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A Kernel Derivations

In this section, we detail derivations of the SG, SM, and CSM kernels by the method of the auto-
covariance of periodic functions with unknown frequency.

A.1 The Spectral Gaussian (SG) Kernel

Consider a periodic signal f(x) = v/2cos(w(z + ¢)) with the prior w ~ N(u,v) on the angular
frequency. Letting @ = {u, v}, the stationary, positive definite auto-covariance function for f(z) is
derived according to
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This results in an interpretable auto-covariance function, where p represents the primary frequency
and the variance v controls how quickly this frequency dependency decays with 7. Used as a sta-

tionary kernel in a Gaussian process, the SG kernel discovers a single Gaussian component in the
spectral density.



A.2 The Spectral Mixture (SM) Kernel

Consider a periodic signal f(x) Zq 1V/2aq cos(wy (z + ¢,)), where Q latent functions
are superimposed, each with unique input-space offset ¢q € RP and angular frequency vector

w, € RP. Bach angular frequency component is assigned the prior w{ ~ N (ul, i)

. Letting
6 = {uq7uq}qQ:1 and p(R?) = [, I1, p( ) the auto-covariance function for f (x) is derived
according to
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Where the expectation over the input domain eliminates cross terms between all ¢ # r since each
7& w(p ) with probability 1. Proceeding in the same fashion as the SG kernel,
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where the final step proceeds by recognizing that each integral in the product is an SG component
from . This is known as the spectral mixture (SM) kernel.

A.3 The Cross-Spectral Mixture (CSM) Kernel

We now consider C' different channels and allow observations from each channel {f.(x)}¢_; to be
represented as a linear combination of latent signals, f.(x) = ZQ \ / 2acq cos(w T(:c + b))

While the angular frequency components are still assigned the prior w ~ N(ug (p ) )) each
channel is assigned channel-specific input-space shifts ¢.,. When computing the cross covarlance
function, these shifts will not cancel when ¢; # co. The cross—covariance function is derived ac-
cording to
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where the final step proceeds by recognizing that each integral in the product is simply an SG

component from l) The phase difference term ¢£§2, gbclq in this last step simply gets added to the

constant ¢ to produce the final result. We have termed this novel kernel the cross-spectral mixture
(CSM) kernel.

B DFT Approximation for the CSM Kernel

Here, we detail the derivation of Proposition 5.1 in the main paper.

B.1 Circulant Matrix Approximation

Dropping cluster assignments and window indicators, the margmal likelihood variance in the paper
was defined as T' = Re{I'} where I = >y Bi® Ky + H™ 9 Iy and K, = ks (e, x; 0) for a
set of input locations x.

By definition, the covariance matrix ¥ = K, for any ¢, is a symmetric Toeplitz matrix. There are

several properties of symmetric Toeplitz matrices that make the form of I' particularly convenient.
One of these properties is that a matrix of this form is uniquely identified by the first column of the
matrix, denoted here as o. Furthermore, a Nymmetrlc Toeplitz matrix is closely related to a circulant
matrix. Specifically, reflecting the first | elements of c to the last [ + 1] elements will

produce a circulant approximation, &, to o The resulting matrix is also Toeplitz, 3= toeplitz(N)
and is closely related to the discrete Fourier transform (DFT) in the following way. Given the eigen-
decomposition > = VsAs V~ the vector of eigenvalues Ag, = diag(Ag) equals the complex
DFT of . Mathematlcally, U0' = )\ , where U is the N x N unitary DFT matrix [?].

This reveals that the columns of U are the eigenvectors of 3, thereby implying that (a) > is diag-
onalizable by the DFT coefficient matrix, and (b) the elements along the diagonal, )\i, refer to the
power spectral density of &, i.e.,

U'SU = Ag = diag (67 'S(w)), (5)

where the spectral density values are scaled by §—! and evaluated 1ndependently Sw) =
[S(w1),...,S(wn)] at angular frequency locations w = 2% [0,1,..., [ ¥, —[51],...,—1].
Because of this, the full matrix 3 need not ever be stored; rather, the spectral density vector S (w)
is sufficient.

As é — 0 and zy — o0, this spectral density is exact and there is no error in approximating 3 with

3. This is due to the increasing resolution of the DFT frequency bins. When the resolution is poor,
however, the elements of 3 have small, but non-negligible, negative correlations.

B.2 Marginal Likelihood of DFT Coefficients

The marginal likelihood formulation y ~ A (0,T) is particularly useful if the DFT approximation
from the previous section is applied. Specifically, the marginal likelihood of the linear transforma-

tions {U Tyc _, is of interest. The following provides details about this distribution.

Although only the real portion of y = y" + jy’ is observed, the fact that y" is a sum of latent
sinusoidal signals allows the complex vector y to be represented as a circularly symmetric complex
normal random variable, such that y ~ CA/(0, 2T"). This formulation implies that the distribution of
y is invariant to any real phase shift in the underlying latent signals [?]. To avoid complex numbers,
the joint distribution of the real and imaginary components of y is equivalent to the multivariate

Gaussian distribution,
] (8] [l W)

where the marginal distribution for the real component is y™ ~ A'(0, Re{T'}), the exact form given
above.



Denoting the DFT of each channel as z = (I ® U)'y, and using the circulant approximation
for each matrix { K q}qQ:1 along with (5)) provides the equivalent marginal distribution for the DFT
coefficients of z ~ CA/(0,2S), where
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To obtain this result, the property of Kronecker products (A1 ® B1)(As ® Bs) = (A142) ®

(B1B3) was used, leaving the additive Gaussian noise term H ler ~ untouched (since U'u =
I ) and replacing each K, with its spectral density, & _1AfE .

One important comment pertains to the power spectral density along the diagonal of Az . While the

Fourier transform of any real data y” results in a symmetric spectral density, the Fourier transform

of circularly symmetric data y results in a spectral density that equals zero for half of the spectrum.

Therefore, elements along the diagonal of Az will equal zero for half the spectrum, i.e., the spectral
q

density will contain only white noise for w = 2% [— |22 ... —1].
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