
Supplementary Material for “End-to-end Learning of LDA by
Mirror-Descent Back Propagation over a Deep Architecture”

A Derivation of p(wd,1:N |θd,Φ)

To derive p(wd,1:N |θd,Φ), we first write p(wd,1:N , zd,1:N |θd,Φ) as

p(wd,1:N , zd,1:N |θd,Φ) =
N
∏

n=1

p(wd,n|zd,n,Φ)p(zd,n|θd) (16)

The expression p(wd,1:N |θd,Φ) can be evaluated in closed-form by marginalizing out {zd,n}
N
n=1 in

the above expression:

p(wd,1:N |θd,Φ) =
∑

zd,1

· · ·
∑

zd,N

N
∏

n=1

p(zd,n|θd) · p(wd,n|zd,n,Φ)

=

N
∏

n=1

∑

zd,n

p(zd,n|θd) · p(wd,n|zd,n,Φ)

=

N
∏

n=1

∑

zd,n





K
∏

j=1

θ
zd,n,j

d,j









V
∏

v=1

K
∏

j=1

Φ
zd,n,j wd,i,v

vj





=
N
∏

n=1

∑

zd,n





V
∏

v=1

K
∏

j=1

θ
zd,n,j

d,j Φ
zd,n,j wd,n,v

vj





=

N
∏

n=1





K
∑

j=1

θd,jΦvj





wd,n,v

=

V
∏

v=1





K
∑

j=1

θd,jΦvj





xd,v

(17)

where wd,n,v denotes the v-th element of the V × 1 one-hot vector wd,n, wd,n denotes the n-th
word (token) inside the d-th document, and xd,v denotes the term frequency of the v-th word (in the
vocabulary) inside the d-th document.

B Derivation of the Recursion for Mirror Descent Algorithm

First, we rewrite the optimization problem (11) as

min
θd

[∇θdf(θd,ℓ−1)]
T (θd − θd,ℓ−1) +

1

Td,ℓ

Ψ(θd, θd,ℓ−1) (18)

s.t. 1
T θd = 1, θd � 0 (19)

where θd � 0 denotes that each element of the vector θd is greater than or equal to zero. Using
the fact that Ψ(x, y) = xT ln(x/y)− 1

Tx+ 1
T y, the constrained optimization problem (18)–(19)

becomes

min
θd

[∇θdf(θd,ℓ−1)]
T (θd − θd,ℓ−1) +

1

Td,ℓ

[

θTd ln
θd

θd,ℓ−1
− 1

T θd + 1
T θd,ℓ−1

]

(20)

s.t. 1
T θd = 1, θd � 0 (21)

Dropping the terms independent of θd, we can write (20)–(21) as

min
θd

[∇θdf(θd,ℓ−1)]
T θd +

1

Td,ℓ

[

θTd ln
θd

θd,ℓ−1
− 1

T θd

]

(22)

10

s.t. 1
T θd = 1, θd � 0 (23)

To solve (22)–(23), we write its Lagrangian as

L = [∇θdf(θd,ℓ−1)]
T θd +

1

Td,ℓ

[

θTd ln
θd

θd,ℓ−1
− 1

T θd

]

+ λ(1T θd − 1) (24)

where we relaxed the nonnegative constraint in the above Lagrange multiplier. However, we will
show that the solution obtained will automatically be nonnegative mainly because of the logarithm
term in the cost function. Taking the derivative of L with respect to θd and λ and setting them to
zero, we have, respectively,

∂L

∂θd
= ∇θdf(θd,ℓ−1) +

1

Td,ℓ

[

ln
θd

θd,ℓ−1

]

+ λ1 = 0

∂L

∂λ
= 1

T θd − 1 = 0

which leads to

θd =
θd,ℓ−1 ⊙ exp (−Td,ℓ · ∇θdf(θd,ℓ−1))

exp(Td,ℓ · λ)

1
T θd = 1

Solving the above two equations together, we obtain

θd =
1

Cθ

θd,ℓ−1 ⊙ exp (−Td,ℓ · ∇θdf(θd,ℓ−1)) (25)

where Cθ is a normalization factor such that θd,ℓ adds up to one. Note that the above recursion can
always guarantee non-negativity of the entries in the vector θd,ℓ since we will always initialize the
vector in the feasible region. Recall that f(θd) is the cost function on the right-hand side of (10),
which is given by

f(θd) = −x
T
d ln(Φθd)− (α− 1)T ln θd

Therefore, the gradient of f(θd) can be computed as

∇θdf(θd) = −Φ
T xd

Φθd
−

α− 1

θd
(26)

Substituting the above gradient formula into (25), we obtain the desired result in (12).

C Implementation Details of the BP-sLDA

In this section, we describe the implementation details of the mirror-descent back propagation for
the end-to-end learning of the supervised LDA model. Specifically, we will describe the details of
the inference algorithm, and the model parameter estimation algorithm.

C.1 Inference algorithm: Mirror Descent

Let f(θd) denote the objective function in (12). As we discussed in the paper, we use recursion (12)
to iteratively find the MAP estimate of θd given wd,1:N , which we repeat below:

θd,ℓ =
1

Cθ

· θd,ℓ−1 ⊙ exp

(

Td,ℓ

[

ΦT xd

Φθd,ℓ−1
+

α− 1

θd,ℓ−1

])

, ℓ = 1, . . . , L, θd,0 =
1

K
1 (28)

The step-size Td,ℓ in mirror descent can be chosen to be either constant, i.e., Td,ℓ = T , or adaptive
over iterations ℓ and documents d. To adaptively determine the step-size, we can use line search
procedure. The inference algorithm with a simple line search can be implemented as Algorithm 1,
where Ψ(θd,ℓ, θd,ℓ−1) can also be replaced by the squared vector 1-norm:

f(θd,ℓ) ≤ f(θd,ℓ−1) + [∇θdf(θd,ℓ−1)]
T (θd,ℓ − θd,ℓ−1) +

1

2Td,ℓ

‖θd,ℓ − θd,ℓ−1‖
2
1 (29)

The line search approach determines the step-sizes adaptively, automatically stabilizing the algo-
rithm and making inference converge faster. Moreover, the unsupervised model (BP-LDA) uses the

same form of inference algorithm except that Φ is replaced with Φ̃ and (27) is no longer needed.

11

Algorithm 1 MAP Inference for BP-sLDA: Mirror-Descent with Line Search

1: Initialization: θd,0 =
1
K
1 and Td,0.

2: for ℓ = 1, . . . , L do
3: Td,ℓ = Td,ℓ−1/η, where 0 < η < 1 (e.g., η = 0.5).
4: while 1 do

5: θd,ℓ =
1
Cθ
· θd,ℓ−1 ⊙ exp

(

Td,ℓ

[

ΦT xd

Φθd,ℓ−1

+ α−1
θd,ℓ−1

])

6: if f(θd,ℓ) > f(θd,ℓ−1) + [∇θdf(θd,ℓ−1)]
T (θd,ℓ − θd,ℓ−1) +

1
Td,ℓ

Ψ(θd,ℓ, θd,ℓ−1) then

7: Td,ℓ ← η · Td,ℓ

8: else
9: break

10: end if
11: end while
12: end for
13: Inference result of θd: θd,L.
14: Inference result of yd:

p(yd|θd,L, U, γ) =

{

N(Uθd,L, γ
−1) regression

Softmax(γUθd) classification
(27)

C.2 Parameter Estimation: Stochastic Gradient Descent with Back Propagation

We first rewrite the training cost (14) as

J(U,Φ) =

D
∑

d=1

Qd(U,Φ) (30)

where Qd(·) denotes the loss function at the d-th document, defined as

Qd(U,Φ) , −
1

D
ln p(Φ|β)− ln p(yd|θd,L, U, γ) (31)

Note that, we do not have constraint on the model parameter U . Therefore, to update U , we can
directly use the standard mini-batch stochastic gradient descent (SGD) algorithm. On the other
hand, each column of the model parameterΦ is constrained to be on a (V −1)-dimension probability
simplex, i.e, each element ofΦ has to be nonnegative and each column sum up to one (i.e.,Φ is a left-
stochastic matrix). For this reason, we use stochastic mirror descent (SMD) to update each column
of the model parameter Φ, which is akin to the mirror descent algorithm for inference except that
the gradient is replaced by stochastic gradient. The parameter estimation (learning) algorithm is

described in Algorithm 2, where the expressions for the stochastic gradients ∂Qd

∂U
and ∂Qd

∂Φ are given
in the next section. Note that we are allowing different columns of Φ to have different (and adaptive)
learning rate, which makes the learning algorithm converge faster. This design is also akin to the
construction in AdaGrad [8]. Finally, we also apply running average to the model parameters during
SGD and SMD, which could improve the learning performance. In practical implementation, we
could start the running average after after several passes of the training data.

D Gradient Formula of BP-sLDA

In this section, we give the gradient formula for the supervised learning of BP-sLDA. To this end,
we first rewrite the training cost (14) as

J(U,Φ) =

D
∑

d=1

Qd(U,Φ) (35)

where Qd(·) denotes the loss function at the d-th document, defined as

Qd(U,Φ) , −
1

D
ln p(Φ|β)− ln p(yd|θd,L, U, γ) (36)

12

Algorithm 2 Parameter Estimation for BP-sLDA: Stochastic Mirror Descent.

1: for t = 1, 2, . . . until converge do
2: Sample a mini-batch of documents, denoted by Dt.
3: Infer yd and θd using Algorithm 1 for each document d ∈ Dt.
4: Compute the stochastic gradient ∂Qd/∂U for d ∈ Dt according to (40).
5: Compute the stochastic gradient ∂Qd/∂Φ for d ∈ Dt according to Algorithm 3.
6: Compute the averaged stochastic gradient over Dt:

∆Ut =
1

|Dt|

∑

d∈Dt

∂Qd

∂U

∣

∣

∣

U=Ut−1,Φ=Φt−1

∆Φt =
1

|Dt|

∑

d∈Dt

∂Qd

∂Φ

∣

∣

∣

U=Ut−1,Φ=Φt−1

where Ut−1 and Φt−1 denote the estimates of U and Φ up to mini-batch t− 1.
7: Update U : Ut = Ut−1 − µu ·∆Ut.
8: for each column φj of Φ, j = 1, . . . ,K do

9: Set learning rate: µφj
= µ0

/

(

√

1
t·V

∑t
τ=1 ‖∆φj,τ‖22 + ǫ

)

10: Update φj,t:

φj,t =
1

Cφj,t

φj,t−1 ⊙ exp
(

−µφj
·∆φj,t

)

(32)

where Cφj,t
is a normalization factor that makes φj,t add up to one.

11: end for
12: Performing running average of the model parameters:

Ūt =
t− 1

t
Ūt−1 +

1

t
Ut (33)

Φ̄t =
t− 1

t
Φ̄t−1 +

1

t
Φt (34)

13: end for
14: At convergence, Ūt and Φ̄t will be final model parameters.

The expressions for the two terms in (36) are given by

−
1

D
ln p(Φ|β) = −

1

D
ln





(

Γ(V β)

Γ(β)V

)K K
∏

j=1

V
∏

v=1

Φβ−1
vj





= −
1

D

K
∑

j=1

V
∑

v=1

(β − 1) lnΦvj + constant (37)

− ln p(yd|θd,L, U, γ) =



















−
V
∑

j=1

yd,j ln
exp(γ · po,d,j)

∑C
m=1 exp(γ · po,d,m)

classification

1

2γ
‖yd − po,d‖

2
2 + constant regression

=



















−

C
∑

j=1

yd,jγ · po,d,j + ln

C
∑

m=1

exp(γ · po,d,m) classification

1

2γ
‖yd − po,d‖

2
2 + constant regression

(38)

where C in the above expressions is the number of output classes (in classification case), and

po,d , Uθd,L (39)

13

Algorithm 3 Mirror-Descent Back Propagation for BP-sLDA

1: Initialization of the error signal: ξd,L = −(I − 1θTd,L) · U
T · γ(yd − ŷd)

2: for ℓ = L, . . . , 1 do

3: ξd,ℓ−1 = (I−1θTd,ℓ−1)
{

θd,ℓ⊙ξd,ℓ
θd,ℓ−1

− Td,ℓ ·
[

ΦTdiag
(

xd

(Φθd,ℓ−1)2

)

Φ+diag
(

α−1
θ2

d,ℓ−1

)]

(θd,ℓ⊙ξd,ℓ)
}

4: ∆Φd,ℓ = Td,ℓ ·
{

xd

Φθd,ℓ−1

(θd,ℓ ⊙ ξd,ℓ)
T −

[

Φ(θd,ℓ ⊙ ξd,ℓ)⊙
xd

(Φθd,ℓ−1)2

]

θTd,ℓ−1

}

5: end for
6: Compute the stochastic gradient ∂Qd/∂Φ according to:

∂Qd

∂Φ
= −

1

D
·
β − 1

Φ
+

L
∑

ℓ=1

∆Φd,ℓ (42)

Note that the choice of p(yd|θd,L, U, γ) is not restricted to the above two options in our frame-
work. Other forms could also be used and the corresponding gradient formula could also be derived.
However, in sequel, we will only derive the gradient formula for these two classical choices.

D.1 Gradient with respect to U

First, we derive the gradient of Qd(·) with respect U . Note that the only term in (36) depending on
U is ln p(yd|θd,L, U, γ). Therefore, we have ∂Qd/∂U = −∂ ln p(yd|θd,L, U, γ)/∂U . Taking the
gradient of (38) with respect to U and after some simple algebra, we get

∂Qd

∂U
=

{

−γ · (yd − ŷd)θ
T
d,L classification

− 1
γ
· (yd − ŷd)θ

T
d,L regression

(40)

where ŷd is defined as

ŷd =

{

Softmax(γ · po,d), classification

po,d, regression

=

{

Softmax(γ · Uθd,L), classification

Uθd,L, regression
(41)

D.2 Gradient with respect to Φ

In this subsection, we summarize the gradient expression for ∂Qd/∂Φ in Algorithm 3, where the
derivation can be found in the next subsection. In Algorithm 3, xd and yd are the input bag-of-words
vector and the label for the d-th document. The quantities θd,ℓ and ŷd are obtained and stored during
the inference step, and the mirror-descent step-size Td,ℓ is the one determined by line-search in the
inference step (see Algorithm 1).

Similar to the inference in Algorithm 1, the above gradients can be computed efficiently by exploit-
ing the sparsity of the vector xd. For example, only the elements at the nonzero positions of xd need
to be computed for Φθd,ℓ−1 and Φ(θd,ℓ ⊙ ξd,ℓ) since xd

Φθd,ℓ−1

and xd

(Φθd,ℓ−1)2
are known to be zero at

these positions. Moreover, although (β−1)/Φ is a dense matrix operation, it is the same within one
mini-batch and can therefore be computed only once over each mini-batch, which can significantly
reduce the amount of computation.

D.3 Derivation of the gradient with respect to Φ

In this subsection, we derive the gradient formula for Φ. Note from (36) that, there are two terms
that depend on Φ, and

∂Qd

∂Φ
=

∂

∂Φ

(

−
1

D
ln p(Φ|β)

)

+
∂

∂Φ

(

− ln p(yd|θd,L, U, γ)
)

(43)

14

The first term depends on Φ explicitly and its gradient can be evaluated as

∂

∂Φ

(

−
1

D
ln p(Φ|β)

)

=
∂

∂Φ



−
1

D

K
∑

j=1

V
∑

v=1

(β − 1) lnΦvj



 = −
1

D
·
β − 1

Φ
(44)

The second term, however, depends on Φ implicitly through θd,L. From Figure 2, we observe that
θd,L not only depends on Φ explicitly (as indicated in the MDA block on the right-hand side of
Figure 2) but also depends on Φ implicitly via θd,L−1, which in turn depends on Φ both explicitly
and implicitly (through θd,L−2) and so on. That is, the dependency of the cost function on Φ is in
a layered manner. For this reason, we need to apply chain rule to derive the its full gradient with
respect to Φ, which we describe below.

First, as we discussed above, each MDA block in Figure 2 contains Φ, and Qd(U,Φ) depends on the
Φ appeared at different layers through θd,L, . . . , θd,1. To derive the gradient formula, we first denote
these Φ at different layers as ΦL, . . . ,Φ1, and introduce an auxiliary function Rd(U,Φ1, . . . ,ΦL)
to represent − ln p(yd|θd,L, U, γ) with its Φ “untied” across layers in Figure 2. Then, the original
− ln p(yd|θd,L, U, γ) can be viewed as

− ln p(yd|θd,L, U, γ) = Rd(U,Φ, . . . ,Φ) (45)

where Φ1 = · · · = ΦL = Φ. Therefore, we have

∂

∂Φ

(

− ln p(yd|θd,L, U, γ)
)

=

L
∑

ℓ=1

∂Rd

∂Φℓ

∣

∣

∣

Φℓ=Φ
(46)

where ∂Rd/∂Φℓ denotes the gradient of Rd(U,Φ1, . . . ,ΦL) with respect to Φℓ. Therefore, we only
need to compute the gradient ∂Rd/∂Φℓ.

For simplicity of notation, we drop the subscript of d in θd,ℓ. And since Φ is untied across layers in
the mirror descent recursion (12) for the computation of Rd(U,Φ1, . . . ,ΦL), we can rewrite (12) as

zℓ = Td,ℓ ·

[

ΦT
ℓ

xd

Φℓθℓ−1
+

α− 1

θℓ−1

]

(47)

pℓ = θℓ−1 ⊙ exp(zℓ) (48)

θℓ =
pℓ

1T pℓ
(49)

where zℓ and pℓ are intermediate variables, and Φ is replaced with Φℓ. To derive the gradient
∂Rd/∂Φℓ, it suffices to derive ∂Rd/∂Φℓ,ji. Note that

∂Rd

∂Φℓ,ji

=
∂pTℓ
∂Φℓ,ji

·
∂Rd

∂pℓ
=

∂pTℓ
∂Φℓ,ji

· δℓ (50)

where

δℓ ,
∂Rd

∂pℓ
(51)

is an intermediate quantities that follows a backward recursion to be derived later. To proceed, we
need to derive ∂pTℓ /∂Φℓ,ji:

∂pTℓ
∂Φℓ,ji

= θTℓ−1 ⊙
∂ exp(zTℓ)

∂Φℓ,ji

= θTℓ−1 ⊙

[

∂zTℓ
∂Φℓ,ji

· diag
(

exp(zℓ)
)

]

= θTℓ−1 ⊙

[

∂zTℓ
∂Φℓ,ji

⊙ 1 exp(zTℓ)

]

= θTℓ−1 ⊙ exp(zTℓ)⊙
∂zTℓ
∂Φℓ,ji

= pTℓ ⊙
∂zTℓ
∂Φℓ,ji

(52)

15

Then, we need to derive the expression for ∂zTl /∂Φℓ,ji:

∂zTℓ
∂Φℓ,ji

= Td,ℓ ·

{

∂

∂Φℓ,ji

(

xT
d

θTℓ−1Φ
T
ℓ

)

· Φℓ +
xT
d

θTℓ−1Φ
T
ℓ

·
∂Φℓ

∂Φℓ,ji

}

= Td,ℓ ·

{

∂

∂Φℓ,ji

(

xT
d

θTℓ−1Φ
T
ℓ

)

· Φℓ +
xT
d

θTℓ−1Φ
T
ℓ

· Eji

}

= Td,ℓ ·

{

−
∂θTℓ−1Φ

T
ℓ

∂Φℓ,ji

· diag

(

xd

(Φℓθℓ−1)2

)

· Φℓ +
xT
d

θTℓ−1Φ
T
l

· Eji

}

= Td,ℓ ·

{

−θTℓ−1Eij · diag

(

xd

(Φℓθℓ−1)2

)

· Φℓ +
xT
d

θTℓ−1Φ
T
ℓ

· Eji

}

= Td,ℓ ·

{

−[θℓ−1]i

[

xd

(Φℓθℓ−1)2

]

j

eTj Φℓ +

[

xd

Φℓθℓ−1

]

j

eTi

}

(53)

where ei denotes the i-th natural basis vector in Euclidean space (i.e., the vector with the i-th element
being one and all other element equal to zero), and Eji denotes a matrix whose (j, i)-th element is
one and all other elements are zero. Substituting the above expression into (52), we obtain

∂pTℓ
∂Φℓ,ji

= pTℓ ⊙
∂zTℓ
∂Φℓ,ji

= Td,ℓ · p
T
ℓ ⊙

{

−[θℓ−1]i

[

xd

(Φℓθℓ−1)2

]

j

eTj Φℓ +

[

xd

Φℓθℓ−1

]

j

eTi

}

(54)

Therefore,

∂Rd

∂Φℓ,ji

=
∂pTℓ
∂Φℓ,ji

· δℓ

= Td,ℓ · pℓ ⊙

{

−[θℓ−1]i

[

xd

(Φℓθℓ−1)2

]

j

eTj Φℓ +

[

xd

Φℓθℓ−1

]

j

eTi

}

δℓ

= Td,ℓ ·

{

−[θℓ−1]i

[

xd

(Φℓθℓ−1)2

]

j

(

pℓ ⊙ eTj Φℓ

)

δℓ +

[

xd

Φℓθℓ−1

]

j

(pℓ ⊙ eTi)δℓ

}

= Td,ℓ ·

{

−[θℓ−1]i

[

xd

(Φℓθℓ−1)2

]

j

(

pℓ ⊙ eTj Φℓ

)

δℓ +

[

xd

Φℓθℓ−1

]

j

[pℓ]i · [δℓ]i

}

= Td,ℓ ·

{

−[θℓ−1]i

[

xd

(Φℓθℓ−1)2

]

j

(

eTj Φℓdiag(pℓ)
)

δℓ +

[

xd

Φℓθℓ−1

]

j

[pℓ]i · [δℓ]i

}

= Td,ℓ ·

{

−[θl]i

[

xd

(Φℓθℓ−1)2

]

j

eTj Φℓ(pl−1 ⊙ δℓ) +

[

xd

Φℓθℓ−1

]

j

[pℓ]i · [δℓ]i

}

= Td,ℓ ·

{

−[θℓ−1]i

[

xd

(Φℓθℓ−1)2

]

j

[Φℓ(pℓ ⊙ δℓ)]j +

[

xd

Φℓθℓ−1

]

j

[pℓ]i · [δℓ]i

}

(55)

Writing the above expressions into matrix form (derivative with respect Φℓ), we obtain:

∂Rd

∂Φℓ

= Td,ℓ ·

{

xd

Φℓθℓ−1
(pℓ ⊙ δℓ)

T −

[

Φℓ(pℓ ⊙ δℓ)⊙
xd

(Φℓθℓ−1)2

]

θTℓ−1

}

(56)

Now we need to derive the recursion for computing δℓ. By the definition of δℓ in (51), we have

δℓ−1 ,
∂Rd

∂pℓ−1

16

=
∂θTℓ−1

∂pℓ−1
·
∂pTℓ
∂θℓ−1

·
∂Rd

∂pℓ

=
∂θTℓ−1

∂pℓ−1
·
∂pTℓ
∂θℓ−1

· δℓ (57)

To continue, we have to evaluate
∂θT

ℓ−1

∂pℓ−1

and
∂pT

ℓ

∂θℓ−1

. By (47)–(49), we have

∂pTℓ
∂θℓ−1

=
∂θTℓ−1

∂θℓ−1
⊙ 1 exp(zTℓ) + 1θTℓ−1 ⊙

∂ exp(zTℓ)

∂θℓ−1

= I ⊙ [1 exp(zTℓ)] + 1θTℓ−1 ⊙

[

∂zTℓ
∂θℓ−1

·
∂eTℓ
∂zℓ

]

= diag
(

exp(zℓ)
)

+ 1θTℓ−1 ⊙

[

∂zTℓ
∂θℓ−1

· diag
(

exp(zℓ)
)

]

= diag
(

exp(zℓ)
)

+ 1θTℓ−1 ⊙

[

∂zTℓ
∂θℓ−1

⊙ 1 exp(zTℓ)

]

= diag
(

exp(zℓ)
)

+ 1
[

θTℓ−1 ⊙ exp(zTℓ)
]

⊙
∂zTℓ
∂θℓ−1

= diag
(

exp(zℓ)
)

+ 1pTℓ ⊙
∂zTℓ
∂θℓ−1

(58)

To proceed, we need to derive the expression for
∂zT

ℓ

∂θℓ−1

:

∂zTℓ
∂θℓ−1

= Td,ℓ ·

{

∂

∂θℓ−1

(

xT
d

θTℓ−1Φ
T
ℓ

)

Φℓ +
∂

∂θℓ−1

(

α− 1

θℓ−1

)T
}

= Td,ℓ ·

{

−
∂θTℓ−1Φ

T
ℓ

∂θℓ−1
· diag

(

xd

(ΦT
ℓ θℓ−1)2

)

Φℓ − diag

(

α− 1

θ2ℓ−1

)

}

= Td,ℓ ·

{

−ΦT
ℓ diag

(

xd

(ΦT
ℓ θℓ−1)2

)

Φℓ − diag

(

α− 1

θ2ℓ−1

)}

= −Td,ℓ ·

{

ΦT
ℓ diag

(

xd

(ΦT
ℓ θℓ−1)2

)

Φℓ + diag

(

α− 1

θ2ℓ−1

)}

(59)

Substituting the above expression into (58), we get the expression for
∂pT

ℓ

∂θℓ−1

:

∂pTℓ
∂θℓ−1

= diag

{

exp

(

Td,ℓ

[

ΦT
ℓ

xd

Φℓθℓ−1
+

α− 1

θℓ−1

])}

− Td,ℓ · (1p
T
ℓ)⊙

[

ΦT
ℓ diag

(

xd

(Φℓθℓ−1)2

)

Φℓ + diag

(

α− 1

θ2ℓ−1

)]

= diag

(

pℓ
θℓ−1

)

− Td,ℓ · (1p
T
ℓ)⊙

[

ΦT
ℓ diag

(

xd

(Φℓθℓ−1)2

)

Φℓ + diag

(

α− 1

θ2ℓ−1

)]

=

{

diag

(

1

θℓ−1

)

− Td,ℓ ·

[

ΦT
ℓ diag

(

xd

(Φℓθℓ−1)2

)

Φℓ + diag

(

α− 1

θ2ℓ−1

)]}

diag(pℓ)

(60)

To complete the derivation of the recursion (57), we need to derive
∂θT

ℓ−1

∂pℓ−1,t
, which is given by

∂θTℓ−1

∂pℓ−1
=

∂pTℓ−1

∂pℓ−1
·

1

1T pℓ−1
+

∂

∂pℓ−1

(

1

1T pℓ−1

)

pTℓ−1 =
I − 1θTℓ−1

1T pℓ−1
(61)

Expressions (57), (60) and (61) provide the complete backward recursion for δℓ from ℓ = L to
ℓ = 1. Finally, to initialize the backward recursion, we need the expression for δL. By its definition,

17

we have

δL ,
∂Rd

∂pL

=
∂θTL
∂pL

·
∂pTo,d
∂θL

·
∂Rd

∂po,d

=
∂θTL
∂pL

· UT ·
∂Rd

∂po,d

=
1

1T pL
(I − 1θTL) · U

T ·
∂Rd

∂po,d
(62)

where in the last step we substituted (61). By (45) and(38), we have

∂Rd

∂po,d
=

∂

∂po,d

(

− ln p(yd|θd,L, U, γ)
)

=

{

−γ · (yd − ŷd) classification

− 1
γ
· (yd − ŷd) regression

(63)

Therefore,

δL =











−
1

1T pL
(I − 1θTL) · U

T · γ · (yd − ŷd) classification

−
1

1T pL
(I − 1θTL) · U

T ·
1

γ
· (yd − ŷd) regression

(64)

As a final remark, we found that in practical implementation pℓ could be very large while δℓ could
be small, which leads to potential numerical instability. To address this issue, we introduce the
following new variable:

ξd,ℓ , 1
T pℓ · δℓ (65)

Then, the quantities pℓ and δℓ can be replaced with one variable ξd,ℓ, and the backward recursion of
δℓ can also be replaced with the backward recursion of ξd,ℓ. Introducing ∆Φℓ = ∂Rd/∂Φℓ and with
some simple algebra, we obtain the back propagation and gradient expression for Φ in Algorithm 3.

E Gradient Formula of BP-LDA

The unsupervised learning problem (4) can be rewritten, equivalently, as minimizing the following
cost function:

J(Φ̃) =

D
∑

d=1

Qd(Φ̃) (66)

where Qd(Φ̃) is the loss function defined as

Qd(Φ̃) = −
1

D
ln p(Φ̃|β)− ln p(wd,1:N |Φ̃, α) (67)

Taking the gradient of both sides of (67), we obtain

∂Qd

∂Φ̃
=

∂

∂Φ̃

(

−
1

D
ln p(Φ̃|β)

)

+
∂

∂Φ̃

(

− ln p(wd,1:N |Φ̃, α)
)

(68)

The first term in (68) has already been derived in (44):

∂

∂Φ̃
ln p(Φ̃|β) =

β − 1

Φ̃
(69)

where β−1

Φ̃
denotes elementwise division of the scalar β − 1 by the matrix Φ̃. We now proceed to

derive the second term in (68).

∂

∂Φ̃
ln p(wd,1:N |Φ̃, α) =

1

p(wd,1:N |Φ̃, α)
·
∂

∂Φ̃
p(wd,1:N |Φ̃, α)

18

=
1

p(wd,1:N |Φ̃, α)
·
∂

∂Φ̃

∫

p(wd,1:N , θd|Φ̃, α)dθd

=
1

p(wd,1:N |Φ̃, α)
·

∫ [

∂

∂Φ̃
p(wd,1:N , θd|Φ̃, α)

]

dθd

=
1

p(wd,1:N |Φ̃, α)
·

∫ [

∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]

· p(wd,1:N , θd|Φ̃, α)dθd

=

∫ [

∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]

·
p(wd,1:N , θd|Φ̃, α)

p(wd,1:N |Φ̃, α)
dθd

=

∫ [

∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]

· p(θd|wd,1:N , Φ̃, α)dθd

= Eθd|wd,1:N

[

∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]

(70)

Using (9), we rewrite ln p(wd,1:N , θd|Φ̃, α) as

ln p(wd,1:N , θd|Φ̃, α) = ln p(wd,1:N , θd|Φ̃, α)

= ln p(wd,1:N |θd, Φ̃) + ln p(θd|α)

= ln p(xd|θd, Φ̃) + ln p(θd|α) (71)

Note that expression (70) applies expectation after taking the gradient with respect to Φ̃. Therefore,

the gradient of ln p(wd,1:N , θd|Φ̃, α) inside the expectation of (70) is taken by assuming that θd is

independent of Φ̃. Taking the gradient of both sides of (71) and using this fact, we obtain

∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α) =

∂

∂Φ̃
ln p(xd|θd, Φ̃) (72)

Substituting the above expression into (70), we obtain the desired result.

19

