
1

Appendix
This appendix describes the Bayesian Laplace propagation algorithm we derived for the two variants of the hierarchical
model we presented in the main text. First, we describe Model I for capturing nonstationarity in firing rates, and then we
move to Model II for capturing nonstationarity in neural dynamics.

Model I Model II

recording 1 recording r recording 1 recording r

Figure 1. Schematic of hierarchical non-stationary Poisson observation Latent Dynamical System (N-PLDS) models.
Model I for capturing non-stationarity in mean firing rates. The parameter h slowly varies across trials and leads to
fluctuations in mean firing rates. Model II for capturing non-stationarity in population dynamics. The dynamics matrix
A changes across trials, as controlled by the hyperparameters Φ.

Model I : nonstationarity in firing rates

Basic setup

Likelihood: yt ∈ Rp, xt ∈ Rk, C ∈ Rp×k

p(yt|xt, C,h(i)) = Poiss(yt| exp(C(xt + h(i)) + d)),

where h(i) ∈ Rk is a vector of latent variables that capture nonstationarity in firing rates across recordings i = {1, · · · , r}.
Latent dynamics: A ∈ Rk×k and B ∈ Rk×d

p(xt|xt−1, A) = N (xt|Axt−1 +But, I).

Parameters in this model: Θ = {A,B,C,h(1:r)}. For simplicity, we set d to its ML estimate. Vectorized notations:

a = vec(A>) ∈ Rk2 , b = vec(B>) ∈ Rkd, and c = vec(C>) ∈ Rpk.

Priors:

p(a|α) = N (a|0, α−1I), p(b|β) = N (b|0, β−1I), (1)

For h(i), we assume slowly varying dynamics across recordings

h(i) ∼ GP(mh,K(i, j)) (2)

where we denote the (vector) mean and (matrix) covariance functions by K(i, j), respectively, where the (i, j)th block of the
covariance matrix is given by

K(i, j) = (σ2 + εδi,j) exp

(
− 1

2τ2
(i− j)2

)
Ik (3)

The hyperparameters in total are Φ = {mh, α, β, σ
2, τ2}.

2

Variational lower bound

The marginal likelihood of the observations is lower bounded by

log p(y
(1:r)
1:T) ≥

∫
dθ dx

(1:r)
1:T q(θ,x

(1:r)
1:T) log

p(θ,x
(1:r)
1:T ,y

(1:r)
1:T)

q(θ,x
(1:r)
1:T)

, (4)

where the approximate posterior factor is

q(θ,x
(1:r)
1:T) = qθ(θ)

r∏
i=1

qx(x
(i)
0:T), (5)

where qθ(θ) = qa,b(a,b) qc,h(c,h(1:r)). (6)

For simplicity, we further assume

qc,h(c,h(1:r)) = qh|c(h(1:r)|c)q(c), (7)

= qh|c(h(1:r)|c)δ(c− ĉ), (8)

= qh|ĉ(h(1:r)|ĉ), (9)

where ĉ is maximum likelihood estimate of c.

Bayesian Laplace propagation

Posterior over parameters

We compute qθ(θ) by integrating out latent variables from the total log joint distribution:

log qθ(θ) = E
qx(x

(1:r)
1:T)

[
log p(x

(1:r)
0:T ,y

(1:r)
1:T , θ)

]
+ const, (10)

= E
qx(x

(1:r)
0:T)

[
log p(y

(1:r)
1:T |x

(1:r)
0:T , θ) + log p(x

(1:r)
0:T |θ) + log p(θ)

]
+ const,

=

r∑
i=1

[E
qx(x

(i)
0:T)

(

T∑
t=1

(log p(y
(i)
t |x

(i)
t , c,h(i)) + log p(x

(i)
t |x

(i)
t−1,ut,a,b))] + log p(a|α) + log p(b|β)

+ log p(h(1:r)|0,K) + const.

Note that we assume the inputs u are the same across recordings. (so we don’t put the recording index i on ut).

1. approximate posterior over a,b

We can compute qa,b(a,b) by extracting all the terms in log p(x0:T ,y1:T , θ) that depend on a,b and then taking the
expectation of the terms w.r.t. qx(x0:T):

log qa,b(a,b) =

r∑
i=1

E
qx(x

(i)
0:T)

[
T∑
t=1

log p(x
(i)
t |x

(i)
t−1,ut,a,b)

]
+ log p(a|α) + log p(b|β) + const,

= −1

2

r∑
i=1

E
qx(x

(i)
0:T)

[
T∑
t=1

(x
(i)
t −Ax

(i)
t−1 −But)

>(x
(i)
t −Ax

(i)
t−1 −But)

]
− α

2 a>a− β
2 b>b + const, (11)

= − 1
2

r∑
i=1

[
a>(αr I +W bd

A(i))a− 2a>(vec(SA(i))−GbdA(i)b) + b>(βr I + Ü bd)b− 2b>vec(M̃ (i))
]

+ const,

3

where W bd
A(i) = Ir ⊗WA(i) , GbdA(i) = Ir ⊗GA(i) , Ü bd = Ir ⊗ Ü , and the sufficient statistics are denoted by

WA(i) =

T∑
t=1

< x
(i)
t−1x

(i)
t−1
> >, SA(i) =

T∑
t=1

< x
(i)
t−1x

(i)
t
> >, GA(i) =

T∑
t=1

< x
(i)
t−1 > ut

>,

Ü =

T∑
t=1

utut
>, M̃ (i) =

T∑
t=1

ut < x
(i)
t > > (12)

Using new notations W =
∑r
i=1W

bd
A(i) , s =

∑r
i=1 vec(SA(i)), G =

∑r
i=1G

bd
A(i) , m =

∑r
i=1 vec(M̃ (i)), we rewrite eq. 11 ,

whose derivative expressions are given by

log qa,b(a,b) = − 1
2

[
a>(αI + W)a− 2a>(s−Gb) + b>(βI + rÜ bd)b− 2b>m

]
, (13)

Ha = − ∂
∂aa> log qa,b(a,b) = (αI + W), (14)

Hab = − ∂
∂ab> log qa,b(a,b) = G, (15)

Hb = − ∂
∂bb> log qa,b(a,b) = (βI + rÜ bd), (16)

∂
∂a log qa,b(a,b) = −(αI + W)a + (s−Gb) = −Haa + (s−Gb), (17)

∂
∂b log qa,b(a,b) = −G>a− (βI + rÜ bd)b + m = −G>a−Hbb + m. (18)

Using Schur complement, we obtain the covariance of q(a,b)

Σa = (Ha −HabH
−1
b Hab

>)−1, (19)

Σb = (Hb −Hab
>H−1

a Hab)−1, (20)

Σab = −ΣaHabH
−1
b , (21)

and the mean of q(a,b),

µb = Σb(m−Hab
>H−1

a s), (22)

µa = Σa(s−HabH
−1
b m). (23)

2. Computing qh|ĉ(h(1:r)|ĉ)

Assuming we have the maximum likelihood estimate of c, we write down all the terms in log p(x0:T ,y1:T , θ) that depend on
h(1:r):

log qh|ĉ(h(1:r)|ĉ) =

r∑
i=1

E
qx(x

(i)
1:T)

[
T∑
t=1

log p(y
(i)
t |x

(i)
t , ĉ,h(i))

]
+ log p(h(1:r)|0,K),

=

r∑
i=1

E
qx(x

(i)
1:T)

[
T∑
t=1

(y
(i)
t
>(Ĉ(x

(i)
t + h(i)) + d)− 1> exp (Ĉ(x

(i)
t + h(i)) + d))

]
− 1

2h(1:r)>K−1h(1:r) + const,

=

r∑
i=1

[
ĈSC(i) +

T∑
t=1

y
(i)
t
>(Ĉh(i) + d)− E

qx(x
(i)
1:T)

1> exp (Ĉ(x
(i)
t + h(i)) + d))

]
− 1

2h(1:r)>K−1h(1:r) + const,

(24)

where each row of Ĉ is denoted by ĉs and the sufficient statistic is denoted by

SC(i)=

T∑
t=1

< x
(i)
t > y

(i)
t
> (25)

4

Assuming the approximate posterior over latent variables is multivariate Gaussian with marginals q(xt) = N (xt|ωt,Υt), the
expectation of the exponential term above is given by

E
qx(x

(i)
1:T)
{
T∑
t=1

exp(ĉs
>x

(i)
t)} =

∫
dx

(i)
1:T qx(x

(i)
1:T) exp(ĉs

>x
(i)
1 + · · ·+ ĉs

>x
(i)
T),

=

T∑
t=1

exp(ĉs
>ω

(i)
t + 1

2 ĉs
>Υ

(i)
t ĉs). (26)

Therefore, the log joint distribution is given by

log qh|ĉ(h(1:r)|ĉ) =

r∑
i=1

[
ĈSC(i) +

T∑
t=1

(
y

(i)
t
>(Ĉh(i) + d)− 1> exp(Ĉ(ω

(i)
t + h(i)) + 1

2diag(ĈΥ
(i)
t Ĉ>) + d)

)]
− 1

2h(1:r)>K−1h(1:r),

= h(1:r)>(Ĉbd>y(1:r))− 1>(exp(Ĉbdh(1:r)) ◦ g(1:r))− 1
2h(1:r)>K−1h(1:r), (27)

where Ĉbd = Ir ⊗ Ĉ, y(1:r) = [
∑T
t=1 y

(1)
t , · · · ,

∑T
t=1 y

(r)
t]>, g(1:r) = [g(1), · · · ,g(r)]>, where g(i) =

∑T
t=1 exp(Ĉω

(i)
t +

1
2diag(ĈΥ

(i)
t Ĉ>) + d).

We approximate the joint posterior qh|ĉ(h(1:r)|ĉ) as a Gaussian distribution from the derivatives w.r.t. h(1:r):

qh|ĉ(h(1:r)|ĉ) = N (h(1:r)|µh,Σh) (28)

Σ−1
h = Hh +K−1, where h(1:r) = µh, (29)

µh = K
[
Ĉbd>y(1:r) − Ĉbd>(exp(Ĉbdh(1:r)) ◦ g(1:r))

]
, where h(1:r) = µh (30)

where Hh = − ∂2

∂2h(1:h)

∑r
i=1[

∫
dx

(i)
0:T q(x

(i)
0:T)

∑T
t=1 log p(y

(i)
t |x

(i)
t , ĉ, d̂,h(i))] = Ĉbd>diag

[
exp(Ĉbdh(1:r)) ◦ g(1:r)

]
Ĉbd.

3. Computing the ML estimate of ĉ

We set C to the ML estimate Ĉ, which is obtained by

ĉ = arg max
c

r∑
i=1

E
qx(x

(i)
1:T)

[
T∑
t=1

log p(y
(i)
t |x

(i)
t , c,h(i))

]
, (31)

whose first derivatives w.r.t. C is given by :

r∑
i=1

[
SC(i)

> +

T∑
t=1

(yth
(i)> − l(i)(C)(ω

(i)
t + h(i))> − diag(l(i)(C))Υ

(i)
t C)

]
(32)

where we fix h(i) to its posterior mean µh(i) and l(i)(C) = exp(C>(ω
(i)
t + h(i)) + 1

2diag(C>Υ
(i)
t C) + d).

4. ML estimate of d

d̂ = arg max
d

r∑
i=1

[
ĈSC(i) +

T∑
t=1

(
y

(i)
t
>(Ĉh(i) + d)− 1> exp(Ĉ(ω

(i)
t + h(i)) + 1

2diag(ĈΥ
(i)
t Ĉ>) + d)

)]
, (33)

= log(

r∑
i=1

T∑
t=1

y
(i)
t)− log(

r∑
i=1

T∑
t=1

exp(Ĉ(ω
(i)
t + h(i)) + 1

2diag(ĈΥ
(i)
t Ĉ>))). (34)

5

Posterior over latent variables

In VBE step, we compute qx(x0:qT) by

r∑
i=1

log qx(x
(i)
0:T) =

r∑
i=1

Eqθ(θ) log p(θ,x
(i)
0:T ,y

(i)
1:T) + const,

=

r∑
i=1

[
Eqθ(θ) log p(x

(i)
0:T ,y

(i)
1:T |θ)− logZ ′(i)

]
, (35)

where the normalization constant is given by

Z ′(i) =

∫
dx

(i)
0:T exp

(
Eqθ(θ) log p(x

(i)
0:T ,y

(i)
1:T |θ)

)
. (36)

The complete-data log likelihood in the ith recording is written as

log p(x
(i)
0:T ,y

(i)
1:T |θ) =

T∑
t=1

{log p(y
(i)
t |x

(i)
t , C,d,h(i)) + log p(x

(i)
t |x

(i)
t−1, A,B,ut)}, (37)

which tells us that the log posterior over latent variables is quadratic in each xt. This enables us to use the sequential
update of the posterior over latent variables. We will also use the following sequential forward/backward algorithm for each
recording in parallel. In the following, the recording index i on x,y is removed for notational cleanness.

Forward filtering

We denote the posterior over the latent variables at each time t by

α(xt) ∝
∫
dxt−1α(xt−1) exp

[
< log(p(xt|xt−1)p(yt|xt)) >qθ(θ)

]
, (38)

∝ exp(< log p(yt|xt)) >qθ(θ))

{∫
dxt−1α(xt−1) exp

(
< log(p(xt|xt−1) >q(θ)

)}
. (39)

Assuming α(xt−1) = N (xt−1|µt−1,Σt−1), the integral is analytically tractable since the second part in the integrand is also
quadratic in xt−1:

exp[− 1
2 (xt−1

> < A>A > xt−1 − 2xt−1
>(< A > >xt− < A>B > ut) + xt

>xt − 2xt
> < B > ut + ut

> < B>B > ut)].

The integrand is summarised as

α(xt−1) exp
(
< log(p(xt|xt−1) >q(θ)

)
= ZN (xt−1|µ∗t−1,Σ

∗
t−1), (40)

Σ∗−1
t−1 = Σ−1

t−1+ < A>A >, (41)

µ∗t−1 = Σ∗t−1(Σ−1
t−1µt−1+ < A > >xt− < A>B > ut), (42)

and the remaining term Z is given by:

Z = exp[− 1
2 (xt

>xt − 2xt
> < B > ut + ut

> < B>B > ut) + 1
2µ
∗
t−1
>Σ∗−1

t−1µ
∗
t−1], (43)

where

1
2µ
∗
t−1
>Σ∗−1

t−1µ
∗
t−1 = 1

2 (Σ−1
t−1µt−1+ < A > >xt− < A>B > ut)

>Σ∗t−1(Σ−1
t−1µt−1+ < A > >xt− < A>B > ut),

= 1
2 (xt

> < A > Σ∗t−1 < A > >xt + 2xt
> < A > (Σ∗t−1Σ−1

t−1µt−1 − Σ∗t−1 < A>B > ut) +

µt−1
>Σ−1

t−1Σ∗t−1Σ−1
t−1µt−1 − 2µt−1

>Σ−1
t−1Σ∗t−1 < A>B > ut + ut

> < A>B > >Σ∗t−1 < A>B > ut).

6

Therefore, Z is proportional to a Gaussian in xt :

Z ∝ N (xt|µ̃t, Σ̃t), (44)

Σ̃−1
t = I− < A > Σ∗t−1 < A > >, (45)

µ̃t = Σ̃t(< B > ut+ < A > Σ∗t−1Σ−1
t−1µt−1− < A > Σ∗t−1 < A>B > ut), (46)

We approximate the forward message as a Gaussian in xt using the first and second derivatives w.r.t. xt

α(xt) ∝ exp(< log p(yt|xt) >qθ(θ))N (xt|µ̃t, Σ̃t). (47)

where

< log p(yt|xt) >qθ(θ) =

∫
log p(yt|xt, Ĉ,d,h(i))N (h(i)|µh(i) ,Σh(i))dh(i), (48)

=

∫ [
yt
>(Ĉ(xt + h(i)) + d)− 1> exp(Ĉ(xt + h(i)) + d)

]
N (h(i)|µh(i) ,Σh(i))dh(i), (49)

=

p∑
s=1

∫ [
(yt
>es)(xt

>ĉs)− exp(xt
>ĉs + h(i)>ĉs + ds)

]
N (h(i)|µh(i) ,Σh(i))dh(i), (50)

=

p∑
s=1

[
(yt
>es)(xt

>ĉs)− exp(xt
>ĉs + ĉs

>µh(i) +
1

2
ĉs
>Σh(i) ĉs + ds)

]
(51)

The forward message at time t is approximately

α(xt) ≈ N (xt|µt,Σt), (52)

µt = µ̃t + Σ̃t

p∑
s=1

[
yTt es − exp(xt

>ĉs + ĉs
>µh(i) + 1

2 ĉs
>Σh(i) ĉs + ds)

]
ĉs, where xt = µt, (53)

Σ−1
t = Σ̃−1

t +

p∑
s=1

exp(xt
>ĉs + ĉs

>µh(i) + 1
2 ĉs
>Σh(i) ĉs + ds) ĉsĉs

>, where xt = µt. (54)

Backward smoothing

We denote the backward message at each time t by

β(xt) = p(yt+1:T |xt) = N (xt|ηt,Ψt). (55)

We can obtain the recursion rules by considering β(xt−1)

β(xt−1) =

∫
dxtβ(xt) exp

(
< log(p(xt|xt−1)p(yt|xt)) >qθ(θ)

)
,

=

∫
dxt exp

(
< log(p(xt|xt−1) >qθ(θ)

) [
β(xt) exp

(
< log p(yt|xt)) >qθ(θ)

)]
,

=

∫
dxt exp

(
< log(p(xt|xt−1) >qθ(θ)

)
N (xt|η̃t, Ψ̃t), (56)

7

assuming β(xT) = 1. The Gaussian p(xt) = N (xt|η̃t, Ψ̃t) is obtained by computing the first and second derivatives w.r.t.
xt,

η̃t = ηt + Ψt

p∑
s=1

[
yTt es − exp(xt

>ĉs + ĉs
>µh(i) + 1

2 ĉs
>Σh(i) ĉs + ds)

]
ĉs, where xt = η̃t, (57)

Ψ̃−1
t = Ψ−1

t +

p∑
s=1

exp(xt
>ĉs + ĉs

>µh(i) + 1
2 ĉs
>Σh(i) ĉs + ds) ĉsĉs

>, where xt = η̃t. (58)

The first term in the integrand above is given by

< log(p(xt|xt−1) >qθ(θ) = − 1
2 (xt

>xt − 2xt
>(< A > xt−1+ < B > ut))

− 1
2 (xt−1

> < A>A > xt−1 + 2xt−1
> < A>B > ut)− 1

2ut
> < B>B > ut. (59)

Therefore, the integral is given by∫
dxt exp

(
< log(p(xt|xt−1) >qθ(θ)

)
N (xt|η̃t, Ψ̃t) = Z̃

∫
dxt exp

(
− 1

2xt
>(I + Ψ̃−1

t)xt + xt
>(< A > xt−1+ < B > ut + Ψ̃−1

t η̃t)
)

where (only showing the terms depending on xt−1)

Z̃ = − 1
2 (xt−1

> < A>A > xt−1 + 2xt−1
> < A>B > ut) + · · · (60)

After integrating out xt by formulating a Gaussian distribution N (xt|η∗t ,Ψ∗t) where the mean and covariance are given by

Ψ∗−1
t = I + Ψ̃−1

t , (61)

η∗t = Ψ∗t (< A > xt−1+ < B > ut + Ψ̃−1
t η̃t), (62)

we obtain a quadratic function in xt−1 (combining the remainder from the integral and Z̃)

1
2 (< A > xt−1+ < B > ut + Ψ̃−1

t η̃t)
>Ψ∗t (< A > xt−1+ < B > ut + Ψ̃−1

t η̃t)− 1
2 (xt−1

> < A>A > xt−1 + 2xt−1
> < A>B > ut)

= − 1
2 (xt−1

>(< A>A > − < A > >Ψ∗t < A >)xt−1 − 2xt−1
>(< A > >Ψ∗t (< B > ut + Ψ̃−1

t η̃t)− < A>B > ut)) + · · · . (63)

Therefore, the backward message is approximately Gaussian with the mean and covariance given by

β(xt−1) ≈ N (xt−1|ηt−1,Ψt−1), (64)

Ψ−1
t−1 = < A>A > − < A > >Ψ∗t < A >, (65)

ηt−1 = Ψt−1(< A > >Ψ∗t (< B > ut + Ψ̃−1
t η̃t)− < A>B > ut). (66)

Computing marginals of latent variables using α and β

Using the α and β recursions in the forward/backward algorithm, we can compute the marginals of the latent variables.

p(xt|y1:T) = p(xt|y1:t,yt+1:T), (67)

∝ p(yt+1:T |xt,y1:t)p(xt|y1:t) = p(yt+1:T |xt)p(xt|y1:t) = β(xt)α(xt), (68)

∝ N (xt|ωt,Υt) (69)

where

Υ−1
t = Ψ−1

t + Σ−1
t , (70)

ωt = Υt(Ψ
−1
t ηt + Σ−1

t µt). (71)

8

We also need to compute pairwise marginals of latent variables, given by

p(xt,xt+1|y1:T) = p(xt,xt+1|y1:t,yt+1,yt+2:T),

∝ p(yt+1,yt+2:T |xt,xt+1,y1:t)p(xt+1|xt,y1:t)p(xt|y1:t),

∝ p(yt+1|xt+1)p(yt+2:T |xt+1)p(xt+1|xt)p(xt|y1:t),

∝ β(xt+1) exp
(
< log(p(yt+1|xt+1)p(xt+1|xt)) >qθ(θ)

)
α(xt), (72)

which are jointly Gaussian

p

(
xt

xt+1

)
= N

([
ωt
ωt+1

]
,

[
Υt Υt,t+1

ΥT
t,t+1 Υt+1

])
. (73)

To compute the cross-covariance Υt,t+1, we first compute the second derivatives w.r.t. [xt xt+1]T :

∂2 log
∫
dθqθ(θ)p(xt,xt+1|y1:T)

∂[xt xt+1]2
= −

[
Σ∗−1
t − < A >T

− < A > Ψ−1
t+1 + I +Wt+1

]
, (74)

where

Wt+1 = − ∂2

∂xt+1xt+1
> < log p(yt+1|xt+1) >q(θ), (75)

=

p∑
s=1

exp(xt+1
>ĉs + ĉs

>µh(i) + 1
2 ĉs
>Σh(i) ĉs + ds) ĉsĉs

> (76)

evaluated at xt+1 = ωt+1. By negating and inverting the matrix, and using the Schur complement, we can obtain Υt,t+1,

Υt,t+1 = −(Σ∗−1
t − < A >T (Ψ−1

t+1 + I +Wt+1)−1 < A >)−1(− < A >T)(Ψ−1
t+1 + I +Wt+1)−1. (77)

Computing sufficient statistics of latent variables

Using qx(x0:T), we can compute the sufficient statistics of latent variables (that are used in M step).

WA =

T∑
t=1

< xt−1x
T
t−1 >=

T∑
t=1

Υt−1 + ωt−1ω
T
t−1, SA =

T∑
t=1

< xt−1x
T
t >=

T∑
t=1

Υt−1,t + ωt−1ω
T
t , (78)

WC =

T∑
t=1

< xtx
T
t >=

T∑
t=1

Υt + ωtω
T
t , SC =

T∑
t=1

< xt > yTt =

T∑
t=1

ωty
T
t . (79)

Hyperaparameter estimation

We take the derivatives of the variational lower bound w.r.t. each hyperparameter to obtain update rules. The lower bound
is simplified as below:

log p(y
(1:r)
1:T) ≥

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log

p(θ,x
(1:r)
0:T ,y

(1:r)
1:T)

q(θ,x
(1:r)
0:T)

,

=

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log p(x

(1:r)
0:T ,y

(1:r)
1:T |θ)−

∫
dx

(1:r)
0:T q(x

(1:r)
0:T) log q(x

(1:r)
0:T) +

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log

p(θ)

q(θ)
,

=

r∑
i=1

logZ ′(i) +

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log

p(θ)

q(θ)
, (80)

9

where the last line follows from the equality

−
∫

dx
(1:r)
0:T qx(x

(1:r)
0:T) log qx(x

(1:r)
0:T) = −

∫
dx

(1:r)
0:T qx(x

(1:r)
0:T)Eqθ(θ) log p(x

(1:r)
0:T ,y

(1:r)
1:T |θ) +

r∑
i=1

logZ ′(i). (81)

So, we need to consider the second term in RHS of the lower bound for hyperparameter update (the integration w.r.t. x is
omitted, since the integrand is independent of x)∫

da db dh(1:r)q(a,b)q(h(1:r)) log
p(a,b,h(1:r))

q(a,b,h(1:r))
= −KL(a,b)−KL(h(1:r)), (82)

where the first term on RHS is given by

KL(a,b) =

∫
da dbq(a,b) log

q(a,b)

p(a,b)
, (83)

=

∫
da dbN (µa,b,Λa,b) log

N (µa,b,Λa,b)

N (0, Λ̃a,b)
, (84)

= − 1
2 log |Λ̃−1

a,bΛa,b|+ 1
2Tr[Λ̃−1

a,b(Λa,b + µa,bµa,b
>)] (85)

where the prior covariance on (a,b) is denoted by Λ̃a,b = [α−1I 0; 0 β−1I] and the posterior mean and covariance on (a,b)
are denoted by µa,b = [µa;µb] and Λa,b = [Σa Σa,b; Σa,b

> Σb], respectively. We minimise the KL divergence for updating
α, β.

The second term on RHS is given by

KL(h(1:r)) =

∫
dh(1:r) qh(h(1:r)) log

qh(h(1:r))

p(h(1:r)|σ2, τ2)
, (86)

=

∫
dh(1:r) N (h(1:r)|µh,Σh) log

N (h(1:r)|µh,Σh)

p(h(1:r)|mh,K)
, (87)

= − 1
2 log |K−1Σh|+ 1

2Tr
[
K−1(Σh + (µh −mh)(µh −mh)>)

]
+ const. (88)

The first derivative w.r.t. kernel parameters (denoted by α = {σ2, τ2}) is given by

∂

∂α
KL(h(1:r)) = 1

2Tr

(
K−1 ∂K

∂α

)
− 1

2Tr

(
K−1 ∂K

∂α
K−1(Σh + (µh −mh)(µh −mh)>)

)
, (89)

= 1
2Tr

(
K−1 ∂K

∂α
(I −K−1(Σh + (µh −mh)(µh −mh)>))

)
, (90)

where the first derivative of K(i, j) w.r.t. α is given by

∂

∂τ2
K(i, j) =

1

2τ4
(i− j)2(σ2 + εδij) exp

(
− 1

2τ2
(i− j)2

)
Ik2 =

1

2τ4
(i− j)2K(i, j), (91)

∂

∂σ2
K(i, j) = exp

(
− 1

2τ2
(i− j)2

)
Ik2 . (92)

We update α numerically using the derivative expression above.

10

Model II: nonstationarity in neural dynamics

Basic setup

Likelihood: yt ∈ Rp, xt ∈ Rk, C ∈ Rp×k

p(yt|xt, C,d) = Poiss(yt| exp(Cxt + d)).

Latent dynamics: A ∈ Rk×k
p(xt|xt−1, A) = N (xt|Axt−1, I).

Parameters in this model: Θ = {A,C}. For simplicity, we will fix d to its maximum likelihood estimate. Vectorized nota-

tions: a = vec(A>) ∈ Rk2 and c = vec(C>) ∈ Rpk.

Priors:

p(c|γ) = N (c|0, γ−1I) (93)

Assuming a to be temporally evolving across recordings where the recording index is i = {1, · · · , r}:

a(i) ∼ GP(ā,K(i, j)) (94)

where we denote the (vector) mean and (matrix) covariance functions by ā and K(i, j), respectively, where the (i, j)th block
of the covariance matrix is given by

K(i, j) = (σ2 + εδi,j) exp

(
− 1

2τ2
(i− j)2

)
Ik2 . (95)

The hyperparameters in total are Φ = {ā, σ2, τ2, γ}.

Variational lower bound

The marginal likelihood of the observations is lower bounded by

log p(y
(1:r)
1:T) ≥

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log

p(θ,x
(1:r)
0:T ,y

(1:r)
1:T)

q(θ,x
(1:r)
0:T)

, (96)

where the approximate posterior factories

q(θ,x
(1:r)
0:T) = qθ(θ)

r∏
i=1

qx(x
(i)
0:T), (97)

and we assume qθ(θ) = qa(a(1:r))qc(c).

11

Bayesian Laplace propagation

Posterior over parameters

We compute qθ(θ) by integrating out latent variables from the total log joint distribution:

log qθ(θ) = E
qx(x

(1:r)
0:T)

[
log p(x

(1:r)
0:T ,y

(1:r)
1:T , θ)

]
+ const, (98)

= E
qx(x

(1:r)
0:T)

[
log p(y

(1:r)
1:T |x

(1:r)
0:T , θ) + log p(x

(1:r)
0:T |θ) + log p(θ)

]
+ const,

=

r∑
i=1

[
E
qx(x

(i)
0:T)

(

T∑
t=1

(log p(y
(i)
t |x

(i)
t , c) + log p(x

(i)
t |x

(i)
t−1,a

(i)))

]
+ log p(a(1:r)|ā(1:r),K) + log p(c|γ) + const,

where ā(1:r) is a vector of r repeating ā.

1. approximate posterior over a(1:r)

log qa(a(1:r)) =

r∑
i=1

[
E
qx(x

(i)
0:T)

T∑
t=1

log p(x
(i)
t |x

(i)
t−1,a

(i))

]
+ log p(a(1:r)|ā(1:r),K) + const, (99)

= − 1
2 (a(1:r)>Ha(1:r) − 2a(1:r)>s)− 1

2 (a(1:r) − ā(1:r))TK−1(a(1:r) − ā(1:r)) (100)

where the matrix H and the vector s are given by

Ha =

W bd
A(1) , 0, 0, . . . 0
0, W bd

A(2) , 0, . . . 0
...

...
...

...
...

0, , 0, W bd
A(r)

 , s =

vec(SA(1))
...

vec(SA(r))

 (101)

and W bd
A(i) = Ik ⊗WA(i) , where WA(i) =

∑T
t=1 < x

(i)
t−1x

(i)
t−1
> >, and SA(i) =

∑T
t=1 < x

(i)
t−1x

(i)
t
> >.

Therefore, the approximate posterior over a(1:r) is given by

q(a(1:r)) = N (µa,Σa), (102)

Σ−1
a = K−1 +Ha, (103)

µa = Σa(K−1ā(1:r) + s). (104)

So, < A(i) >=
[
reshape(µa((i− 1)k2 + 1 : ik2), k, k)

]> and ΣA(i) is the first k×k matrix of Σa((i−1)k2+1 : ik2, (i−1)k2+1 :

ik2). In addition to the mean and covariance of A(i), we also need the following quantity in VBE step:

< A(i)>A(i) > = < A(i) > > < A(i) > +kΣA(i) . (105)

12

2. Computing qc(c)

Similarly, we write down all the terms in log p(x0:T ,y1:T , θ) that depend on c:

log qc(c) =

r∑
i=1

E
qx(x

(i)
1:T)

[
T∑
t=1

log p(y
(i)
t |x

(i)
t , c)

]
+ log p(c|γ) + const,

=

r∑
i=1

E
qx(x

(i)
1:T)

[
T∑
t=1

(y
(i)
t
>(Cx

(i)
t + d)− 1> exp (Cx

(i)
t + d))

]
− 1

2
γcT c + const,

=

r∑
i=1

[
c>vec(SC(i))−

p∑
s=1

E
qx(x

(i)
1:T)
{
T∑
t=1

exp(cs
>x

(i)
t + ds)}

]
− 1

2
γc>c + const, (106)

where each row of C is denoted by cs and the sufficient statistic is denoted by

SC(i)=

T∑
t=1

< x
(i)
t > y

(i)
t
> (107)

Assuming the approximate posterior over latent variables is multivariate Gaussian with marginals q(xt) = N (xt|ωt,Υt), the
expectation of the exponential term in eq. 106 is given by

E
qx(x

(i)
1:T)
{
T∑
t=1

exp(cs
>x

(i)
t)} =

∫
dx

(i)
1:T qx(x

(i)
1:T) exp(cs

>x
(i)
1 + · · ·+ cs

>x
(i)
T),

=

T∑
t=1

exp(cs
>ω

(i)
t + 1

2cs
>Υ

(i)
t cs). (108)

Therefore, the log joint distribution is given by

log qc(c) =

r∑
i=1

[
c>vec(SC(i))−

p∑
s=1

T∑
t=1

exp(cs
>ω

(i)
t + 1

2cs
>Υ

(i)
t cs + ds)

]
− 1

2
γc>c + const. (109)

We approximate qC(C) to a Gaussian distribution from the first/second derivatives of eq. 109 w.r.t. cs,

qC(C) =

p∏
s=1

N (cs|µcs ,Σcs) (110)

µcs =
1

γ

r∑
i=1

[
SC(i)es −

T∑
t=1

[ω
(i)
t + Υ

(i)
t cs] exp(cTs ω

(i)
t + 1

2cTs Υ
(i)
t cs + ds)

]
, where cs = µcs , (111)

Σ−1
cs = γI +

r∑
i=1

T∑
t=1

(Υ
(i)
t + (ω

(i)
t + Υ

(i)
t cs)(ω

(i)
t + Υ

(i)
t cs)

>) exp(cTs ω
(i)
t + 1

2cTs Υ
(i)
t cs + ds), where cs = µcs .(112)

13

3. ML estimate of d

The ML estimate of d given the mean of C (denoted by Ĉ) is closed form:

d̂ = arg max
d

r∑
i=1

[
ĈSC(i) +

T∑
t=1

(
y

(i)
t
>d− 1> exp(Ĉω

(i)
t + 1

2diag(ĈΥ
(i)
t Ĉ>) + d)

)]
,

= log(

r∑
i=1

T∑
t=1

y
(i)
t)− log(

r∑
i=1

T∑
t=1

exp(Ĉω
(i)
t + 1

2diag(ĈΥ
(i)
t Ĉ>)). (113)

Posterior over latent variables

We compute qx(x0:qT) by

r∑
i=1

log qx(x
(i)
0:T) =

r∑
i=1

Eqθ(θ) log p(θ,x
(i)
0:T ,y

(i)
1:T) + const,

=

r∑
i=1

Eqθ(θ) log p(x
(i)
0:T ,y

(i)
1:T |θ)−

r∑
i=1

logZ ′(i), (114)

where the normalization constant is given by

Z ′(i) =

∫
dx

(i)
0:T exp

(
Eqθ(θ) log p(x

(i)
0:T ,y

(i)
1:T |θ)

)
. (115)

The complete-data log likelihood in the ith recording is written as

log p(x
(i)
0:T ,y

(i)
1:T |θ) =

T∑
t=1

{log p(y
(i)
t |x

(i)
t , C,d) + log p(x

(i)
t |x

(i)
t−1, A

(i))}, (116)

which tells us that the log posterior over latent variables is quadratic in each xt. This enables us to use the sequential
update of the posterior over latent variables. We will also use the following sequential forward/backward algorithm for each
recording in parallel. In the following, the recording index i is removed for notational cleanness.

Forward filtering

We denote the posterior over the latent variables at each time t by

α(xt) ∝
∫
dxt−1α(xt−1) exp

[
< log(p(xt|xt−1)p(yt|xt)) >qθ(θ)

]
, (117)

∝ exp(< log p(yt|xt)) >qθ(θ))

{∫
dxt−1α(xt−1) exp

(
< log(p(xt|xt−1) >q(θ)

)}
. (118)

Assuming α(xt−1) = N (xt−1|µt−1,Σt−1), the integral is analytically tractable since the second part in the integrand is also
quadratic in xt−1:

exp[− 1
2 (xt−1

> < A>A > xt−1 − 2xt−1
> < A > >xt + xt

>xt)].

The integrand is summarised as

α(xt−1) exp
(
< log(p(xt|xt−1) >q(θ)

)
= ZN (xt−1|µ∗t−1,Σ

∗
t−1), (119)

Σ∗−1
t−1 = Σ−1

t−1+ < A>A >, (120)

µ∗t−1 = Σ∗t−1(Σ−1
t−1µt−1+ < A > >xt), (121)

14

and the remaining term Z is given by:

Z = exp[1
2µ
∗
t−1
>Σ∗−1

t−1µ
∗
t−1], (122)

where

1
2µ
∗
t−1
>Σ∗−1

t−1µ
∗
t−1 = 1

2 (Σ−1
t−1µt−1+ < A > >xt)

>Σ∗t−1(Σ−1
t−1µt−1+ < A > >xt),

= 1
2 (xt

> < A > Σ∗t−1 < A > >xt + 2xt
> < A > Σ∗t−1Σ−1

t−1µt−1) + · · · .

Therefore, Z is proportional to a Gaussian in xt :

Z ∝ N (xt|µ̃t, Σ̃t), (123)

Σ̃−1
t = I− < A > Σ∗t−1 < A > >, (124)

µ̃t = Σ̃t < A > Σ∗t−1Σ−1
t−1µt−1, (125)

We approximate the forward message as a Gaussian in xt using the first and second derivatives w.r.t. xt

α(xt) ∝ exp(< log p(yt|xt) >qθ(θ))N (xt|µ̃t, Σ̃t). (126)

The forward message at time t is approximately

α(xt) ≈ N (xt|µt,Σt), (127)

µt = µ̃t + Σ̃t

p∑
s=1

[
(yTt es)µcs − (µcs + Σcsxt)e

xTt µcs+ 1
2x

T
t Σcsxt+ds

]
, where xt = µt, (128)

Σ−1
t = Σ̃−1

t +

p∑
s=1

[
Σcs + (µcs + Σcsxt)(µcs + Σcsxt)

T
]
ex

T
t µcs+ 1

2x
T
t Σcsxt+ds , where xt = µt. (129)

Backward smoothing

We denote the backward message at each time t by

β(xt) = p(yt+1:T |xt) = N (xt|ηt,Ψt). (130)

We can obtain the recursion rules by considering β(xt−1)

β(xt−1) =

∫
dxtβ(xt) exp

(
< log(p(xt|xt−1)p(yt|xt)) >qθ(θ)

)
,

=

∫
dxt exp

(
< log(p(xt|xt−1) >qθ(θ)

) [
β(xt) exp

(
< log p(yt|xt)) >qθ(θ)

)]
,

=

∫
dxt exp

(
< log(p(xt|xt−1) >qθ(θ)

)
N (xt|η̃t, Ψ̃t), (131)

assuming β(xT) = 1. The Gaussian p(xt) = N (xt|η̃t, Ψ̃t) is obtained by computing the first and second derivatives w.r.t.
xt,

η̃t = ηt + Ψt

p∑
s=1

[
(yTt es)µcs − (µcs + Σcsxt)e

xTt µcs+ 1
2x

T
t Σcsxt+ds

]
, where xt = η̃t, (132)

Ψ̃−1
t = Ψ−1

t +

p∑
s=1

[
Σcs + (µcs + Σcsxt)(µcs + Σcsxt)

T
]
ex

T
t µcs+ 1

2x
T
t Σcsxt+ds , where xt = η̃t. (133)

15

The first term in the integrand in eq. 131 is given by

< log(p(xt|xt−1) >qθ(θ) = − 1
2 (xTt xt − 2xTt < A > xt−1)− 1

2xTt−1 < ATA > xt−1. (134)

Therefore, the integral is given by∫
dxt exp

(
< log(p(xt|xt−1) >qθ(θ)

)
N (xt|η̃t, Ψ̃t) = Z̃

∫
dxt exp

(
− 1

2xTt (I + Ψ̃−1
t)xt + xTt (< A > xt−1 + Ψ̃−1

t η̃t)
)

where (only showing the terms depending on xt−1)

Z̃ = − 1
2xTt−1 < ATA > xt−1 + · · · (135)

After integrating out xt by formulating a Gaussian distribution N (xt|η∗t ,Ψ∗t) where the mean and covariance are given by

Ψ∗−1
t = I + Ψ̃−1

t , (136)

η∗t = Ψ∗t (< A > xt−1 + Ψ̃−1
t η̃t), (137)

we obtain a quadratic function in xt−1 (combining the remainder from the integral and Z̃)

1
2 (< A > xt−1 + Ψ̃−1

t η̃t)
TΨ∗t (< A > xt−1 + Ψ̃−1

t η̃t)− 1
2xTt−1 < ATA > xt−1

= − 1
2 (xTt−1(< ATA > − < A >T Ψ∗t < A >)xt−1 − 2xTt−1 < A >T Ψ∗t Ψ̃

−1
t η̃t + · · · . (138)

Therefore, the backward message is approximately Gaussian with the mean and covariance given by

β(xt−1) ≈ N (xt−1|ηt−1,Ψt−1), (139)

Ψ−1
t−1 = < ATA > − < A >T Ψ∗t < A >, (140)

ηt−1 = Ψt−1 < A >T Ψ∗t Ψ̃
−1
t η̃t = Ψt−1 < A >T (I + Ψ̃t)

−1η̃t. (141)

Computing marginals of latent variables using α and β

Using the α and β recursions in the forward/backward algorithm, we can compute the marginals of the latent variables.

p(xt|y1:T) = p(xt|y1:t,yt+1:T), (142)

∝ p(yt+1:T |xt,y1:t)p(xt|y1:t) = p(yt+1:T |xt)p(xt|y1:t) = β(xt)α(xt), (143)

∝ N (xt|ωt,Υt) (144)

where

Υ−1
t = Ψ−1

t + Σ−1
t , (145)

ωt = Υt(Ψ
−1
t ηt + Σ−1

t µt). (146)

We also need to compute pairwise marginals of latent variables, given by

p(xt,xt+1|y1:T) = p(xt,xt+1|y1:t,yt+1,yt+2:T),

∝ p(yt+1,yt+2:T |xt,xt+1,y1:t)p(xt+1|xt,y1:t)p(xt|y1:t),

∝ p(yt+1|xt+1)p(yt+2:T |xt+1)p(xt+1|xt)p(xt|y1:t),

∝ β(xt+1) exp
(
< log(p(yt+1|xt+1)p(xt+1|xt)) >qθ(θ)

)
α(xt), (147)

which are jointly Gaussian

p

(
xt

xt+1

)
= N

([
ωt
ωt+1

]
,

[
Υt Υt,t+1

ΥT
t,t+1 Υt+1

])
. (148)

16

To compute the cross-covariance Υt,t+1, we first compute the second derivatives of log of eq. 147 w.r.t. [xt xt+1]T :

∂2 log
∫
dθqθ(θ)p(xt,xt+1|y1:T)

∂[xt xt+1]2
= −

[
Σ∗−1
t − < A > >

− < A > Ψ−1
t+1 + I +Wt+1

]
, (149)

where

Wt+1 =
∂2

∂x2
t+1

< log p(yt+1|xt+1) >q(θ), (150)

=

p∑
s=1

[
Σcs + (µcs + Σcsxt+1)(µcs + Σcsxt+1)T

]
ex

T
t+1µcs+ 1

2x
T
t+1Σcsxt+1+ds , (151)

evaluated at xt+1 = ωt+1. By negating and inverting the matrix in eq. 149, and using the Schur complement, we can obtain
Υt,t+1,

Υt,t+1 = −(Σ∗−1
t − < A >T (Ψ−1

t+1 + I +Wt+1)−1 < A >)−1(− < A >T)(Ψ−1
t+1 + I +Wt+1)−1. (152)

Computing sufficient statistics of latent variables

Using qx(x
(i)
0:T), we can compute the sufficient statistics of latent variables (that are used in M step).

WA(i) =

T∑
t=1

< x
(i)
t−1x

(i)
t−1
> >=

T∑
t=1

Υ
(i)
t−1 + ω

(i)
t−1ω

(i)
t−1
>, SA(i) =

T∑
t=1

< x
(i)
t−1x

(i)
t
> >=

T∑
t=1

Υ
(i)
t−1,t + ω

(i)
t−1ω

(i)
t
>,(153)

SC(i) =

T∑
t=1

< x
(i)
t > y

(i)
t
> =

T∑
t=1

ω
(i)
t y

(i)
t
>. (154)

Hyperaparameter estimation

We take the derivatives of the variational lower bound w.r.t. each hyperparameter to obtain update rules. The lower bound
is simplified as below:

log p(y
(1:r)
1:T) ≥

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log

p(θ,x
(1:r)
0:T ,y

(1:r)
1:T)

q(θ,x
(1:r)
0:T)

,

=

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log p(x

(1:r)
0:T ,y

(1:r)
1:T |θ)−

∫
dx

(1:r)
0:T q(x

(1:r)
0:T) log q(x

(1:r)
0:T) +

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log

p(θ)

q(θ)
,

=

r∑
i=1

logZ ′(i) +

∫
dθ dx

(1:r)
0:T q(θ,x

(1:r)
0:T) log

p(θ)

q(θ)
, (155)

where the line is true from eq. 114, i.e.,

−
∫

dx
(1:r)
0:T qx(x

(1:r)
0:T) log qx(x

(1:r)
0:T) = −

∫
dx

(1:r)
0:T qx(x

(1:r)
0:T)Eqθ(θ) log p(x

(1:r)
0:T ,y

(1:r)
1:T |θ) +

r∑
i=1

logZ ′(i). (156)

So, we need to consider the second term in RHS of eq. 155 for hyperparameter update (the integration w.r.t. x is omitted,
since the integrand is independent of x)∫

da(1:r) dC q(a(1:r))q(C) log
p(a(1:r), C)

q(a(1:r))q(C)
= −KL(C)−KL(a(1:r)), (157)

17

The first term, KL(C) is given by 1

KL(C) =

∫
dCqC(C) log

qC(C)

p(C|γ)
,

=

p∑
s=1

∫
dcs N (cs|µcs ,Σcs) log

N (cs|µcs ,Σcs)

N (cs|0, γ−1I)
,

=

p∑
s=1

(
− 1

2 log |γΣcs |+ 1
2Tr

[
γ(Σcs − γ−1I + µcsµ

T
cs)
])
. (159)

The first derivative expression w.r.t. γ gives us the following update:

γ−1 = 1
p

p∑
s=1

Tr[Σcs + µcsµ
T
cs], (160)

Similarly, the second term is given by

KL(a(1:r)) =

∫
da(1:r) qa(a(1:r)) log

qa(a(1:r))

p(a(1:r)|ā, σ2, τ2)
, (161)

=

∫
da(1:r) N (a(1:r)|µa,Σa) log

N (a|µa,Σa)

N (a(1:r)|ā(1:r),K)
, (162)

= − 1
2 log |K−1Σa|+ 1

2Tr
[
K−1Σa

]
+ 1

2 (µa − ā(1:r))>K−1(µa − ā(1:r)) + const. (163)

The first derivative w.r.t. ā is given by

∂

∂ā
KL(a(1:r)) =

1

2

∂

∂ā
(µa − ā(1:r))>K−1(µa − ā(1:r)), (164)

=
1

2

∂

∂ā
(µa − Eā)>K−1(µa − Eā) (165)

where E = 1r ⊗ Ik2 , and this gives us the update rule:

ā = (E>K−1E)−1(E>K−1µa). (166)

The first derivative w.r.t. kernel parameters (denoted by α = {σ2, τ2}) is given by

∂

∂α
KL(a(1:r)) = 1

2Tr

(
K−1 ∂K

∂α

)
− 1

2Tr

(
K−1 ∂K

∂α
K−1(Σa + (µa − ā(1:r))(µa − ā(1:r))>)

)
, (167)

= 1
2Tr

(
K−1 ∂K

∂α
(I −K−1(Σa + (µa − ā(1:r))(µa − ā(1:r))>))

)
, (168)

where the first derivative of K(i, j) w.r.t. α is given by

∂

∂τ2
K(i, j) =

1

2τ4
(i− j)2(σ2 + εδij) exp

(
− 1

2τ2
(i− j)2

)
Ik2 =

1

2τ4
(i− j)2K(i, j), (169)

∂

∂σ2
K(i, j) = exp

(
− 1

2τ2
(i− j)2

)
Ik2 . (170)

We update α numerically using the derivative expression above.

1The formula of KL divergence between two Gaussians is given by:

KL(µ̃, Σ̃||µ,Σ) = − 1
2

log |Σ̃Σ−1|+ 1
2

Tr
[
Σ−1(Σ̃− Σ + (µ̃− µ)(µ̃− µ)T)

]
. (158)

18

Illustration with simulated data

20

A. Non-stationary population activities

trial # 1 : corr coef = -0.8

0 2 4 6 8 10s

. . .

ne
ur

on
s

1

40

trial # 100 : corr coef = 0.8

0 2 4 6 8 10s

B. Correlation coe�cients

0 10 20 30 40 50 60 70 80 90 100−1

0

1

trials
0 10 20 30 40 50 60 70 80 90 100

trials

−1

0

1

0.5

-0.5

C. O�-diagonal of A

Atrue(1,2)
N-PLDS

PLDS
Indp-PLDS

true
N-PLDS

PLDS
Indp-PLDS

Figure 2. Illustration of non-stationarity in population dynamics (data simulated from Model II). A: Raster
plots of spontaneous activity from 40 neurons during 10 seconds of recording for simulated trials 1 and 100. We assumed
that the two sub-populations (blue and red) have negative correlation at trial 1 and positive correlation at trial 100. B:
Recovered correlations. Our Model II (red) accurately recovers the correlations between two groups across trials (RMSE:
0.04), while other methods perform poorly: independent PLDSs fit to each trial individually give noisy results (RMSE
0.06) and a single PLDS fit across all trials cannot capture the change in correlation (RMSE 0.44). C: Estimation of
off-diagonal in dynamics matrices. We fixed the loading matrix C to its true value to avoid issues with non-identifiability of
parameters in LDS models. The off-diagonal term A12 estimated by our model matched the true values well, whereas the
independent PLDS produced noisy estimates, and the fixed PLDS cannot capture the change in A12.

We tested Model II using a simulation of spontaneous activity from a population of 40 neurons (simulated from Model II). We
assumed that the population could be split into two sub-populations of size 20 neurons each, and simulated an experiment in
which the correlation across the two sub-populations changed dramatically across the experiment: Specifically, we generated
a 2-d latent state that controls correlations in firing rates between the two groups of neurons, and adjusted the off-diagonal
term in the dynamics matrix (A12) such that the correlation between the groups varied slowly from −1 to 1 across 100 trials,
where the length of each trial is T = 200. Other elements of A were adjusted such that the stationary covariance of the
system was kept constant.

We fit Model II N-PLDS, a single PLDS, and 100 independent PLDSs to the data. Our model accurately recovered the
correlation change in z across trials, while the single PLDS was not able to capture the non-stationarity and the independent
PLDSs exhibited noisy correlations (Fig. 2). Finally, our model also accurately recovered the off-diagonal parameter A12

(Fig. 2 C). For panel C only, we set the loading matrix C to the ground truth value for each of the models (Model II, fixed
PLDS, separate PLDSs). LDS models suffer from non-identifiability of parameters, implying that estimated parameters do
not necessarily match the true parameters even for perfect model fits.

19

Illustration with real data

Finally, we analyzed a dataset of spontaneous activity recorded from a population of 40 neurons from macaque visual cortex.
The details of data collection are described in [1] and the data is available from [2]. Using the spike-sorting information
provided in the dataset, we selected the spike-cluster with highest signal-to-noise ratio from each recording channel, and out
of those 46 units kept the 40 units with highest firing rates. As the original data consisted of one continuous recording of
length 15 minutes, we divided the data into 30 ‘epochs’ of length 30 seconds each, and used every 5th epoch (20% of the
data) for testing and the rest (80% of data) for training.

In this data, the mean firing rates are almost constant across time, while the correlations increase at the end of the experiment
(Fig. 3 A). After estimating the parameters of our N-PLDS (Model II) from the training data, we computed the predictive
distribution on the dynamics matrices A∗ for the test data. Using these parameters, we drew samples for spikes to compute
the mean firing rates for each trial (Fig. 3 A), as well as the mean pairwise cross-correlations across all neuron pairs. The
correlations estimated from N-PLDS (Model II) matched those in the data. For PLDS with fixed parameters, the estimated
firing rates and correlations are constant across epochs (Fig. 3 B). To quantify these results, we computed the RMSE in
the prediction of mean firing rates and mean correlations on test epochs. The RMSEs on mean firing rate estimation for
PLDS are 0.0156, 0.0182, 0.0188 for k = 1, 2, 4, respectively, while RMSE of N-PLDS is 0.0080 (k = 4). The RMSE on mean
correlation estimation in PLDSs is 0.0138 (same for k = 1, 2, 4) and 0.0087 (k = 4) in N-PLDS.

B. Prediction on test data

0 5 10 15 20 25 30

A. N-PLDS (Model II) with di�erent k

trials

N-PLDS (k=4)
PLDS (k=4)mean of y

data
test trials

k=1
k=2
k=4

mean corr of y

0 5 10 15 20 25 300

0.02

0.04

trials

5 10 15 20 25 300.05

0.1

0.15

test trials

mean of y

mean corr of y

0

0.02

0.04

PLDS (k=1)
PLDS (k=2)

data

5 10 15 20 25 30
test trials

0.05

0.1

0.15

Figure 3. Non-stationary population dynamics (data from [1]). A: Summary statistics of samples from N-PLDS
(Model II) with non-stationarity dynamics matrix A for different dimensions of latent dynamics (k = 1, 2, 4). The top plot
shows the mean firing rate of 40 neurons during 30 epochs, showing that there is only a slight systematic drift in mean
firing rate. Each dot represents predicted mean firing rates for the held-out data (6 trials). The bottom plot shows the
mean correlation of the spike counts. All three N-PLDS models capture the increase in correlation at the end of the
experiment, with the k = 4 capturing it most accurately. B: Comparison to using a PLDS model with fixed parameters
(k = 1, 2, 4). Both the mean firing rate and correlation in PLDS are constant across epochs. As a consequence, the best
RMSE on mean correlation estimation in PLDS is 0.0138 (k = 1) compared to 0.0087 (k = 4) in N-PLDS.

References

1. Cheng C.J. Chu, Ping F. Chien, and Chou P. Hung. Tuning dissimilarity explains short distance decline of spontaneous spike
correlation in macaque {V1}. Vision Research, 96(0):113 – 132, 2014.

2. Chou P. Hung Cheng C. J. Chu, Ping F. Chien. Multi-electrode recordings of ongoing activity and responses to parametric stimuli
in macaque v1. CRCNS.org., 2014.

