
Appendix for the Population Posterior
and Bayesian Modeling on Streams

James McInerney
Columbia University

james@cs.columbia.edu

Rajesh Ranganath
Princeton University

rajeshr@cs.princeton.edu

David Blei
Columbia University

david.blei@columbia.edu

A Derivation of the F-ELBO

Classic variational inference seeks to minimize KL(q(β ,z)||p(β ,z |x)) using the following equiva-
lence to show that the negative evidence lower bound (ELBO) is an appropriate surrogate objective to
be minimized,

log p(x) = KL(q(β ,z)||p(z |x))+Eq[log p(β ,z,x)− logq(β ,z)]. (1)

This equivalence arises from the definition of KL divergence [6].

To derive the F-ELBO, replace x with a draw X of size α from the population distribution, X∼ Fα ,
then apply an expectation with respect to Fα to both sides of Eq.1,

EFα
[log p(X)] = EFα

[KL(q(β ,z)||p(β ,z |X))+Eq[log p(β ,z,X)− logq(β ,z)]]
= EFα

[KL(q(β ,z)||p(β ,z |X))]+EFα
[Eq[log p(β ,z,X)− logq(β ,z)]]. (2)

This confirms that the negative F-ELBO is a surrogate objective for EFα
[KL(q(β ,z)||p(β ,z |X))]

because q(·) does not appear on the left hand side of Eq. 2.

Now use the fact that logarithm is a concave function and apply Jensen’s inequality to Eq. 2 to show
that the F-ELBO is a lower bound on the population evidence,

EFα
[Eq[log p(β ,z,X)− logq(β ,z)]] ≤ EFα

[log p(X)]

≤ logEFα
[p(X)]. (3)

Additionally, Jensen’s inequality applied to Eq. 2 in a different way shows that maximizing the
F-ELBO minimizes an upper bound on the KL divergence between q(·) and the population posterior,

EFα
[KL(q(β ,z)||p(β ,z |X))] = Eq[logq(β ,z)]−EFα

[Eq[log p(β ,z |X)]]

≥ Eq[logq(β ,z)]−Eq[logEFα
[p(β ,z |X)]]

= KL(q(β ,z)||EFα
[p(β ,z |X)]), (4)

where we have exchanged expectations with respect to q(·) and Fα .

B One-Parameter F-ELBO

The F-ELBO for conditionally conjugate exponential families is as follows

L (λ ,φ ;Fα) = EFα

[
Eq

[
log p(β )− logq(β |λ )+

α

∑
i=1

log p(Xi,Zi |β )− logq(Zi)]

]]
.

This can be rewritten in terms of just the global variational parameters. We define the one parameter
population variational inference objective as LFα

(λ ) = maxφ LFα
(λ ,φ). We can write this more
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compactly if we let φi(λ ) be the value of φi that maximizes the F-ELBO given λ .1 Formally, this
gives

LFα
(λ ) =Eq(β |λ )

[
log p(β )− logq(β |λ )+EX∼Fα

[
α

∑
i=1

Eq(Zi |φi(λ )) [log p(Xi,Zi |β )− logq(Zi)]]

]
,

where we have moved the expectation with respect to Fα inside the expectation with respect to q(·).

C Hyperparameters for Experiments

Our methods are based on stochastic optimization and require setting the learning rate [4]. For all
gradient-based procedures, we used a small fixed learning rate to follow noisy gradients. We note
that adaptive learning rates [1, 5] are also applicable in this setting, though we did not observe an
improvement using these for time-ordered streams.

Our procedures also require setting a batch size, how many data points we observe before updating
the approximate posterior. In the LDA study we set the batch size to 100 documents for the larger
corpora (New York Times, Science) and 5,000 for Twitter. These sizes were selected to make the
average number of words per batch equal in both settings, which helps lower the variance of the
gradients. In the DP mixture study we use a batch size of 5,000 locations for Ivory Coast, 500
locations for Geolife, and 100 documents for New York Times.

LDA requires additional hyperparameters. In line with Ref. [2], we used 100 topics, and set the
hyperparameter to the global topics (which controls the sparsity of topics) to η = 0.01 and the
hyperparameter to the word-topic asssignments (which controls the sparsity of topic memberships) to
γ = 0.1. The variational approximation for the DP mixture model requires a truncation hyperparameter
K. We set it to 100 for all three data sets and verified that the inference algorithm used fewer than
this number of components.
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1The optimal local variational parameter φi can be computed using gradient ascent or coordinate ascent as
done in [3].
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