
Supplementary material for Tree-Guided MCMC
Inference for Normalized Random Measure Mixture

Models

Juho Lee
Department of Computer Science and Engineering

Pohang University of Science and Technology
77 Cheongam-ro, Nam-gu, Pohang 790-784, Korea

stonecold@postech.ac.kr

Seungjin Choi
Department of Computer Science and Engineering

Pohang University of Science and Technology
77 Cheongam-ro, Nam-gu, Pohang 790-784, Korea

seungjin@postech.ac.kr

In this supplementary material, we explain our proposing algorithm in more detail, with illustrative
examples and figures. All the notations follow those of our papers.

1 Key operations

We first explain two key operations used for tgMCMC.

SampleSub(c, p): given a tree tc, SampleSub(c, p) aims to draw a subtree tc′ of tc. We want
tc′ to have high dissimilarity between its subtrees, so we draw tc′ with probability proportional to
d(l(c′), r(c′)) + ε, where ε is the maximum dissimilarity between subtrees. ε is added for leaf nodes,
whose dissimilarity between subtrees are defined to be zero. See Figure 1.

c1
pi =

d(l(ci),r(ci))+ε∑7
j=1{d(l(cj),r(cj))+ε}c2 c3 c4

c5
c6
c7 = c

ε = maxi d(l(ci), r(ci))

Figure 1: An illustrative example for SampleSub operation.

As depicted in Figure 1, the probability of drawing the subtree tci is computed as pi. If we draw
tci as a result, corresponding probability pi is multiplied into p; p ← p · pi. This procedure is
needed to compute the forward transition probability. If SampleSub takes another argument as
SampleSub(c, c′, p), we don’t do the actual sampling but compute the probability of drawing subtree
tc′ from tc and multiply the probability to p. In above example, SampleSub(c, ci, p) does p← p·pi.
This operation is needed to compute the reverse transition probability.

StocInsert(S, c, p): given a set of clusters S (and corresponding trees), StocInsert inserts
tc into one of the trees tc′(c

′ ∈ S), or just put c in S without insertion. If tc is inserted into
tc′ , the insertion is done by SeqInsert(c, c′). See Figure 2 for example. The set S contains
three clusters, and tc may be inserted into ci ∈ S via SeqInsert(ci, c) with probability pi, or c
may just be put into S without insertion with probability p∗. In the original IBHC algorithm, tc is
inserted into the tree ci with smallest d(c, ci), or put into S without insertion if the minimum d(c, ci)
exceeds one. StocInsert is a probabilistic operation of this procedure, where the probability pi

1

is proportional to d−1(c, ci). As emphasized in the paper, the trees are not split after the update
of the dissimilarities of inserted trees; this is to ensure reversibility and make the computation of

c

c c1 c2 c3
S = {c1, c2, c3}

p∗ = 1
1+

∑3
i=1 d−1(ci,c)

pi =
d−1(ci,c)

1+
∑3

i=1 d−1(ci,c)

Figure 2: An illustrative example for StocInsert operation.

transition probability easier. Even if some dissimilarity exceeds one after the insertion, we expect
StocInsert operation to find those nodes needed to be split. After the insertion, corresponding
probability is multiplied to p, as in StocInsert operation. If StocInsert takes another arguments
as StocInsert(S, c, c′, p), we don’t do insertion but compute the probability of inserting c into
c′ ∈ S and multiply it to p. In above example, StocInsert(S, c, ci, p) multiplies p ← p · pi.
StocInsert(S, c,∅, p) multiplies the probability of creating a new tree with c, p← p · p∗.

2 Global moves

In this section, we explain global moves for our tgMCMC.

2.1 Selection between splitting and merging

In global moves, we randomly choose between splitting and merging operations. The basic principle
is this; pick a tree, and find candidate trees that can be merged with the picked tree. If there is any
candidate, invoke merge operation, and invoke split operation otherwise.

As an example, suppose that our current partition is Π[n] = {ci}6i=1, with 6 clusters. We first
uniformly pick a cluster among them, and initialize the forward transition probability q(Π∗[n]|Π[n]) =

1/6. Suppose that c1 is selected. Then, for {ci}5i=2, we put ci into a set M with probability (1 +
d(c1, ci))

−1; note that this probability is equal to p(hc1∪ci |Xc1∪ci), the probability of merging c1
and ci. The splitting is invoked if M contains no cluster, and merging is invoked otherwise.

2.2 Splitting

Suppose that M contains no cluster. The forward transition probability up to this is

q(Π∗[n]|Π[n]) =
1

6

6∏
i=2

d(c1, ci)

1 + d(c1, ci)
. (1)

Now suppose that c1 looks like in Figure 3. The split proposal Π∗[n] is then proposed according
to the following procedure. First, a subtree c? of c1 is sampled via SampleSub procedure. Then,

S = {l(c?), r(c?)}
⇒ ⇒

c1

c?

l(c?) r(c?)c7 c8
SampleSub(c1, q(Π∗

[n]|Π[n]))

Q = {c7, c8}
StocInsert(S, c7, q(Π∗

[n]|Π[n]))

StocInsert(S, c8, q(Π∗
[n]|Π[n]))

l(c?) r(c?) c8c7

c9 c10

Π∗
[n] = {ci}6

i=2 ∪ {c9, c10}.

Figure 3: An example for proposing split partition.

the tree is cut at c?, collecting S = {l(c?), r(c?1)} and remaining split nodes Q = {c7, c8}. Nodes
in Q are inserted into S via StocInsert. Since (l(c?), r(c?1)) were initialized to be split in S,
the resulting partition must have more than two clusters. During SampleSub and StocInsert,
every intermediate transition probabilities are multiplied into q(Π∗[n]|Π[n]). The final partition Π∗[n]
to propose is {c(i)}6i=2 ∪ {c9, c10}.

2

c1 c2 c3 c4

c7
c8

c9

⇒
S = {c1, c2}
Q = {c3, c4}

SampleSub(c9, c7, q(Π[n]|Π∗
[n]))

StocInsert(S, c3,∅, q(Π[n]|Π∗
[n]))

StocInsert(S, c4,∅, q(Π[n]|Π∗
[n]))

⇒ c4c1 c2 c3

Figure 4: An example for proposing merged partition, and how to compute the reverse transition
probability in that case.

2.3 Merging

Suppose that M contains three clusters; M = {c2, c3, c4}. The forward transition probability up to
this is

q(Π∗[n]|Π[n]) =
1

6

4∏
i=2

1

1 + d(c1, ci)

6∏
i=5

d(c1, ci)

1 + d(c1, ci)
. (2)

In partition space, there is only one way to merge c1 and M = {c2, c3, c4} into a single cluster
c9 = c1 ∪ c2 ∪ c3 ∪ c4, so no transition probability is multiplied. However, there can be many trees
representing c9, since we can merge the nodes in any order or topology, in terms of tree. Hence,
we fix the merged tree to be a cascaded tree, merged in order of indices of nodes; see Figure 4. As
we wrote in our paper, we assume that each nodes are given unique indices (such as hash values) so
that they can be sorted in order. In this example, the indices for c1 and c2 are 1 and 2, respectively.
Then, we build a cascaded tree, merged in order c1, c2, c3, c4. The resulting merged partition is then
Π∗[n] = {c5, c6, c9}.

2.4 Computing reverse transition probability for splitting

Now we explain how to compute the reverse transition probability q(Π[n]|Π∗[n]) for splitting case.
We start from the illustrative partition Π∗[n] in subsection 2.2. Starting from Π∗[n], we must merge c9
and c10 back into c1 = c9 ∪ c10 to retrieve Π[n]. For this, there are two possibilities: we first pick c9
and collect M = {c10}, or pick c10 and collect M = {c9}. Hence, the reverse transition probability
is computed as

q(Π[n]|Π∗[n]) =
1

7

(5∑
i=1

d(c9, ci)

1 + d(c9, ci)
+

1

1 + d(c9, c10)

)

+
1

7

(5∑
i=1

d(c10, ci)

1 + d(c10, ci)
+

1

1 + d(c10, c9)

)
. (3)

As we explained in subsection 2.3, no more reverse transition probabilities are needed since there is
only one way to merge nodes back into c1 in partition space.

2.5 Computing reverse transition probability for merging

We explain how to compute the reverse transition probability for merging case, starting from the
illustrative partition in subsection 2.3, Π∗[n] = {c5, c6, c9}. See Figure 4. To retrieve Π[n] = {ci}6i=1,
we should split c9 into c1, c2, c3, c4. For this, we should first invoke split operation for c9; pick c9
and collect M = ∅. The reverse transition probability up to this is

q(Π[n]|Π∗[n]) =
1

3

(
d(c9, c5)

1 + d(c9, c5)
+

d(c9, c6)

1 + d(c9, c6)

)
. (4)

Now, we should split c9 to retrieve the original partition. The achieve this, we should first pick
direct parent of c1 and c2 (c7 in Figure 4) via SampleSub. The reverse transition probabil-
ity for this is computed by SampleSub(c9, c7, q(Π[n]|Π∗[n])), and we have S = {c1, c2} and
Q = {c3, c4}. To get the original partition, c3 and c4 should be put into S without insertion,
and the reverse transition probability for this is computed by StocInsert(S, c3,∅, q(Π[n]|Π∗[n]))
and StocInsert(S, c4,∅, q(Π[n]|Π∗[n])).

3

3 Local moves

Local moves resample cluster assignments of individual data points (leaf nodes) with Gibbs sam-
pling. However, instead of running Gibbs sampling for full data, we select a random subset S and
run Gibbs sampling for data points in S. S is constructed as follows. Given a partition Π[n], for each
c ∈ Π[n], we sample its subtree via SampleSub. Then we sample a subtree of drawn subtree again
with SampleSub. This procedure is repeated for D times, where D is a parameter set by users.
Figure 5 depicts the subsampling procedure for c ∈ Π[n] with D = 2. As a result of Figure 5, the

c
c1

c2

SampleSub(c, p)

⇒

SampleSub(c1, p)

⇒
c1

c2

i j k i j k

c2

i j k

Figure 5: An example for local moves.

leaf nodes {i, j, k} are added to S. After having collected S for all c ∈ Π[n], we run Gibbs sampling
for those leaf nodes in S, and if a leaf node i should be moved from c to another c′, we insert i into
c′ with SeqInsert(c′, i). We can control the tradeoff between mixing rate and speed by controlling
D; higher D means more elements in S, and thus more data points are moved by Gibbs sampling.

4

	Key operations
	Global moves
	Selection between splitting and merging
	Splitting
	Merging
	Computing reverse transition probability for splitting
	Computing reverse transition probability for merging

	Local moves

