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This document covers a more detailed derivation of the merge optimization in Section 1, a more
detailed derivation of the regularization bound for the Dirichlet process in Section 2, and finally a
set of regularization bounds for other nonparametric processes in Section 3.

1 Merge optimization derivation

In the main text, the merge optimization is derived with a number of steps withheld for brevity. Here,
the derivation is presented more fully. First, recall the maximization of the posterior normalization
constant with variational posteriors substituted for the true posteriors:

σ? ← arg max
σ

∑
z

∫
θ

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

qo(θ, zo)
−1qσm(θ, zm, zo)qi(θ, zi, zo)

s.t. qσm(θ, zm) = ζσm(zm)

Km∏
k=1

h(θσ(k))e
ηTmkT (θσ(k))−A(ηmk)

σ(k) = k, ∀k ∈ [Ko] , σ 1-to-1.

(1)

Taking the logarithm of the objective does not change σ? since it is strictly monotonic, and exploiting
the decoupling of θ and z in qo, qσm, and qi yields an objective split into two terms:

σ? ← arg max
σ

log
∑
z

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

ζo(zo)ζ
σ
m(zm)ζi(zi) + log

∫
θ

Ki+K
′
m∏

k=1

h(θk)eη̃
σT
k T (θk) + C

s.t. σ(k) = k, ∀k ∈ [Ko] , σ 1-to-1.
(2)

Examining the z term first, note that

log
∑
z

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

ζo(zo)ζ
σ
m(zm)ζi(zi) = logEσζ

[
p(zi, zm|zo)

p(zi|zo)p(zm|zo)

]
. (3)

Computing this expectation in closed-form is generally intractable, and therefore even evaluating
the objective above (let alone optimizing it) is intractable. However, since the logarithm function is
concave, Jensen’s inequality provides a lower bound:

logEσζ
[

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

]
≥ Eσζ

[
log

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

]
= Eσζ [log p(zi, zm|zo)]− Eσζ [log p(zi|zo)]− Eσζ [log p(zm|zo)] .

(4)

Next, note that Eσζ [log p(zi|zo)] is a constant with respect to σ since log p(zi|zo) does not involve
any zm terms. Furthermore, Eσζ [log p(zm|zo)] is invariant with respect to σ since Bayesian non-
parametric priors are invariant to component relabelling, and conditioning on zo doesn’t affect this
property because σ(k) = k∀k ∈ [Ko]. Therefore

logEσζ
[

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

]
≥ Eσζ [log p(zi, zm|zo)] + C. (5)
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Finally adding and subtracting Eσζ [log p(zo)], which is also constant with respect to σ, we have the
final form of the general regularization bound

logEσζ
[

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

]
≥ Eσζ [log p(zi, zm, zo)] + C. (6)

Next, examining the θ term,

log

∫
θ

Ki+K
′
m∏

k=1

h(θk)eη̃
σT
k T (θk) = log

Ki+K
′
m∏

k=1

∫
θk

h(θk)eη̃
σT
k T (θk)

= log

Ki+K
′
m∏

k=1

eA(η̃σk )

=

Ki+K
′
m∑

k=1

A (η̃σk ) .

(7)

Combining the terms from (6) and (7) yields the optimization shown in the main paper.

2 DP regularization derivation

In the main text, the regularization bound for the Dirichlet process prior is derived with some steps
withheld for brevity. Here the derivation is presented more fully. For the Dirichlet process with
concentration parameter α > 0, p(zi, zm, zo) is the Exchangeable Partition Probability Function
(EPPF) [Pitman, 1995]

p(zi, zm, zo) ∝ α|K|−1
∏
k∈K

(nk − 1)!, (8)

where nk is the amount of data assigned to cluster k, and K is the set of labels of nonempty clusters,

nk =
∑

r∈{i,m,o}

Nr∑
j=1

1 [zrj = k] , K = {k ∈ Z : nk > 0}. (9)

Taking the expectation under ζo(zo)ζi(zi)ζσm(zm),

Eσζ [log p(zi, zm, zo)] = Eσζ [|K|] logα+
∑
k∈K

Eσζ [log(nk − 1)!] + C (10)

= Eσζ [|K|] logα+
∑
k∈K

Eσζ [log Γ (max{2, nk})] + C (11)

The second equality follows because log(nk−1)! = log Γ (nk) for all integers nk > 0, and because
log Γ (1) = log Γ (2) = 0. Expanding |K| and using the convexity of log Γ (max{2, ·}),

Eσζ [log p(zi, zm, zo)] =

K∑
k=1

Eσζ [1 [nk > 0]] logα+

K∑
k=1

Eσζ [log Γ (max{2, nk})] + C (12)

≥
K∑
k=1

Eσζ [1 [nk > 0]] logα+

K∑
k=1

log Γ
(
max{2,Eσζ [nk]}

)
+ C. (13)

Next, the two expectation terms are analyzed given that the variational distribution ζr(zr), r ∈
{i,m, o} is a product of independent categorical distributions ζr(zr) =

∏Nr
j=1

∏Kr
k=1 π

1[zrj=k]
rjk .

First, the indicator expectation is expressed as

Eσζ [1 [nk > 0]] = P (nk > 0) (14)

= 1− P (nk = 0) (15)
= 1− P (zrj 6= k∀r, j) (16)
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and by the independence of the categorical distributions,

logP (zrj 6= k∀r, j) =

 ∑
r∈{o,i}

Nr∑
j=1

log(1− πrjk)

 Nm∑
j=1

log(1− πmjσ−1(k)) (17)

Defining s̃rk, r ∈ {o, i,m} and s̃σmk as in the paper, we have

logP (zrj 6= k∀r, j) = s̃k = s̃ik + s̃ok + s̃σmk (18)

and thus

Eσζ [1 [nk > 0]] = 1− P (zrj 6= k∀r, j) = 1− es̃
σ
k . (19)

Next, the expectation of the number of observations in cluster k is expressed as

Eσζ [nk] = Eσζ

 ∑
r∈{o,i,m}

Nr∑
j=1

1 [zrj = k]

 (20)

=
∑

r∈{o,i,m}

Nr∑
j=1

Eσζ [1 [zrj = k]] (21)

=
∑

r∈{o,i}

Nr∑
j=1

πrjk +

Nm∑
j=1

πrjσ−1(k) (22)

Defining t̃rk, r ∈ {o, i,m} and t̃σmk as in the paper, we have

Eσζ [nk] = t̃σk = t̃ik + t̃ok + t̃σmk. (23)

Substituting these two expressions into the lower bound of Eσζ [log p(zi, zm, zo)] yields the expres-
sion presented in the paper.

3 Regularization lower bounds for other nonparametric processes

3.1 Pitman-Yor Process

For the Pitman-Yor process with concentration parameter α and discount parameter γ, p(z) is a
generalized EPPF [Pitman, 1995]

p(z) ∝ γ|K|−1Γ

(
α

γ
+ |K|

) ∏
k∈K

(nk − 1)!. (24)

As in the paper ζr(zr), r ∈ {o, i,m} is assumed to be a product of categorical distributions. In this
case, the regularization term can be bounded below by Jensen’s inequality using the log-convexity
of the gamma function:

Eσζ [log p(zi, zm, zo)]

≥ log Γ

α
γ

+

Ki+K
′
m∑

k=1

(
1− es̃

σ
k

)+

Ki+K
′
m∑

k=1

(
1− es̃

σ
k

)
log γ + log Γ

(
max

{
2, t̃σk

})
+ C

≥
Ki+K

′
m∑

k=1

log Γ
(

1− es̃
σ
k

)
+
(

1− es̃
σ
k

)
log γ + log Γ

(
max

{
2, t̃σk

})
+ C

(25)

where s̃σk and t̃σk are as specified in the main text, and thus sk and tk possess the same efficient
update scheme as described in the main text. Further, note that this lower bound is a sum over
terms k ∈ [Ki +K ′m]; therefore, similarly to the case of the Dirichlet process regularization, the
component identification optimization can be solved efficiently via the Hungarian algorithm.
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3.2 Hierarchical Dirichlet Process

For Sethuraman’s stick-breaking construction of the hierarchical Dirichlet process [Wang et al.,
2011] with parent concentration γ and child concentrations α0, there are two latent labelling vari-
ables c, z. For r ∈ {o, i,m}, zrjl ∈ N denotes the atom in the parent Dirichlet process that is linked
to atom l in child Dirichlet process j, and crjw ∈ N denotes the atom in child Dirichlet process
j that is responsible for observation w. In each dataset r ∈ {o, i,m} there are Nr child Dirichlet
processes j with Nrj observations and Trj observed atoms. Given these definitions, z and c are
independent and both follow the EPPF for the Dirichlet process:

p(z, c) ∝

γ|K|−1
∏
k∈K

(nk − 1)!
∏

r∈{o,i,m}

Nr∏
j=1

αTrj−10

Trj∏
l=1

(nrjl − 1)!

 (26)

where nk =
∑
r∈{o,i,m}

∑Nr
j=1

∑Trj
l=1 1 [zrjl = k], K = {k ∈ Z : nk > 0}, and nrjl =∑Nrj

w=1 1 [crjw = l]. Note, however, that all the terms specific to a particular child Dirichlet pro-
cess j are constant with respect to reordering the global topics; hence,

Eσζ [log p(zi, zm, zo, ci, cm, co)] ≥
Ki+K

′
m∑

k=1

(
1− es̃

σ
k

)
logα+ log Γ

(
max

{
2, t̃σk

})
+ C (27)

where s̃σk and t̃σk are as specified in the main text, using the categorical distributions on the corre-
spondences between document- and corpus-level topics z. Note that sk and tk possess the same
efficient update scheme as described in the main text. Further, note that this lower bound is a sum
over terms k ∈ [Ki +K ′m]; therefore, similarly to the case of the Dirichlet process regularization,
the component identification optimization can be solved efficiently via the Hungarian algorithm.

3.3 Beta Process

For the 3-parameter beta process with mass parameter β > 0, concentration parameter α > 0, and
discount γ ∈ (0, 1), the variable z is a set of indicator variables that denote a feature allocation of
the data, where zrjk = 1 denotes that observation j in data subset r ∈ {o, i,m} expresses feature
k, and zrjk = 0 otherwise. The function p(z) is the Exchangeable Feature Probability Function
(EPPF) [Broderick et al., 2013]

p(z) ∝ 1

|K|!

(
β

Γ (α+ 1)

Γ (α+ γ)

)|K|∏
k∈K

Γ (nk − γ) Γ (α+N − nk + γ)

Γ (1− γ) Γ (α+N)
(28)

where nk =
∑
r∈{o,i,m}

∑Nr
j=1 zrjk, and K = {k ∈ Z : nk > 0}. Assuming that ζr, r ∈ {o, i,m}

are products of independent Bernoulli distributions with parameters ωrjk ∈ [0, 1],

Eσζ [log p(zi, zo, zm)]

∼
≥ − log Γ

1 +

Ki+K
′
m∑

k=1

(
1− es̃

σ
k

)
+

Ki+K
′
m∑

k=1

(
1− es̃

σ
k

)
log ξ + log Γ

(
max{2, t̃σk − γ}

)
+ log Γ

(
max{2, α+N − t̃σk + γ}

)
+ C,

(29)
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where

ξ =
βΓ (α+ 1)

Γ (α+ γ) Γ (1− γ) Γ (α+N)

t̃σk = t̃ik + t̃ok + t̃σmk
s̃σk = s̃ik + s̃ok + s̃σmk

s̃rk =

{ ∑Nr
j=1 log(1−ωrjk) k≤Kr

0 k>Kr
∀r∈{o,i,m} t̃rk =

{ ∑Nr
j=1 ωrjk k≤Kr

0 k>Kr
∀r∈{o,i,m}

s̃σmk =

{ ∑Nm
j=1 log(1−ωmjσ−1(k)) k∈σ([Km])

0 k/∈σ([Km])
t̃σmk =

{ ∑Nm
j=1 ωmjσ−1(k) k∈σ([Km])

0 k/∈σ([Km])
.

(30)

and where the symbol
∼
≥ denotes the use of the first-order Taylor series approximation

−E [log Γ (|K|+ 1)] ' − log Γ (E [|K|] + 1). As with the previous two models, sk and tk pos-
sess an efficient update scheme. However, since the regularization bound does not decompose as
a sum over components k ∈ [Ki +K ′m], the Hungarian algorithm cannot be immediately applied.
Investigating approximations for the troublesome concave − log Γ (·) term is left for future work.
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