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4.1 Term Symmetries

Lemma 4.1. Let T be a relational theory. Let E denote the evidence set. Let D be the set of terms
in the domain. If θ is an evidence symmetry of E , then, the associated theory permutation θ(T ) is
also a symmetry of T .

Proof. Consider T g , the result of grounding T . In a theory with evidence, the ground theory is
the result of grounding every constraint, and adding the (already grounded) evidence to that ground
theory: T g ∪ E .

Let θ be an evidence permutation of E . By our assumption, we know that θ is a symmetry of E . We
will show that θ is a symmetry of T g , which sufficies to prove that θ is a symmetry of T g ∪ E .

Consider a single first order constraint ϕ ∈ T . The grounding of that constraint ϕg is the set of
all possible groundings of ϕ over D. Since we assume T has no constants, this means that every
combination of assignments of terms to variables in ϕ is included in the grounding. Now consider
an arbitrary permutation of terms (that respects types, as θ is guaranteed to). Since the grounding of
ϕ includes every combination of (type-aware) assignments of terms to variables, and no constants
are included, it is clear that θ(ϕg) = ϕg .

Since θ is a symmetry for arbitrary ϕg ∈ T g , and since the constraints are independent, θ must be a
symmetry for ϕg

1 ∪ ϕ
g
2 . . . ϕ

g
k = T g . Since θ is a symmetry of T g and of E , and E can be viewed as

a set of ground hard unit clauses, θ must be a symmetry of T g ∪ E , and therefore of T .

4.2 Term Equivalent Symmetries

Theorem. A set of terms S ⊆ D is term equivalent in a relational theory T if and only if every
C ∈ S has the same context.

Proof. Suppose S ⊆ D is term equivalent in T . By definition, this means that there is a set of
symmetries Θ, that partitions D into Z = Z1, . . . , Z|Z|, S ⊆ Zi. Suppose that two terms C1 and
C2 are elements of S, but have different contexts. If the contexts are different, then there is a literal
position l that appears in one term’s context but not the other’s. Wlog, suppose l is in the context
of C1 but not C2. Let lC1

be the literal that results from placing C1 in the literal position l. Now
consider the symmetry θ that swaps C1 and C2, and maps everything else to identity. By definition,
θ ∈ Θ. By definition of symmetry, T = θ(T ). However, if l is not a literal position for C2, then
θ(lC1

) /∈ E, and therefore T 6= θ(T ). Contradiction. Therefore C1 and C2 have the same context.
Since this can be done for arbitrary C1, C2 ∈ S, all terms in S have the same context.

Suppose every C ∈ S ⊆ D has the same context. Consider the term equivalent symmetry Θ,
which induces disjoint partitions Z = Z1, . . . , Z|Z|. Consider any two C1, C2 ∈ S . Suppose wlog
C1 ∈ Z1. Suppose C1 and C2 are not term equivalent. By definition, C2 /∈ Z1. By definition of
term equivalent symmetry, the permutation θ that swaps C1 and C2, while mapping other terms to
identity, must not by a symmetry, that is, θ(T ) 6= T . However, since the constraints contain no
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terms, and C1 and C2 have the same contexts Therefore C2 ∈ Z1. Since this can be done for any
arbitrary pair of terms in S, S ⊆ Z1, and S is term equivalent.

Example Let the context of a term be a representation of the set of literal positions in which is
appears in E . Consider the example evidence below:

P1(C1, C2, C1), P1(C3, C2, C3), P2(C1), ¬P2(C2),

P2(C3), P3(C1, C2), P3(C3, C2), P3(C2, C4)

The contexts for the constants appearing in that evidence are:

C1 : P1(∗, C2, ∗), P2(∗), P3(∗, C2)

C2 : P1(C1, ∗, C1), P1(C3, ∗, C3),¬P2(∗), P3(C1, ∗), P3(C3, ∗), P3(∗, C4)

C3 : P1(∗, C2, ∗), P2(∗), P3(∗, C2)

C4 : P3(C2, ∗)

If there happened to be an additional term C5 in the domain, its context would be empty.

5.2 Breaking Term Equivalent Symmetries

Let Z = {Z1, . . . , Z|Z|} be the term equivalent partitioning over the terms. Let θij,k be the term
symmetry that swaps Cj and Ck, the jth and kth constants in an ordering over the term equivalent
partition Zi, and maps everything else to identity. We show how to break exponentially many
symmetries that respect the term equivalent partition Z. Consider the following SBP (CSBP stands
for Composite SBP):

CSBP (Z) =

|Z|∧
i=1

|Zi|−1∧
j=1

SBP (θij,j+1)

Theorem 5.2. CSBP (Z) removes Ω(
∑|Z|

i=1 2|Zi|) models from the search space while preserving
at least one model in each orbit induced by the term equivalent symmetry group ΘZ .

Proof. We first show that the inner conjunction, which iterates over the terms in Zi, removes at least
2|Zi| − (|Zi|+ 1) models from the search space. Consider a predicate P that contains an argument
of the type of Zi, and possibly arguments of other types. Suppose P is the first predicate in the
ordering that contains a variable of that type. Further, for now, let us assume that P contains a single
argument of the type of Zi (we will relax it later).

Since P is the first predicate in the ordering that contains an argument of the type of Zi, the inner
conjunction ofs CSBP for Zi will contain the following clauses:

P (. . . , CZi
1 , . . . )⇒ P (. . . , CZi

2 , . . . )

P (. . . , CZi
2 , . . . )⇒ P (. . . , CZi

3 , . . . )

...

P (. . . , CZi

|Zi|−1, . . . )⇒ P (. . . , CZi

|Zi|, . . . )

The conjunction of these clauses ensures that of the groundings of P that contain a term in Zi, there
is precisely one model admitted in which k groundings of P are true, for each value of k ranging
from 0 to |Zi|. Namely, these are the models in which only the last k groundings in the ordering
above are true. There are 2|Zi| assignments to the groundings of P that contain a term in Zi, and
all but |Zi| + 1 are eliminated. Therefore, the number of models that are removed from the search
space is 2|Zi| − (|Zi|+ 1).

This represents a lower bound on the number of models eliminated from the search space. If the
theory contains more than one predicate containing arguments of the type of Zi, more models will
be eliminated. Furthermore, if the first predicate in the ordering contains more than one variable of
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the desired type, then at least that many, but potentially more are removed (note that we can still
apply the above reasoning to the first argument with type of Zi in P ).

These models were eliminated by the inner conjunction for the term equivalent subset Zi. CSBP
iterates over each of the term equivalent subsets. We can therefore apply the same reasoning over
each such Zi. Further, the predicate groundings considered in each case are disjoint from each
other (since we are considering different term equivalent subsets). This results in a lower bound of
Ω(

∑|Z|
i=1 2|Zi|) on the number of models that are eliminated from the search space.

Now we must show that at least one model is preserved in each orbit of the term equivalent symmetry
group being considered. By the theory of symmetry breaking (see Section 2), each individual call
to an SBP preserves at least one model in each orbit. Furthermore, the lex leader of each orbit will
definitely be preserved under the given ordering. Therefore, since each of the calls to an SBP use
the same ordering, no call to an SBP will remove the lex leader of an orbit from the search space.
Therefore, the conjunctions of the calls to SBPs will preserve at least the lex leader in each orbit.
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