Strategy. We first prove that, in the case of a single home cluster for all items, and two partitions
(k = 2), with no balance constraints, the greedy algorithm with no balance constraints converges
to a monopoly, i.e., eventually assigns all the items from the cluster onto the same partition, w.h.p.
Formally, there exists some convergence time tR and some partition Si such that, after time tR, all
future items associated to this home cluster will be assigned to partition Si, with probability at least
1− 1/rc.

Our strategy will be to couple greedy assignment with a Polya urn process with exponent γ > 1,
showing that the dynamics of the two processes are the same, w.h.p. There is one serious technical
issue: while the Polya process assigns new balls based on the ball counts of urns, greedy assigns
items (and their respective topics) based on the number of topic intersections between the item and
the partition. It is not clear how these two measures are related.

We circumvent this issue by taking a two-tiered approach. Roughly, we first prove that, w.h.p.,
we can couple the number of items on a server with the number of unique topics assigned to the
same partition. We then prove that this is enough to couple the greedy assignment with a Polya urn
process with exponent γ > 1 (Lemma 4). This will imply that greedy converges to a monopoly, by
Lemma 1.

Notation. Fix a time t in the execution of the greedy assignment process, corresponding to some
new item being randomly generated. A topic r is known at time t if it has been a topic for some
item up to time t. A known topic r is a singleton if it has been placed on one partition, but not on
others. Otherwise, it is a duplicate. In the following, we will focus on the above quantities around
the special time t0 = r/ log r, which we shall prove is close to the convergence time. For simplicity,
when referring to a value at time t0, we omit the subscript.

1.4.1 Auxiliary Results

We first state some helper results characterizing the number of known and singleton topics up to
some point in time. The reader may skip this sub-section, and return to it as necessary while reading
the proof of Lemma 4.
Lemma 2. The following hold.

1. For 0 < ϵ < 1 constant, the number of topics inside the cluster to which an item τ sub-
scribes is in [2(1− ϵ) log r, 2(1 + ϵ) log r], w.h.p.

2. The expected number of known topics by time t is at least r(1− exp(−2t log r/r)).

3. For any time t ≥ r/ log2 r, the number of known topics is at least r/ log r and the number
of singleton topics is at least r/(2 log r), both w.h.p.

Proof. The first statement follows by straightforward application of Chernoff bounds. To bound
the number of known topics, notice that, at each step, a specific topic r is sampled with probability
p. Therefore, the probability that r has not been sampled by time t is (1 − p)t. Plugging in p =
2 log r/r, it follows that the expected number of unknown topics up to t is r exp(−2t log r/r), which
implies the second claim.

In particular, this number of unknown topics by time t = r/ log2 r is at most r/e2/ log r ≤ r(1 −
3/2 log r), by the Taylor expansion. Therefore, the expected number of known topics up to t is at
least 3r/(2 log r). By a Chernoff bound, it follows that the number of known topics up to t is at
most r/ log r, w.h.p., as required.
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To lower bound the number of singleton topics, notice that it is sufficient to lower bound the number
of topics that have been sampled exactly once up to and including time t. (Such topics are necessarily
singletons.) The probability that a topic has been sampled exactly once is tp(1 − p)t−1. Since
t ≥ r/ log2 r, we obtain that the expected number of topics that have been sampled exactly once is
at least r/(log re1/ log r) ≥ r/ log r, for large enough r. Hence, the number of singletons up to this
point is at least r/(2 log r), w.h.p., which completes the proof.

We next focus on the ratio of singleton topics between the two partitions. Define the singleton
topic ratio as the number of singleton topics on the more loaded partition divided by the number of
singleton topics on the less loaded partition. Further, define the topic-to-item quotient of a partition
as the number of topics it contains divided by the number of items that have been assigned to it.

Lemma 3. Assume that the singleton topic ratio at time t0 is µ ≤ 1/2 + ϵ, for fixed ϵ < 1, and let

ϕ(ϵ) =
(

1/2+2ϵ
1/2−2ϵ

)2

. Then, the ratio between the topic-to-item quotients of the two partitions is in

the interval [1/ϕ(ϵ), ϕ(ϵ)], with high probability.

Proof. Let σi denote the number of singleton topics on partition i. Without loss of generality, let
partition 1 be the more loaded one at t0, i.e., µ = σ1/(σ1 + σ2). Let T1 be the set of items assigned
to the first partition between times r/ log2 r and r/ log r, and T2 be the corresponding set of items
for partition 2. By the Lemma statement, we have that σ1/(σ1 + σ2) ≤ 1/2 + ϵ at t0.

Given this bound, our first claim is as follows. If µ ≤ 1/2+ϵ at time t0, then, for all times r/ log2 r ≤
t ≤ r/ log r, we have that µt ≤ 1/2 + 2ϵ, w.h.p. Also, |T1|/(|T1| + |T2|) ∈ [1/2 − 2ϵ, 1/2 + ϵ],
w.h.p.

We focus on the proof of the first statement above, and the second will follow as a corollary. Let us
assume for contradiction the converse, i.e., that there exists a time step r/ log2 r ≤ t ≤ r/ log r for
which µt > 1/2 + 2ϵ. We will show that, after time t, the relative gap in terms of singleton topics
between the two partitions will increase, with high probability, which contradicts the bound at time
t0.

For this, consider an incoming item τ . If this item is subscribing to a known topic, which we call case
1, then it will be assigned by the intersection rule. In case 2, it will be placed uniformly at random
on one of the partitions. To control this process, we split the execution from time t into blocks
of b = r/ log4 r consecutive incoming items. Notice that, by Lemma 2, there are at least r/ log r
known topics after time r/ log2 r, w.h.p. This implies that the probability that an item is not assigned
by the intersection rule after this time is at most (1 − 2 log r/r)r/ log r ≤ (1/e)2. Therefore, each
incoming item is assigned by the intersection rule after this time, with at least constant probability.

Consider now the probability that a case-1 item gets assigned to partition 1, assuming that σ1/(σ1+
σ2) > 1/2 + 2ϵ at the beginning of the current block. This means that the item has more topics in
common with partition 1 than with partition 2. By calculation, this probability is at least

1/2 + 2ϵ

1/2− 2ϵ+ 7b log r/r + 1/2 + 2ϵ
≥ 1/2 + 7ϵ/4,

where we have pessimistically assumed that all the items in the current block get assigned to the
second partition, and that each such item contains at most 7/3 log r new topics. (This last fact holds
w.h.p. by Lemma 2.)

For an item i during this block, let Xi be an indicator random variable for the event that the item
gets assigned to partition 1, and fix X =

∑
i Xi. We wish to lower bound X , and will assume that

these events are independent—the fact that they are positively correlated does not affect the lower
bound. We apply Chernoff bounds, to get that, w.h.p., X ≥ (1 − δ)7bϵ/4, that is, the first partition
gets at least (1− δ)7bϵ/4 extra items from each block, where 0 < δ < 1 is a constant. On the other
hand, the number of case-2 items assigned is balanced, since these items are assigned randomly.
In particular, it can be biased towards partition 2 by a fraction of at most (1 − δ)ϵ/4, w.h.p. We
have therefore obtained that partition 1 obtains an extra number of items which is at least 3bϵ/2 in
each block, w.h.p. Summing over log2 r blocks, we get that, over a period of r/ log2 r time steps,
partition 1 gets at least (1/2 + 3ϵ/2)r/ log2 r extra items, w.h.p.
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Notice that, in turn, this item advantage also translates into a similar extra proportion of new topics
acquired during each block. In particular, we obtain that the first partition acquires an (1/2 + 4ϵ/3)
fraction of the new topics observed in a block, w.h.p. Recall that, by assumption, at the beginning
of the process, partition 1 already had a fraction of (1/2+ 2ϵ) singleton topics. Therefore, the event
that the singleton topic ratio is balanced by at most 1/2+ϵ at t0 has very low probability, as claimed.
The proof of the second statement follows by a similar argument.

To complete the proof of Lemma 3, it is enough to notice that, by the previous claim, the ratio

between the topic-to-item quotients of the two partitions is bounded as σ1+κ
σ2+κ · q2

q1
≤

(
1/2+2ϵ
1/2−2ϵ

)2

,

which completes the proof of Lemma 3.

1.4.2 Convergence to a Monopoly

We can now prove that one of two things must happen during the algorithm’s execution: either one
of the partitions gains a constant size advantage, or the algorithm can be coupled with a Polya urn
process. In both cases, the algorithm will converge to a monopoly.

Lemma 4. Given a hidden cluster input HC(n, r, ℓ, p, q), with ℓ = 1, p ≥ 2 log r/r and q = 0, for
every t ≥ t0 = r/ log r, to be allocated onto two partitions, one of the following holds:

1. With high probability, the greedy algorithm with a cluster and two partitions can be coupled
with a finite Polya urn process with parameter γ > 1, or

2. There exists a constant ρ > 0 such that the ratio between the number of singleton topics on
the two partitions is > 1 + ρ at time t0.

Further, in both cases, the algorithm converges to assigning all incoming items to a single partition
after some time t = O(r/ log r), w.h.p.

Proof. We proceed by induction on the time t ≥ t0. We will focus on time t0 = r/ log r, as the
argument is similar for larger values of t. Notice that we have two cases at t0. If there exists a
constant ρ > 0 such that the ratio between the number of singleton topics on the two partitions is
> 1 + ρ at time t, then we are obviously done by case 2.

Therefore, in the following, we will work in the case where the load ratio between the two partitions
at time t0 is ≤ 1 + ρ. Without loss of generality, assume 1 ≤ (σ1 + κ)/(σ2 + κ) ≤ 1 + ρ.

By Lemma 2, the number of singleton topics at time t ≥ t0 is at least a constant fraction of r, w.h.p.,
and it follows that there exists a constant ϵ > 0 such that the singleton ratio at time t0 is at most
1+ϵ. Also, the probability that an item with 3 log r/2 distinct topics does not hit any of these known
topics is at most 1/r3/2. Hence, in the following, we can assume w.h.p. that every incoming item is
assigned by the intersection rule.

By Lemma 3, the ratio between the topic-to-item quotients of the two partitions at time t0 is at most(
1/2+2ϵ
1/2−2ϵ

)2

, w.h.p. We now proceed to prove that in this case the greedy assignment process can be
coupled with a Polya urn process with γ > 1, w.h.p., noting that this part of the proof is similar to
the coupling argument in [3].

By Lemma 2, for t ≥ r/ log r steps, at least 2r/3 topics have been observed, w.h.p. Therefore,
the probability that an item with 3 log r/2 topics does not hit any of these known topics is at most
1/r3/2. Hence, in the following, we can safely assume that every incoming item is assigned by the
intersection rule.

More precisely, when a new item comes in, we check the intersection with the number of topics on
each server, and assign it to the partition with which the intersection is larger. (Or randomly if the
intersections are equal.) Given an item τ observed at time t ≥ r/ log r, let A be the number of topics
it has in common with partition 1, and B be the number it has in common with partition 2.

More precisely, fix j ≥ 0 to be the size of the total intersection with either partition, and let a and
b be the values of the intersections with partitions 1 and 2, respectively, conditioned on the fact
that a + b = j. Let δ be the advantage in terms of topics of partition 1 versus partition 2, i.e.
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(σ1 + κ)/(σ1 + σ2 + 2κ) = 1/2 + δ, and (σ2 + κ)/(σ1 + σ2 + 2κ) = 1/2 − δ, where κ is the
number of duplicate topics. We now analyze the probability that a > b.

We can see this as a one-dimensional random walk, in which we start at 0, and take j steps, going
right with probability (1/2+δ), and left with probability (1/2−δ). We wish to know the probability
that we have finished to the right of 0. Iterating over i, the possible value of our drift to the right, we
have that

Pr[a > b] =

j∑
i=[j/2]+1

(
j

i

)(
1

2
+ δ

)i (
1

2
− δ

)j−i

=

(
1

2
+ δ

)[j/2]+1 [j/2]∑
i=0

(
j

i

)(
1

2
+ δ

)[j/2]−i (
1

2
− δ

)i

.

Similarly, we obtain that

Pr[a < b] =

(
1

2
− δ

)[j/2]+1 [j/2]∑
i=0

(
j

i

)(
1

2
+ δ

)i (
1

2
− δ

)[j/2]−i

.

Since δ > 0, we have that the sum on the right-hand-side of the first equation dominates the term on
the right-hand-side of the second equation. It follows that

Pr[a > b]

Pr[a < b]
>

(
1
2 + δ

)[j/2]+1(
1
2 − δ

)[j/2]+1
.

Since the two quantities sum up to (almost) 1, we obtain that

Pr[a > b] >

(
1
2 + δ

)[j/2]+1(
1
2 + δ

)[j/2]+1
+

(
1
2 − δ

)[j/2]+1
.

Let δ′ be the advantage that the first partition has over the second in terms of number of items, i.e.
1/2 + δ′ = q1/(q1 + q2). Using Lemma 3, and setting ϵ to a small constant, we obtain that δ ≃ δ′.
We can therefore express the same lower bound in terms of δ′.

Pr[a > b] >

(
1
2 + δ′

)[j/2]+1(
1
2 + δ′

)[j/2]+1
+

(
1
2 − δ′

)[j/2]+1
.

The lower bound on the right-hand-side is the probability that the ball goes in urn 1 in a Polya process
with γ = [j/2] + 1. Importantly, notice that, in this process, we are assigning balls (items) with
probability proportional to the number of balls (items) present in each bin, and have thus eliminated
topics from the choice. Let βt be the proportion of singletons at time t, i.e. (σ1 + σ2)/r. We can
then eliminate the conditioning on j to obtain that

Pr[A > B] ≥
d∑

j=1

(
d

j

)
(βt/r)

j(1− βt/r)
d−j Pr[a > b|j]. (1)

The only case where greedy is coupled with a Polya urn process with undesirable exponent γ ≤ 1
is when j ≤ 1. However, since an item has at least 3 log r/2 distinct topics, w.h.p., and t ≥ t0 =
r/ log r, the probability that we hit j ≤ 1 topics is negligible. Therefore we can indeed couple our
process to a finite Polya urn process with γ > 1 at time t0 in the case where the singleton ratio at
t0 is at most 1/2 + ϵ, for ϵ a small constant. We can apply the same argument by induction for all
times t ≥ t0, noticing that, once the load ratio is larger than a fixed constant, it never falls below
that constant, except with low probability.
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1.5 Step 2: k Partitions and Convergence

Multiple Partitions. Consider now greedy on k ≥ 3 partitions, but with no load balancing con-
straint. We now extend the previous argument to this case.

Let t ≥ r/ log r, and consider the state of the partitions at time t. If there exists a set of partitions
which have a constant fraction more singleton topics than the others, it follows by a simple extension
of Lemma 4 (considering sets of partitions as a single partition) that these heavier partitions will
attract all future items and their topics, w.h.p. The only interesting case is when the relative loads of
all partitions are close to each other, say within an ϵ fraction. However, in this case, we can apply
Lemma 4 to pairs of partitions, to obtain that some partition will gain an monopoly.
Lemma 5. Given a single cluster instance in HC(r, ℓ, p, q) with p ≥ 2 log r/r and q = 0 to be split
across k partitions, the greedy algorithm with no balancing constraints will recover the cluster onto
a single partition w.h.p.

Proof. Let us now fix two bins A and B. Notice that the argument of Lemma 4 applies, up to the
point where we compute Pr[A > B] in Equation 1. Here, we have to condition on either A or B
having the maximum number of intersections, i.e., replacing

Pr[#intersections = j] =

(
d

j

)
(σt/r)

j(1− σt/r)
d−j

with
Pr[#intersections = j| A or B in argmax ].

Notice that the coupling still works for j ≥ 2. Therefore, it is sufficient to show that
Pr[#intersections ∈ {0, 1}] ≥

Pr[#intersections ∈ {0, 1}| A or B in argmax ].

This holds since the event (A or B in argmax) implies that the intersection is less likely to be empty
or of size 1. Therefore, the argument reduces to the two bin case.

Speed of Convergence. Note that, by Chernoff bounds, once one of the partitions acquires a con-
stant fraction more topics from the single cluster than the other partitions, it will acquire all fu-
ture topics w.h.p. By Lemma 4, it either holds that one of the partitions dominates before time
t0 = r/ log r, or that we can couple greedy with a Polya urn process with γ > 1 after this time.
The only remaining piece of the puzzle, before we consider the multi-cluster case, is how fast the
Polya urn process converges to a configuration where some partition contains a constant fraction
more topics than the others.

This question is addressed by Drinea et al. [2], which prove the following two facts about the two-
bin and k-bin case, respectively. We state this as a single result below, combining Theorems 2.1,
2.4, and Lemma 4 from the aforementioned paper. A system of two bins is said to ϵ0-separate if one
of the bins acquires a 1/2+ ϵ0 fraction of the balls. A bin B0 is all-but-δ dominant if B0 contains at
least a 1− δ fraction of the balls thrown.
Theorem 2 (Speed of Convergence [2]). The following hold.

1. Consider a Polya urn process with γ > 1, and two bins, in an arbitrary initial state with
at least one ball each. Then there exist constants ϵ0 and λ > 0 such that, after n steps, the
probability that the two bins fail to ϵ0 separate is at most O(n−λ).

2. Consider a Polya urn process with γ > 1, and two bins. Assume that, initially, there are n0

balls in the system, and that bin B0 has an ϵ0 advantage. We throw balls until B0 is all-but-
δ dominant, for some δ > 0. Then, with probability 1 − eΩ(n0), B0 is all-but-δ dominant
when the system has 2x+zn0 balls, where x = log(0.4/ϵ0)

log(1+(γ−1)/(5+4(γ−1)) , and z = log(0.1/δ)
2γ/(γ+1) .

3. Suppose that when n balls are thrown into a pair of bins, the probability that neither is
all-but-δ dominant is upper bounded by p(n, δ), non-increasing in n. Then when 1+ kn/2
balls are thrown into k bins, the probability that none is all-but-λ dominant is at most(
k
2

)
p(n, δ), for λ = δ

δ+(1−δ)(k−1) .
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Convergence argument. We can apply the previous result to bound the convergence time of the
algorithm as follows.

Theorem 3. Given a hidden co-cluster graph in HC(n, r, ℓ, p, q), with parameters p ≥ 2 log r/r,
q = 0, and a single hidden cluster, i.e., ℓ = 1, to be split across k partitions, the following holds.
There exists a partition j such that, after 2r/ log r items have been observed, each additional gen-
erated item is assigned to partition j, w.h.p.

1.6 Final Step: The General Case

We now complete the proof of Theorem 1 in the general case with ℓ ≥ 2 clusters and q > 0. We
proceed in three steps. We first show the recovery claim for general ℓ ≥ 2, but q = 0 and no balance
constraints, then extend it for any q ≤ log r/(rk), and finally show that the balance constraints are
practically never violated for this type of input.

Generalizing to ℓ ≥ 2. A first observation is that, even if ℓ ≥ 2, the topics must be disjoint
across clusters if q = 0. Also, since we assume no balance constraints, the clusters and their
respective topics are independent. The assignment problem for clusters then reduces to throwing ℓ
balls (the clusters) into k bins (the partitions). We use concentration bounds on the result bin loads
to understand the maximum number of clusters per partition, which in turn bounds the maximum
load.

Lemma 6. Assume a clustered bipartite graph G with parameters ℓ ≥ k log k, p ≥ 2 log r/r,
and q = 0, to be split onto k partitions with no balance constraints. Then, w.h.p., greedy ensures
balanced recovery of G. Moreover, the maximum number of topics per partition is upper bounded
by (1 + β)rℓ/k, w.h.p., where β < 1 is a constant.

Proof. Notice that, since the clusters are disjoint and q = 0, their corresponding topics must be
disjoint. Also, since there is no balance constraint, the clusters and their respective topics are inde-
pendent. Fix an arbitrary cluster Ci. Let ti be the first time in the execution when we have observed
2r/ log r items from Ci. By Theorem 3, after time ti there exists a partition Pj such that all future
items associated to this hidden cluster will be assigned to Pj , w.h.p. Also, note that, by Lemma 2,
the expected number of topics from this cluster that may have been assigned to other partitions by
time ti is at most r(1− 1/e2), which implies that at most 8m/9 total topics may have been assigned
to other partitions by this time, w.h.p.

To examine the maximum partition load, we model this process as a balls-into-bins game in which
ℓ = k log k balls (the clusters) are distributed randomly across k bins (the partitions). The expected
distribution per bin is of ℓ/k clusters, and, by Chernoff bounds, the maximum load per bin is (1 +
α)ℓ/k, with high probability in k, where 0 < α < 1 is a small constant. This means that a partition
may receive number of topics of (1 + α)rℓ/k from the clusters assigned to it. To upper bound
the extra load due to duplicates, first recall that at most 8m/9 total topics from each cluster may
be duplicated, w.h.p. In total, since clusters are distinct, we obtain that 8rℓ/9 total topics will be
duplicated, w.h.p. Since these duplicates are distributed uniformly at random, a partition may receive
an extra load of (1 + α)8rℓ/9k topics, w.h.p. Choosing small α, we get that the maximum load per
partition is bounded by (1+α)rℓ/k+(1+α)8rℓ/9k ≤ 1.9rℓ/k. It is interesting to contrast this to
the factor obtained by random assignment of items to partitions.

Generalizing to q > 0. The next step is to show that, as long as q < log r/(rk), the greedy process
is not adversely affected by the existence of out-of-cluster (noise) topics, since out-of-cluster topics
have a very low probability of changing the algorithm’s assignment decisions.

Lemma 7. Given q < log r/(rk), then w.h.p. the greedy process can be coupled with a greedy
process on the same input with q = 0, where r/ log r topics have been observed for each cluster of
topics.

Proof. We couple the two processes in the following way. We consider a hidden cluster input G
built with q = 0, and a copy of that input G′ where q = log r/(rk), running the algorithm in parallel
on the two graphs. Notice that we can view this process on an item-by-item basis, where in the q = 0
copy the algorithm gets presented with an item τ , while in G′ the algorithm gets presented with a
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variant τ ′ of τ from the same home cluster, which also has out-of-cluster topics, chosen uniformly
at random from an arbitrary set Qh of at most r/2 topics.

The key question is whether the greedy assignments are the same for items τ and τ ′. We prove that
this is indeed the case, with high probability. In particular, we need to show that, w.h.p., the outside
topics are not enough to change the decision based on the intersection argmax.

Given an item τ ′ in G′ which belongs to cluster Ci, notice that, by Lemma 2, it has at least 3 log r/2
distinct topics in Ci, w.h.p. Let ti be the first time when at least r/ log r items from Ci have
been observed. After time ti, using Chernoff bounds and the pigeonhole principle, the size of the
intersection of τ with one of the k partitions must be of at least (1− α)(1− 1/e)3 log r/2k, w.h.p.,
where α > 0 is a constant.

We now bound the number of topics that τ has outside Ci. Since q < log r/rk, it follows that τ may
have at most (1+ β) log r/k topics outside Ci, w.h.p., where β is a constant. For small α and β, we
get that the number of home cluster topics of τ exceeds the number of outside topics, w.h.p. In turn,
this implies that the two random processes can be coupled for each cluster starting with time ti, as
claimed.

We can combine Lemma 7 and Theorem 3 to obtain that greedy converges after 2r/ log r items have
been observed out of each hidden cluster.

The Capacity Constraint. Finally, we extend the argument to show that the partition capacity
constraints do not cause the algorithm to change its decisions, with high probability. The proof fol-
lows by noticing that the load distributions are balanced across servers as the algorithm progresses,
as items are either distributed randomly (before convergence), or to specific partitions chosen uni-
formly at random (after convergence).
Lemma 8. On a hidden co-cluster input, greedy without capacity constraints can be coupled with
a version of the algorithm with a constant capacity constraint, w.h.p.

Proof. We can model the assignment process as follows: during the execution, each of the ℓ clusters
has its items assigned randomly (at the beginning of the execution), then converges to assigning
items to a single server. If we regard this from the point of view of each partition i at some time
t, there is a contribution Ri of topics which comes from items in clusters that are still randomly
assigned at t, and a contribution Fi of topics coming from items in clusters that have converged.
Notice that both these contributions are balanced across partitions: each partition has the same
probability of being assigned a random cluster; also, since clusters are assigned independently and
ℓ ≥ k log k, the weight coming from converged clusters is also balanced across partitions. Using
concentration bounds for each contribution in turn, it follows that the maximally loaded partition is
at most a constant fraction more loaded then the minimally loaded one, w.h.p.

Final Argument. Putting together Lemmas 6, 7 and 8, we obtain that greedy ensures balanced
recovery for general hidden cluster inputs in HC(n, r, ℓ, p, q), for parameter values ℓ ≥ k log k,
p ≥ 2 log r/r, and q ≤ log r/(rk). This completes the proof of Theorem 1.

Moreover, the fact that each cluster is recovered can be used to bound the maximum load of a
partition. More precisely, by careful accounting of the cost incurred, we obtain that the maximum
load is 2.4rℓ/k, with high probability, where the extra cost comes from initial random assignments,
and from the imperfect balancing of clusters between partitions.

2 Experimental Validation

Synthetic Co-Cluster Inputs. We also considered generated hidden co-cluster inputs. In particular,
we generated hidden co-cluster graphs for various values of parameters r, ℓ, p, q, and m = rℓ.
We focus on two measures. The first is recall, which is defined as follows: for each cluster, we
consider the partition that gets the highest fraction of topics from this cluster. We then average
these fractions for all clusters, to obtain the recall. The second measure is the maximum partition
size, i.e., the maximum number of topics on a partition after m logm items have been observed,
normalized by m/k, which is a lower bound on the optimum. We expect these two measures to
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(a) Testing the sufficient condition
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(b) Experiments for non-uniform sources.

Figure 1: Experiments for hidden cluster bipartite graphs. The dotted line upper bounds the analytic
recovery threshold.

be correlated, however neither one in isolation would be sufficient to ensure that greedy provides
balanced recovery.

When generating the random inputs, we select a random home cluster, then subscribe to topics from
the home cluster with probability p. When subscribing to topics from outside the home cluster,
we pick every topic from outside the cluster independently with probability q (so the noise set Q
contains all topics).

Testing the Sufficient Conditions. Our first experiment, presented in Figure 1a, fixes the value of
p to 2 log r/r, and increases the value of q from p/(10ℓ) (below the analytic recovery threshold)
to 8p/ℓ (above the recovery threshold). The dotted line represents an upper bound on the recovery
threshold q = p/(4ℓ). The experiment shown is for r = 64, ℓ = 64, and k = 20. The results are
stable for variations of these parameters.

The experiments validate the analysis, as, below the chosen threshold, we obtain both recall over
90%, and partition size within two of optimal. We note that the threshold value we chose is actually
higher than the value q = log r/(rk) required for the analysis.

Testing the Sufficient Conditions. Our first experiment, presented in Figure 1a, fixes the value of
p to 2 log r/r, and increases the value of q from p/(10ℓ) (below the analytic recovery threshold)
to 8p/ℓ (above the recovery threshold). The dotted line represents an upper bound on the recovery
threshold q = p/(4ℓ). The experiment shown is for r = 64, ℓ = 64, and k = 20. The results are
stable for variations of these parameters.

The experiments validate the analysis, as, below the chosen threshold, we obtain both recall over
90%, and partition size within two of optimal. We note that the threshold value we chose is actually
higher than the value q = log r/(rk) required for the analysis.

Non-Uniform Clusters. We repeated the experiment choosing home clusters with non-uniform
probability. In particular, we select a small set of clusters which have significantly more probability
weight than the others. The experimental results are practically identical to the ones in Figure 1a,
and therefore omitted. These empirical results suggest that non-uniform cluster probabilities do not
affect the algorithm’s behavior.

Non-Uniform Topics. Finally, in Figure 1b, we analyze the algorithm’s behavior if topics have non-
uniform probability weights. More precisely, we pick a small set of topics in each cluster which have
disproportionately high weight. (In the experiment shown, four sources out of 64 have .1 probability
of being chosen.) We observe that this affects the performance of the algorithm, as recall drops at a
higher rate with increasing q.
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The intuitive reason for this behavior is that the initial miss-classifications, before the algorithm
converges, have a high impact on recall: topics with high probability weight will be duplicated on
all partitions, and therefore their are no longer useful when making assignment decisions.
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