
Supplement to ’b-bit Marginal Regression’:

proofs and derivations

A Proof of Proposition 1

The proof relies on concentration properties of χ2-random variables which can be
found in [4], Section J.

Lemma A.1. Let Z ∼ χ2(d). Then we have for any t ∈ (0, 1/2)

P(Z ≥ d(1 + t)) ≤ exp

(
− 3

16
dt2
)
,

P(Z ≤ d(1− t)) ≤ exp

(
−1

4
dt2
)
.

Proof. (Proposition 1) Note that E[η] = E[A⊤y/m] = E[A⊤(Ax∗ + ε)/m] = x∗,
where the expectation is w.r.t. both A and ε. In the sequel, we will show that

max
1≤j≤n

|ηj −E[ηj ]| = max
1≤j≤n

∣∣∣∣∣
A⊤
j y

m
−E

[
A⊤
j y

m

]∣∣∣∣∣ ≤ C0(‖x∗‖2 + σ)

√
logn

m
. (1)

with probability at least 1 − cn−1, for suitable constants c, C0 > 0. This already
implies the assertion of the proposition, as shown below. Denote

Q(x∗) =

{
j ∈ [n] : |x∗j | > 2C0(‖x∗‖2 + σ)

√
logn

m

}
⊆ S(x∗).

Note that under the event (1), Q(x∗) ⊆ S(x̂). Indeed, by the definition of x̂, its
support S(x̂) contains the indices corresponding to the s largest entries of η (in absolute
magnitude), and under event (1) it holds that minj∈Q(x∗) |ηj | > maxj∈[n]\S(x∗) |ηj |. We
thus bound

‖x̂− x∗‖∞ = max{‖x̂Q(x∗) − x∗Q(x∗)‖∞, ‖x̂S(x∗)\Q(x∗) − x∗S(x∗)\Q(x∗)‖∞, ‖x̂[n]\S(x∗)‖∞}
≤ max{‖ηQ(x∗) −E[ηQ(x∗)]‖∞, ‖ηS(x∗)\Q(x∗) −E[ηS(x∗)\Q(x∗)]‖∞,

‖x∗S(x∗)\Q(x∗)‖∞, ‖η[n]\S(x∗)‖∞}
(1)

≤ 2C0(‖x∗‖2 + σ)

√
logn

m
.

To conclude that this yields the assertion of the proposition with C = 2
√
2C0, we use

‖x̂− x∗‖2 ≤
√
‖x̂− x∗‖0‖x̂− x∗‖∞ ≤

√
2s‖x̂− x∗‖∞.

The bound (1) can be established by standard concentration arguments. Applying
the second result from Lemma A.1 with d = m, t =

√
8 log(n)/m, and using a union

bound, we obtain under the assumption that m ≥ 32 logn

P

(
min

1≤j≤n
‖Aj‖22 ≤ m−√

m
√
8 log(n)

)
≤ 1

n

⇐⇒ P

(
min

1≤j≤n
‖Aj‖22/m ≤ 1−

√
8 log(n)/m

)
≤ 1

n
.
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Similarly, invoking the first result of Lemma A.1 under the assumption that m ≥
(128/3) logn

P

(
max
1≤j≤n

‖Aj‖22/m ≥ 1 +
√
(32/3) log(n)/m

)
≤ 1/n

=⇒ P

(
max
1≤j≤n

‖Aj‖22 ≥ 2m

)
≤ 1/n.

Moreover, conditional on the event
⋂
j∈[n]{‖Aj‖2 ≤ κ} with κ =

√
2m, we have

P


 max

1≤j≤n

∣∣∣∣∣∣
1

m

∑

k 6=j

〈Aj , Ak〉x∗k

∣∣∣∣∣∣
> t‖x∗‖2


 ≤ 2n exp(−m2t2/(2κ2)) ≤ 2n exp(−mt2/4),

(2)

by a standard Gaussian tail bound. Hence, choosing t =
√
8 log(n)/m, we obtain

P


 max

1≤j≤n

∣∣∣∣∣∣
1

m

∑

k 6=j

〈Aj , Ak〉x∗k

∣∣∣∣∣∣
> ‖x∗‖2

√
8 log(n)/m


 ≤ 2/n.

Altogether, we have with probability at least 1− 4/n

|A⊤
j (Ax

∗)/m− x∗j | ≤
∣∣∣∣
(
1− ‖Aj‖2

m

)
x∗j

∣∣∣∣+

∣∣∣∣∣∣
1

m

∑

k 6=j

〈Aj , Ak〉x∗k

∣∣∣∣∣∣
≤ C0‖x∗‖2

√
log(n)/m,

simultaneously for all j ∈ [n], thereby establishing (1) with C0 =
√

32/3 +
√
8 for

σ = 0. The case σ > 0 follows immediately by the triangle inequality

|A⊤
j (Ax

∗ + ε)/m− x∗j | ≤ |A⊤
j (Ax

∗)/m− x∗j |+ |A⊤
j ε/m|, j ∈ [n],

and a concentration inequality for max1≤j≤n |A⊤
j ε/m| similarly to (2).

B Proof of Lemma 1

Proof. Let ∅ 6= S ⊆ {1, . . . , n}. Then for any unit vector x supported on S, 〈η, x〉 ≤
‖ηS‖2 which is attained by setting xS = ηS/‖ηS‖2. Consequently,

min
x:‖x‖2≤1,‖x‖0≤s

−〈η, x〉 = min
S:|S|≤s

−‖ηS‖2.

The optimization problem on the right hand side can be solved by finding the index
set of the s largest component (in absolute magnitude) in η. This yields the claim.

C Proof of Proposition 2

For the next proof (and others below), we need the following Lemma

Lemma C.1. For all x ∈ R
n, we have E[〈x, η〉] = λ 〈x, x∗u〉. In particular, by consid-

ering x = ej, j ∈ [n], where {ej}nj=1 is the standard basis of Rn, we have E[η] = λx∗u.
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Proof.

E[〈x, η〉] = E[
〈
x,A⊤y/m

〉
]

= E[〈Ax, y〉 /m]

= E[〈a1, x〉 y1]
= EE[y1 〈a1, x〉 |a1]
= E[θ(〈a1, x∗u〉) 〈a1, x〉]
= E

[
θ(〈a1, x∗u〉)

〈
a1, x

‖ + x⊥
〉]

= 〈x, x∗u〉E[θ(g)g], g ∼ N(0, 1)

= λ 〈x, x∗u〉 ,
where in the third line from the bottom x‖ = 〈x, x∗u〉x∗u and x⊥ denote the orthogonal
projection of x on x∗u and its orthogonal complement, respectively. We then use
that

〈
a1, x

⊥
〉
and 〈a1, x∗u〉 are Gaussian and uncorrelated and hence also independent

random variables.

Proof. (Proposition 2) Since x̂ is a minimizer and x∗u is a feasible solution, we have

−〈η, x̂〉 ≤ − 〈η, x∗u〉 .
After re-arranging, we obtain that

〈x∗u − x̂, η −E[η]〉+ 〈x∗u − x̂,E[η]〉 ≤ 0.

Using Hölder’s inequality and Lemma C.1, this implies

〈x∗u − x̂,E[η]〉 ≤ ‖x∗u − x̂‖1‖η −E[η]‖∞
〈x∗u − x̂, λx∗u〉 ≤

√
‖x∗u − x̂‖0‖x∗u − x̂‖2‖η −E[η]‖∞

λ

2
‖x∗u − x̂‖22 ≤

√
2s‖x∗u − x̂‖2‖η −E[η]‖∞

For the last inequality, we have used that

‖x∗u − x̂‖22 ≤ 2(1− 〈x̂, x∗u〉) = 2(〈x∗u, x∗u〉 − 〈x̂, x∗u〉) = 2(〈x∗u, x∗u − x̂〉),
because ‖x∗u‖2 = 1 and ‖x̂‖2 ≤ 1. Eventually, we obtain that

‖x∗u − x̂‖2 ≤ 2
√
2
Ψ

λ

√
s logn

m
,

with probability at least 1− 1/n by the definition of Ψ.

D Proof of Proposition 3

Proof. Consider ŝ = |{j : |ηj | > Ψ
√
log(n)/m}| and the optimization problem

min
x:‖x‖2≤1,‖x‖0≤ŝ

−〈η, x〉 .

Note that for j /∈ S(x∗), E[ηj ] = 0 in view of Lemma C.1, and further by the definition
of Ψ, we have

max
j /∈S(x∗)

|ηj | ≤ Ψ
√
log(n)/m

with probability at least 1− 1/n. Conditional on this event, we therefore have S(x̂) ⊆
S(x∗). Similarly we have

min
j∈S(x∗)

|ηj | ≥ |E[ηj ]| −Ψ
√
log(n)/m = λ|(x∗u)j | −Ψ

√
log(n)/m.

Thus as long as
min

j∈S(x∗)
|(x∗u)j | > (2Ψ/λ)

√
log(n)/m

it holds that minj∈S(x∗) |ηj | > Ψ
√
log(n)/m and consequently S(x̂) = S(x∗).
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E Proof of Lemma 2

The proof of Lemma 2 requires three additional lemmas.

Lemma E.1. Let g ∼ N(0, 1) and ζ : R → R be any differentiable function satisfy-
ing |ζ(x)xφ(x)| → 0 as x → ∞, where φ denotes the standard Gaussian pdf. Then
E[ζ(g)g] = E[ζ′(g)].

Proof. Observe that φ′(x) = −xφ(x), x ∈ R. Using integration by parts we thus have

E[ζ(g)g] =

∫

R

xζ(x)φ(x) dx = {ζ(x)(−φ′(x))}
∣∣∣
∞

−∞
+

∫

R

ζ′(x)φ(x) dx

=

∫

R

ζ′(x)φ(x) dx = E[ζ′(g)].

Lemma E.2. For all α, β > 0 and all µ, ν ∈ R, one has

∫ ∞

−∞

1

α
φ

(
x− µ

α

)
1

β
φ

(
x− ν

β

)
dx =

1√
β2 + α2

φ

(
µ− ν√
β2 + α2

)
.

Proof. Using elementary manipulations, one computes

∫ ∞

−∞

1

α
φ

(
x− µ

α

)
1

β
φ

(
x− ν

β

)
dx

=
1

2παβ

∫ ∞

−∞

exp

(
− (µ− x)2

2α2

)
exp

(
− (ν − x)2

2β2

)
dx

=
1

2παβ
exp

(
− (µ− ν)2

2(α2 + β2)

)
×

×
∫ ∞

−∞

exp

(
−1

2

((
µ

α2
+

ν

β2

)(
1

α2
+

1

β2

)
− x

)2(
1

α2
+

1

β2

))
dx

=
1

2παβ

√
2π

αβ√
β2 + α2

exp

(
− (µ− ν)2

2(α2 + β2)

)

=
1√
2π

1√
β2 + α2

exp

(
− (µ− ν)2

2(α2 + β2)

)
.

Lemma E.3. Let h be a random variable with a N(0, σ2)-distribution. Then for any
a, b ∈ R ∪ {−∞,∞}, a < b, we have

E[h|h ∈ (a, b)] = σ
φ(a/σ)− φ(b/σ)

Φ(b/σ)− Φ(a/σ)
,

where Φ denotes the standard Gaussian cdf.

Proof. We have

E[h|h ∈ (a, b)] =
1

Φ(b/σ)− Φ(a/σ)

∫ b

a

x

σ
φ(x/σ) dx.

Using the change of variables z = x/σ and the fact that φ′(z) = −zφ(z), the result
follows.
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Before finally turning to the proof of Lemma 2, let us recall the definition of the b-
bit quantization map given at the end of Section 2. In that definition we have used
the symmetry of the Gaussian distribution around 0 so that a partitioning of R+

automatically translates into a partitioning of R. For parts of the proofs, however, it
is more convenient to work with the following alternative (albeit equivalent) definition.

Definition E.1. Define Q1 = −RK , Q2 = −RK−1, . . . ,QK = −R1, QK+k = Rk,
k ∈ [K] and µ̃ = (−µK , . . . , µ1, µ1, . . . , µK)⊤. Then an equivalent definition of the

quantization map is given by z 7→ Q(z) =
∑2K
k=1 µ̃kI(z ∈ Qk). Likewise, we define

t̃ = (−tK ,−tK−1, . . . , t0, t1, . . . , tK−1, tK)⊤.

Proof. (Lemma 2) Recall that λ = λb,σ = λb,σ(t,µ) is defined by λ = E[g θ(g)],
g ∼ N(0, 1), where the map θ is in turn defined by the relation E[y1|a1] = θ(z1) (here
and below zi = 〈ai, x∗〉, i ∈ [m]). We have

E[y1|a1] =
2b∑

k=1

µ̃k P(y1 ∈ Qk)

=

2b∑

k=1

µ̃k P(z1 + ε1 ∈ Qk)

=

2b∑

k=1

µ̃k P(z1 + ε1 ∈ (t̃k, t̃k+1))

=
2b∑

k=1

µ̃k
{
Φ((t̃k+1 − z1)/σ)− Φ((t̃k − z1)/σ)

}
.

We conclude that the map θ is defined by

θ(z) =

2b∑

k=1

µ̃k
{
Φ((t̃k+1 − z)/σ)− Φ((t̃k − z)/σ)

}
.

Next we invoke Lemma E.1 which yields λ = E[zθ(z)] = E[θ′(z)]. We have

θ′(z) =

2b∑

k=1

µ̃k

{
1

σ
φ((z − t̃k)/σ)−

1

σ
φ((z − t̃k+1)/σ)

}
.

With the help of Lemma E.2, we compute

E[θ′(z)] =
2b∑

k=1

µ̃k

∫

R

{
1

σ
φ((z − t̃k)/σ)−

1

σ
φ((z − t̃k+1)/σ)

}
φ(z) dz.

=

2b∑

k=1

µ̃k
1√

1 + σ2

{
φ

(
t̃k√

1 + σ2

)
− φ

(
t̃k+1√
1 + σ2

)}
.
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Applying Lemma E.3, the last expression can be rewritten as follows:

2b∑

k=1

µ̃k
1√

1 + σ2

{
φ

(
t̃k√

1 + σ2

)
− φ

(
t̃k+1√
1 + σ2

)}

=

2b∑

k=1

µ̃k
E[g̃|g̃ ∈ (t̃k, t̃k+1)]

1 + σ2

{
Φ
(
t̃k+1/

√
1 + σ2

)
− Φ

(
t̃k/
√
1 + σ2

)}
,

g̃ ∼ N(0, 1 + σ2)

=
1

1 + σ2

2b∑

k=1

µ̃k E[g̃|g̃ ∈ Qk]P(g̃ ∈ Qk)

=
1

1 + σ2

K∑

k=1

µk E[g̃|g̃ ∈ Rk]P(|g̃| ∈ Rk)

=
1

1 + σ2
〈α(t),E(t) ⊙ µ〉 ,

where the penultimate line follows from the symmetry of the Gaussian distribution
around zero; at this point, we convert the partitioning of R into {Qk}2Kk=1 back to the
partitioning of R+ into {Rk}Kk=1 (cf. the remark preceding Definition E.1). The last
line follows by comparison with the definitions in Lemma 2.

F Proof of Lemma 3

Proof. Let us recall the definition of Ψ = Ψb,σ = Ψb,σ(t,µ):

Ψ = inf{C > 0 : P{max1≤j≤n |ηj −E[ηj ]| ≤ C
√
log(n)/m} ≥ 1− 1/n.}.

Expanding ηj −E[ηj ], we obtain that

ηj −E[ηj ] =
1

m

m∑

i=1

(Aijyi −E[Aijyi]).

Note that since the Aij are i.i.d. N(0, 1) variables while the {yi} are bounded random
variables, the {Aijyi−E[Aijyi]}mi=1 are i.i.d. zero-mean sub-Gaussian random variables,
j ∈ [n], cf. e.g. [3]. By using a standard tail bound for such random variables and
a union bound over {1, . . . , n}, C can be chosen proportional (i.e. up to a universal
constant) to the maximum of the sub-Gaussian norms of {A1jy1 − E[A1jy1]}nj=1 [3].
In most cases, however, it is involved to compute the sub-Gaussian norm exactly.
However, it is well-known that for a zero-mean Gaussian random variable, the sub-
Gaussian norm is proportional to its standard deviation; the precise value of the
proportionality constant is not relevant to our analysis. In the sequel, we thus resort
to a normal approximation as |x∗j | → 0, j ∈ [n], m → ∞, and evaluate the standard
deviation of the limiting distribution. For this purpose, we derive the pdf fj of the
random variables A1jy1, j ∈ [n]. Setting Xj = A1j , Y = y1, and using a well-known
expression for the pdf of a product of random variables (cf. [2], §4.7), we obtain that

fj(z) =
∑

q∈range(Q)

1

|q|fXj ,Y (z/q, q)

=
∑

q∈range(Q)

1

|q|fXj
(z/q)P(Y = q|Xj = z/q)

=

K∑

k=1

1

µk
φ(z/µk) {P (Y = µk|Xj = z/µk) +P (Y = −µk|Xj = z/− µk)} .
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In the second line, the joint density fXj ,Y of (Xj , Y ) is factorized into the marginal
density of Xj and the conditional density (here discrete) of Y given Xj . In the third
line, we use that the range of Q is {−µK , . . . ,−µ1, µ1, . . . , µK} and that φ(x) = φ(−x)
for all x ∈ R. We now derive expressions for the conditional probabilities inside the
curly brackets. Recall that Y = µk if and only if Y := 〈a1, x∗〉 + σε1 ∈ (tk−1, tk),
k ∈ [K]. We need to compute the probabilities of the events {Y ∈ (tk−1, tk)|Xj =
z/µk} and {Y ∈ (−tk,−tk−1)|Xj = z/ − µk}. Note that (Xj , Y ) follow a bivariate
Gaussian distribution with mean zero and the following second moments: Var(Xj) = 1,
Var(Y ) = 1 + σ2, Cov(Xj , Y ) = x∗j . Denoting ρ̃ = x∗j/

√
1 + σ2 and making use of

closed form expressions for the two conditional distributions (see e.g. [1]) associated
with a bivariate Gaussian distribution, we obtain for any k ∈ [K]

P (Y = µk|Xj = z/µk) = P(Y ∈ (tk−1, tk)|Xj = z/µk)

= Φ

(
tk − ρ̃

√
1 + σ2(z/µk)√

1− ρ̃2
√
1 + σ2

)
− Φ

(
tk−1 − ρ̃

√
1 + σ2(z/µk)√

1− ρ̃2
√
1 + σ2

)
,

Likewise, for any k ∈ [K] we have

P (Y = −µk|Xj = z/− µk) = P(Y ∈ (−tk,−tk−1)|Xj = z/− µk)

= Φ

(
−tk−1 − ρ̃

√
1 + σ2(−z/µk)√

1− ρ̃2
√
1 + σ2

)
− Φ

(
−tk − ρ̃

√
1 + σ2(−z/µk)√

1− ρ̃2
√
1 + σ2

)

= Φ

(
tk − ρ̃

√
1 + σ2(z/µk)√

1− ρ̃2
√
1 + σ2

)
− Φ

(
tk−1 − ρ̃

√
1 + σ2(z/µk)√

1− ρ̃2
√
1 + σ2

)
,

using that Φ(−x) = 1−Φ(x) for all x ∈ R. Altogether, we conclude that for all j ∈ [n]

fj(z) =

K∑

k=1

1

µk
φ(z/µk) 2

{
Φ

(
tk − ρ̃

√
1 + σ2(z/µk)√

1− ρ̃2
√
1 + σ2

)
− Φ

(
tk−1 − ρ̃

√
1 + σ2(z/µk)√

1− ρ̃2
√
1 + σ2

)}
.

Now note that as |x∗j | → 0, all fjs converge pointwise to

f0(x) =

K∑

k=1

1

µk
φ(x/µk)

{
2(Φ(tk/

√
1 + σ2)− Φ(tk−1/

√
1 + σ2))

}

=

K∑

k=1

P(|g̃| ∈ Rk(t))
1

µk
φ(x/µk), g̃ ∼ N(0, 1 + σ2)

=
K∑

k=1

αk(t)
1

µk
φ(x/µk).

with α(t) as defined in Lemma 2. Observe that f0 equals the density of a Gaussian
scale mixture with mixture proportions α(t) and scales {µk}Kk=1. The standard devi-

ation of this distribution is given by
√
〈α(t),µ⊙ µ〉.

In light of the above, we conclude that as |x∗j | → 0, A1jy1 − E[A1jy1] converges
to the Gaussian scale mixture with density f0, j ∈ [n]. By the central limit the-
orem,

√
m(ηj − E[ηj ]) converges to a Gaussian distribution with standard devia-

tion
√
〈α(t),µ⊙ µ〉 as m → ∞, j ∈ [n]. Consequently, the sub-Gaussian norm of√

m(ηj −E[ηj ]) is proportional to
√
〈α(t),µ⊙ µ〉 as m→ ∞, j ∈ [n].

G Proof of Theorem 1

Proof. Consider the optimization problem

min
t,µ

Ωb(t,µ) = min
t,µ

Ψb(t,µ)

λb(t,µ)
.
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By Lemma 2 and Lemma 3, the above minimization problem is equivalent to

min
t,µ

R(t,µ), R(t,µ) =

√
〈α(t),µ⊙ µ〉

〈α(t),E(t) ⊙ µ〉 , (3)

where the term σ2 + 1 in λb has been dropped as it does not depend on t or µ. We
start by claiming that

R(t,µ) ≥ 1√
〈α(t),E(t) ⊙E(t)〉

(4)

for all µ with distinct, non-zero entries. The above lower bound is attained by choosing
µ ∝ E(t) (note that the minimizing µ is only defined up to a positive constant as
R(t, cµ) = R(t,µ) for all c > 0). Inequality (4) follows from the Cauchy-Schwarz
inequality. Denote by A(t) the diagonal matrix whose diagonal is given by the entries
of α(t). We then have

〈α(t),E(t) ⊙ µ〉 =
〈
A1/2(t)E(t),A1/2(t)µ

〉

≤
√〈

A1/2(t)E(t),A1/2(t)E(t)
〉√〈

A1/2(t)µ,A1/2(t)µ
〉

with equality holding if and only if

A1/2(t)E(t) = cA1/2(t)µ ⇔ E(t) = cµ,

for some c > 0, where the above ⇔ follows from the fact that the entries of t are
required to be distinct so that the matrix A1/2 is regular. We conclude that

min
t,µ

R(t,µ) = min
t

R(t,E(t)) = min
t

1√
〈α(t),E(t) ⊙E(t)〉

. (5)

We will now show that the above minimization problem in t is equivalent to the b-bit
Lloyd-Max quantization problem of a random variable h ∼ N(0, 1 + σ2), which we
re-state here for convenience:

min
t,µ

E[{h−Q(h; t,µ)}2] = min
t,µ

E[{h− sign(h)
∑K

k=1 µkI(|h| ∈ Rk(t) )}2] (6)

For the above problem, it is not hard to see that for any fixed choice of t, the minimizing
µ∗(t) is given by µ∗

k(t) = E[h|h ∈ Rk(t)] = Ek(t), k ∈ [K], where we recall that Ek(t)
is the k-th component of E(t) as appearing above. To finish the proof of the first part
of the Theorem 1, it thus remains to show that after substituting µ∗(t) back into (6),
the resulting minimization problem in t is equivalent to (5). We have

min
t

E



{
h− sign(h)

K∑

k=1

I(|h| ∈ Rk(t) )E[h|h ∈ Rk(t)]

}2



= 2min
t

E

[
K∑

k=1

I(h ∈ Rk(t))(h −E[h|h ∈ Rk(t)])
2

]

= 2min
t

E

[
K∑

k=1

I(h ∈ Rk(t))
{
h2 − 2h E[h|h ∈ Rk(t)] +E[h|h ∈ Rk(t)]

2
}
]

= E[h2] + 2min
t

{
− 2

K∑

k=1

E[h|h ∈ Rk(t)]E[I(h ∈ Rk(t))h]+

+
K∑

k=1

P(h ∈ Rk(t))E[h|h ∈ Rk(t)]
2

}

= 1 +min
t

−
K∑

k=1

E[h|h ∈ Rk(t)]
2 P(|h| ∈ Rk(t))

= 1 +min
t

−〈E(t)⊙E(t),α(t)〉 ,
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which establishes the equivalence to (5) as claimed.
We now prove the second part of the Theorem. Denote by t∗0 the Lloyd-Max optimal
thresholds for σ = 0, i.e. for a N(0, 1) variable. Clearly, t∗ = t∗σ =

√
1 + σ2t∗0 for any

σ > 0. Evaluating Ωb(t
∗,µ∗), we obtain in view of (5)

Ωb(t
∗,µ∗) ∝ 1 + σ2

√
〈α(t∗),E(t∗)⊙E(t∗)〉

=
1+ σ2

√〈
α(t∗0

√
1 + σ2),E(t∗0

√
1 + σ2)⊙E(t∗0

√
1 + σ2)

〉

Evaluating the expression in the denominator, we obtain that

αk(t
∗
0

√
1 + σ2) = P(|g̃| ∈ Rk(t

∗
0

√
1 + σ2)) = P(|g| ∈ Rk(t

∗
0)), k ∈ [K],

where g̃ ∼ N(0, 1 + σ2), g ∼ N(0, 1). Moreover, with the help of Lemma E.3

E(t∗0
√
1 + σ2) =

(
E[g̃|g̃ ∈ Rk(t

∗
0

√
1 + σ2)]

)K
k=1

=
√
1 + σ2

(
E[g|g ∈ Rk(t

∗
0)]
)K
k=1

.

Putting together the pieces, we obtain that

Ωb(t
∗,µ∗) ∝ 1 + σ2

√
〈α0(t∗0), (1 + σ2)E0(t∗0)⊙E0(t∗0)〉

=

√
1 + σ2

√
λb,0(t∗0,µ

∗
0)

where the α0(t), E0(t) and λb,0(t,µ) refer to the definitions of α(t),E(t), λb(t,µ) for
σ = 0. This completes the proof.

H Derivations for the paragraph ’Beyond additive

noise’

We fix σ = 0 and the corresponding Lloyd-Max optimal choices t = t∗0, µ = µ∗
0 so

that µk = E[g|g ∈ Rk], g ∼ N(0, 1) with Rk = Rk(t
∗
0), k ∈ [K].

Mechanism (I)
In order to evaluate λ = λb,p, we first need to derive an expression for the corresponding
map θ. Recalling Definition E.1, we have

E[y1|a1] = (1 − p)

2b∑

k=1

µ̃kI(〈a1, x∗〉 ∈ Qk) + p
1

2b − 1

2b∑

k=1

µ̃kI(〈a1, x∗〉 /∈ Qk)

and thus

θ(z) = (1− p)

2b∑

k=1

µ̃kI(z ∈ Qk) + p
1

2b − 1

2b∑

k=1

µ̃kI(z /∈ Qk)
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It follows that for g ∼ N(0, 1)

λb,p = E[g θ(g)] =
2b∑

k=1

µ̃k

{
(1− p)E [gI(g ∈ Qk)] + p

1

2b − 1
E[gI(g /∈ Qk)]

}

=

2b∑

k=1

µ̃k

{
(1− p)E [gI(g ∈ Qk)] + p

1

2b − 1
E[g(1− I(g ∈ Qk))]

}

=

2b∑

k=1

µ̃k

{
(1− p)− p

2b − 1

}
E [gI(g ∈ Qk)]

=
K∑

k=1

P(|g| ∈ Rk)E[g|g ∈ Rk]
2

{
(1− p)− p

2b − 1

}

= 〈α0(t
∗
0),E0(t

∗
0)⊙E0(t

∗
0)〉
{
(1− p)− p

2b − 1

}

= λb,0

{
(1− p)− p

2b − 1

}
,

where α0(t
∗
0) and E0(t

∗
0) are defined at the end of the preceding proof. From the last

expression we deduce the breakdown point p̄b = 1− 1/2b.
For evaluating Ψb,p (up to a positive constant), we make use of the asymptotic expres-

sion Ψb,0 ∝
√
〈α(t),µ⊙ µ〉 derived in Lemma 3. The only thing that changes under

Mechanism (I) are the probabilities α(t) which become

αk(t) = P(|g| ∈ Rk(t))(1 − p) +
p

2b−1

∑

l 6=k

P(|g| ∈ Rl(t)), k ∈ [K].

Mechanism (II)
Following the same route as for Mechanism (I), one derives

θ(z) = (1− p)

2b∑

k=1

µ̃kI(z ∈ Qk) + p {−µKI(z ≥ 0) + µKI(z < 0)}

and accordingly for g ∼ N(0, 1)

λb,p = E[g θ(g)] = (1 − p)

K∑

k=1

P(|g| ∈ Rk)E[g|g ∈ Rk]
2 − pµK E[g|g > 0]

= (1− p)λb,0 − pµK
√
2/π

so that the breakdown points results as p̄b = λb,0/(λb,0+µK
√
2/π). As for Mechanism

(II), Ψb,p is obtained by evaluating the changes in α(t). We have

αk(t) = (1− p)P(|g| ∈ Rk(t)), k ∈ [K − 1],

αK(t) = p

K−1∑

k=1

P(|g| ∈ Rk(t)) +P(|g| ∈ RK(t)).

I Proof of Proposition 4

Proof. In the sequel, we derive tail bounds of the form

P(ψ̂ ≥ (1 + ε)ψ∗) ≤ exp(−cmε2),
P(ψ̂ ≤ (1− ε)ψ∗) ≤ exp(−2cmε2).
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for ε ∈ (0, 1) and c = 2{φ′(t/ψ∗)}2. This implies that the probability of the event

∣∣∣∣∣
ψ̂

ψ∗
− 1

∣∣∣∣∣ > ε

is upper bounded by 2 exp(−cmε2).
1) Upper tail

P(ψ̂ ≥ (1 + ε)ψ∗) = P

(
t1

Φ−1
(
1
2 (1 +

m1

m )
) ≥ (1 + ε)ψ∗

)

= P

(
m1

m
≤ 2Φ

(
t1

(1 + ε)ψ∗

)
− 1

)

= P

(
m1

m
−E

[m1

m

]
≤ 2

{
Φ

(
t1

(1 + ε)ψ∗

)
− Φ

(
t1
ψ∗

)})

We have

Φ

(
t1

(1 + ε)ψ∗

)
− Φ

(
t1
ψ∗

)
= −

∫ t1/ψ
∗

t1/(ψ∗(1+ε))

φ(u) du

≤ −φ(t1/ψ∗)
t1
ψ∗

ε

ε+ 1

≤ −φ(t1/ψ∗)
t1
ψ∗

ε

2
= φ′(t1/ψ

∗)
ε

2
.

for ε ∈ (0, 1). Thus

P(ψ̂ ≥ (1 + ε)ψ∗) ≤ P
(m1

m
−E

[m1

m

]
≤ εφ′(t1/ψ

∗)
)

2) Lower tail

Similarly, we obtain that

P(ψ̂ ≤ (1− ε)ψ∗) ≤ P

(
m1

m
−E

[m1

m

]
≥ 2

{
Φ

(
t1

(1− ε)ψ∗

)
− Φ

(
t1
ψ∗

)})

We have

Φ

(
t1

(1− ε)ψ∗

)
− Φ

(
t1
ψ∗

)
=

∫ t1/(ψ
∗(1−ε))

t1/ψ∗

φ(u) du ≥ φ(t1/ψ
∗)
t1
ψ∗

ε

1− ε
≥ −φ′(t1/ψ∗)ε.

Thus,

P(ψ̂ ≤ (1− ε)ψ∗) ≤ P
(m1

m
−E

[m1

m

]
≤ 2ε(−φ′(t1/ψ∗))

)
.

Note that m1 is a Binomial random variable. Applying Hoeffding’s inequality to 1)
and 2), we obtain that

P(ψ̂ ≥ (1 + ε)ψ∗) ≤ exp
(
−2mε2{φ′(t1/ψ∗)}2

)

P(ψ̂ ≤ (1 − ε)ψ∗) ≤ exp
(
−4mε2{φ′(t1/ψ∗)}2

)
.

which proves the claim made above.
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