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Abstract

We consider the problem of sparse signal recovery froinear measurements
quantized ta bits. b-bit Marginal Regression is proposed as recovery algorithm
We study the question of choosihgdn the setting of a given budget of bifs =

m - b and derive a single easy-to-compute expression charzagthe trade-off
betweenn andb. The choice) = 1 turns out to be optimal for estimating the unit
vector corresponding to the signal for any level of addi@aussian noise before
quantization as well as for adversarial noise. &or 2, we show that Lloyd-Max
quantization constitutes an optimal quantization schengetlaat the norm of the
signal can be estimated consistently by maximum likelihopéxtending([15].

1 Introduction
Consider the common compressed sensing (CS) model
yi = {a;,x*) +oe;, i=1,...,m, orequivalently
y=Ax"+oe, y=(y:)iZ1, A= (A2, {ai=(Ai)i 1, €= ()il

where the{ A4;;} and the{e; } are i.i.d.N (0, 1) (i.e. standard Gaussian) random variables, the latter
of which will be referred to by the term “additive noise” anctardinglys > 0 as “noise level”, and

x* € R™ is the signal of interest to be recovered gieh y). Lets = ||z*|o := |S(z*)|, where
S(z*) = {j : |z}| > 0}, be thely-norm ofz* (i.e. the cardinality of its suppofi(z*)). One of the
celebrated results in CS is that accurate recoveny*a$§ possible as long as = slogn, and can

be carried out by several computationally tractable athos e.g.[[3, 5, 21, 26, 29].

(1)

Subsequently, the concept of signal recovery from an indet@set {n < n) of linear measure-
ments was developed further to settings in which only chargpeantized versions of such linear
measurements are available, with the extreme case of diitgieeasurements|[2] 8,111,122 23] 28,
16]. More generally, one can think dfit measurements,e {1,2,...}. Assuming that one is free
to choose given a fixed budget of bit&® = m - b gives rise to a trade-off between andb. An
optimal balance of these two quantities minimizes the arroecovering the signal. Such optimal
trade-off depends on the quantization scheme, the noigt, land the recovery algorithm. This
trade-off has been considered in previous CS literaturp [i@wever, the analysis therein concerns
an oracle-assisted recovery algorithm equipped with kadgé ofS(z*) which is not fully realistic.

In [9]] a specific variant of Iterative Hard Thresholding [d} b-bit measurements is considered. It is
shown via numerical experiments that chooding 2 can in fact achieve improvements ovet 1

at the level of the total number of bits required for approadensignal recovery. On the other hand,
there is no analysis supporting this observation. Moredher experiments iri [9] only concern a
noiseless setting. Another approach is to treat quantizats additive error and to perform signal
recovery by means of variations of recovery algorithmsii€inite-precision CS 10, 14, 18]. In this
line of researchh is assumed to be fixed and a discussion of the aforementitadetoff is missing.

In the present paper we provide an analysis of compresssthgegnomb-bit measurements using a
specific approach to signal recovery which we térbit Marginal Regression. This approach builds
on a method for one-bit compressed sensing proposed in aemtitil paper by Plan and Vershynin
[23] which has subsequently been refined in several receritsid, 24/ 28]. As indicated by the
name p-bit Marginal Regression can be seen as a quantized veridarginal Regression, a simple



yet surprisingly effective approach to support recoveat 8tands out due to its low computational
cost, requiring only a single matrix-vector multiplicatiand a sorting operationl[7]. Our analysis
yields a precise characterization of the above trade-eofiliing m andb in various settings. It
turns out that the choick = 1 is optimal for recovering the normalized signg] = =*/||2*||2,
under additive Gaussian noise as well as under adversaii#.nlt is shown that the choide=

2 additionally enables one to estimdte* |2, while being optimal for recovering;, for b > 2.
Hence for the specific recovery algorithm under considenatt does not pay off to take > 2.
Furthermore, once the noise level is significantly highit Marginal Regression is empirically
shown to perform roughly as good as several alternativevergalgorithms, a finding suggesting
that in high-noise settings takirig> 2 does not pay off in general. As an intermediate step in our
analysis, we prove that Lloyd-Max quantization[L9] 20] stitates an optimab-bit quantization
scheme in the sense that it leads to a minimization of an upmend on the reconstruction error.
Notation: We use[d] = {1,...,d} andS(x) for the supportofr € R". z © 2" = (z; - 2})7_;.
I(P) is the indicator function of expressidd. The symbolkx means “up to a positive universal
constant”.Supplement Proofs and additional experiments can be found in the supgiht.

2 From Marginal Regression tob-bit Marginal Regression

Some background on Marginal Regressionlt is common to perform sparse signal recovery by
solving an optimization problem of the form

1 ol
min o—||y — Az|l3 + 5 P@), 720, (2)

whereP is a penalty term encouraging sparse solutions. StandaideshforP are P(z) = ||z||o,
which is computationally not feasible in general, its conkglaxationP(z) = ||z||; or non-convex
penalty terms like SCAD or MCP that are more amenable to apéition than the/y-norm [27].
Alternatively P can as well be used to enforce a constraint by sefiig = ¢c(z), wherewe(z) =
0if z € C and+o0 otherwise, withC = {z € R™ : ||z|lo < s} orC = {z € R™ : ||z|; < r} being
standard choices. Note thht (2) is equivalent to the opétitn problem

. 1 (ATA 4 ATy
m;n—(n,@—i—i:v ——a+ EP(SC), wheren = —
ReplacingA "™ A/m by E[AT A/m] = I (recall that the entries of are i.i.d.N(0, 1)), we obtain

. 1 v Ay

which tends to be much simpler to solve thah (2) as the firsténms are separable in the compo-
nents ofx. For the choices o> mentioned above, we obtain closed form solutions:

P(z) = |lzllo = @ = n;I(In;| > +"/?) P(x) = [lz[ly : Z; = (In;| — )+ sign(n;),

P(2) = toulo<s * T3 = miL(Inj| = Ines)) P(@) = taain<r + 5 = (Injl —7%)+ sign(n;) (4)
for j € [n], where denotes the positive part argl,)| is the sth largest entry i in absolute
magnitude and* = min{y > 0: >"_, (|n;| — )+ < r}. In other words, the estimators are hard-
respectively soft-thresholded versionspf= A;y /m which are essentially equal to the univariate
(or marginal) regression coefficierfts = AJ-Ty/HAjﬂg in the sense tha; = 6,(1 + Op(m™1)),

j € [n], hence the term “marginal regression”. In the literatures the estimator in the left half of

(@) that is popular[7], albeit as a means to infer the supplort rather than:* itself. Under[(2) the
performance with respect to signal recovery can still begrable in view of the statement below.

Proposition 1. Consider mode{T)) with z* # 0 and the Marginal Regression estimat®defined
component-wise by; = n;1(|n;| > [ns|), j € [n], wheren = ATy/m. Then there exists positive
constants:;, C' > 0 such that with probability at least — cn—!

|z — 2*||2 <c |z*||2 + o [slogn (5)
e = la*]le m

In comparison, the relativés-error of more sophisticated methods like the lasso scates a

O({c/||=*||2} v/slog(n)/m) which is comparable td {5) once is of the same order of magni-
tude as|z*||2. Marginal Regression can also be interpreted as a singjeqtea gradient iteration




from 0 for problem ) withP = ¢,.,,<,. Taking more than one projected gradient iteration gives
rise to a popular recovery algorithm known as Iterative Hetncesholding (IHT,[[1]).

Compressed sensing with non-linear observations and the rtteod of Plan & Vershynin. As a
generalization of{{1) one can consider measurements obthe f

yi = Q{ai,x™) + og;), i € [m] (6)
for some ma). Without loss generality, one may assume that||, = 1 as long as™* # 0 (which
is assumed in the sequel) by defini@gccordingly. Plan and Vershynin [23] consider the follogvin

optimization problem for recovering‘, and develop a framework for analysis that covers even more
general measurement models tHan (6). The proposed estimimimizes

min —(n,z), n=A"y/m. @)
willzlz <1 e <5

Note that the constraint s¢t : ||z||s < 1, ||z]j1 < +/s} contains{z : ||z]2 < 1, ||z|lo < s}. The
authors prefer the former because it is suited for approté@ipaparse signals as well and second
because it is convex. However, the optimization problerh witarsity constraint is easy to solve:

min —{(n,z), =ATy/m. 8
z:|ll2<1,[lzllo<s (s v/ (8)

Lemma 1. The solution of probler) is given byz = z/||Z(|2, Z; = njI(In;| > |nl), J € [n].

While this is elementary we state it as a separate lemma estihs been some confusion in the ex-
isting literature. In[[4] the same solution is obtained afteinecessarily) convexifying the constraint
set, which yields the unit ball of the so-callegsupport norm. In[[24] a family of concave penalty
terms including the SCAD and MCP is proposed in place of tidipality constraint. However, in
light of Lemmd1, the use of such penalty terms lacks motivati

The minimization probleni{8) is essentially that of MardiRagressior[(3) witl? = ¢/, (,<s. the
only difference being that the norm of the solution is fixedte. Note that the Marginal Regression
estimator is equi-variant w.r.t. re-scalingsgfi.e. fora - y with a > 0, Z changes ta. In addition,
leto, B > 0 and definez(a) andz[3] as the minimizers of the optimization problems
X2
min_ — (n,2) + =[],

m:||z|i035 — (7). )

It is not hard to verify thati(a) /|| Z()||2 = Z[B]/]|Z[5]]|2 = Z[1]. In summary, for estimating the
directionz? = x*/||«*||2 it does not matter if a quadratic term in the objective o¢amorm con-
straint is used. Moreover, estimation of the 'scal¢’= [|z*||; and the direction can be separated.
Adopting the framework ir [23], we provide a straightford@dound on thés-error of z minimizing
(8). To this end we define two quantities which will be of cahinterest in subsequent analysis.

A=E[gb(g)], g~ N(0,1), wheredis defined byE[y;]|a1] = 0({a1,z"))
U =inf{C > 0: P{maxi<j<n [7; — E[n;]| < C+/log(n)/m} >1—1/n.}.

The quantityA concerns the deterministic part of the analysis as it gfiestihe distortion of the
linear measurements under the ndgapvhile ¥ is used to deal with the stochastic part. The definition
of ¥ is based on the usual tail bound for the maximum of centerbd3aussian random variables.
In fact, as long ag) has bounded range, Gaussianity of {ti; } implies that the{n; — E[n;]}}_,

are zero-mean sub-Gaussian. Accordingly, the congtasproportional to the sub-Gaussian norm
of the{n; — E[n;]}}_,, cf. [25].

Proposition 2. Consider modef)) s.t. ||z*||2 = 1 and (I0). Suppose thak > 0 and denote by
the minimizer of{8). Then with probability at least — 1/n, it holds that

min
z:||z]|2<B,||lz]lo<s

(10)

slogn

~ v
la* =3l < 2v2 (11)

So fars has been assumed to be known. If that is not the casan be estimated as follows.
Proposition 3. In the setting of Propositiol 2, consider= |{j : |n;| > ¥+/log(n)/m}| andz as
the minimizer of(8) with s replaced bys. Then with probability at least — 1/n, S(z) C S(z*)
(i.e. no false positive selection). Moreover, if

‘ HSl%n : |z7| > (2¥/\)y/log(n)/m, one hasS(z) = S(x"). (12)
JjeSsS(z*



b-bit Marginal Regression. b-bit quantized measurements directly fit into the non-linsaser-
vation model[(B). Here the map represents a quantizer that partitidks into K = 2°~! bins
{R,}E | given by distinct thresholds = (¢1,...,tx—1)" (in increasing order) and, = 0,
tx = —+oo such thatRy = [to,t1),...,Rx = [tx-1,tx). Each bin is assigned a distinct rep-
resentative from\M = {u1, ..., ux} (inincreasing order) so th&g : R — — M U M is defined by
z+— Q(z) = sign(z) Zszl wil(|z| € Ri). Expanding mode[{6) accordingly, we obtain

yi = sign((ai, 2*) + 0ei) Xy I (|((ai,@*) + 02i)| € Rie)

= sign({as, z3) + 7)) Yay el (1((ai, @) +720)| € Ri/%), i € [m],
wherey* = ||z*||2, ¥ = z*/¢* andT = o/¢*. Thus the scale* of the signal can be absorbed
into the definition of the bins respectively thresholds varstiould be proportional tg*. We may
thus again fix)* = 1 and in turnz* = 2z, 0 = 7 w.l.0.g. for the analysis below. Estimation ©f
separately from;, will be discussed in an extra section.

3 Analysis

In this section we study in detail the central question ofititeduction. Suppose we have a fixed
budgetB of bits available and are free to choose the number of meamsunesm and the number

of bits per measuremehntsubject toB = m - b such that thés-error||z — «*||2 of b-bit Marginal
Regression is as small as possible. What is the optimal eladitmn, b)? In order to answer this
question, let us go back to the error bound (11). That bouptiesptod-bit Marginal Regression for
any choice ob and varies withh = )\, andV¥ = ¥, both of which additionally depend an the
choice of the thresholdsand the representatives It can be shown that the dependencéof (11) on
the ratiol /) is tight asymptotically asn — oo. Hence it makes sense to compare two different
choicesh and?d’ in terms of the ratio of2, = ¥,/\, andQ, = ¥y /Ap. Since the bound{11)
decays withy/m, for b’-bit measurements; > b, to improve oveb-bit measurements with respect
to the total #bits used, it is then required that/Q,, > +/b'/b. The route to be taken is thus as
follows: we first derive expressions fay and¥;, and then minimize the resulting expressionfigr
w.r.t. the free parametetsand . We are then in position to compaikg /Q; for b #£ b'.

Evaluating A\, = Ay (t, pt). Below, ® denotes the entry-wise multiplication between vectors.
Lemma 2. We have\,(t, u) = (a(t), E(t) ® p) /(1 + %), where

a(t) = (a1(t),...,ax(t) ", ax(t) =P{g € Ru(t)}, §~ N(0,140%), k€ [K],
E(t) = (Ei(t),..., Ex(t) ", Ei(t) = E[glg € Ri(t)], §~ N(0,140%), k€ [K].

Evaluating ¥, = U,(t, u). Exact evaluation proves to be difficult. We hence resort tarzalyti-
cally more tractable approximation which is still sufficilgraccurate as confirmed by experiments.

Lemma3. As|z}j[ — 0, j =1,...,n,and asm — oo, we havel,(t, u) oc \/(a(t), p © p).

Note that the proportionality constant (not depending)dn front of the given expression does not
need to be known as it cancels out when computing r&tjgs2, . The asymptoticgr’| — 0, j €

[n], is limiting but still makes sense fargrowing withn (recall that we fix||z*||2 = 1 w.l.0.g.).
Optimal choice of t and p. It turns that the optimal choice @f, ) minimizing ¥,/ A, coincides

with the solution of an instance of the classical Lloyd-Maxaqtization problem [19, 20] stated
below. Leth be a random variable with finite variance adhe quantization map from above.

min E[{h — Q(h;t, w)}’] = min Bl{h — sign(h) T3, I (B € Re(6))}’]. (13)

Problem[(IB) can be seen as a one-dimensibmakans problem at the population level, and it is
solved in practice by an alternating scheme similar to tlsgdufork-means. For from a log-
concave distribution (e.g. Gaussian) that scheme can lensioodeliver the global optimuni [12].
Theorem 1. Consider the minimization probleming ,, Uy (t, )/ s (t, pt). Its minimizer(t*, p*)
equals that of the Lloyd-Max problef®3) for h ~ N (0,1 + o2). Moreover,

(7, ") = o (67, ") /N (67, %) o< /(0% + 1)/ X 0 (85, 15),
where \;, o(t5, 1g) denotes the value of, for o = 0 evaluated at(t§, 1), the choice oft, )
minimizing(, for o = 0.




Regarding the choice @f, 1) the result of Theoref 1 may not come as a suprise as the eoitrjes
are i.i.d.N(0,1 + o?). Itis less immediate though that this specific choice cao hésmotivated
as the one leading to the minimization of the error bolnd.(Erthermore, Theorefd 1 implies
that the relative performance 6f and’-bit measurements does not dependsoas long as the
respective optimal choice df, i) is used, which requires to be known. Theorerl 1 provides
an explicit expression fof), that is straightforward to compute. The following tablddisatios
0, /Q4 for selected values dfandd’.

b=1,b = b=2,0=3 b=3,0 =4
Oy /U 1.178 1.046 1.013
required for’ > b: | V2~ 1.414 | \/3/2~1.225| \/4/3 ~ 1.155

These figures suggests that the smaijéhe better the performance for a given budget of Bits

Beyond additive noise.Additive Gaussian noise is perhaps the most studied fornedtifbation,
but one can of course think of numerous other mechanismsemifsct can be analyzed on the
basis of the same scheme used for additive noise as longsdeitsible to obtain the corresponding
expressions fok andW¥. We here do so for the following mechanisms actifigr quantization.

(I) Random bin flipFori € [m]: with probabilityl — p, y; remains unchanged. With probabiljty
y; is changed to an element frofp M U M) \ {y;} uniformly at random.

(I) Adversarial bin flip. Fori € [m]: Write y; = qui for ¢ € {—1,1} andu, € M. With
probability1 — p, y; remains unchanged. With probabiljtyy; is changed te-qu k.

Note that forb = 1, (I) and (II) coincide (sign flip with probability). Depending on the magnitude
of p, the corresponding valug = ), , may even be negative, which is unlike the case of additive
noise. Recall that the error bouidi(11) requixes 0. Borrowing terminology from robust statistics,
we considep, = min{p : Ay, < 0} as thebreakdown pointi.e. the (expected) proportion of
contaminated observations that can still be toleratedao{fi) continues to hold. Mechanism (ll)
produces a natural counterpart of gross corruptions in tiedard setting {1). It can be shown
that among all maps M U M — —M U M applied randomly to the observations with a fixed
probability, (II) maximizes the rati@ /), hence the attribute “adversarial”. In Figlile 1 we display
Uy, »/Ae,p fOrd € {1,2,3, 4} for both (I) and (11). The table below lists the corresporglimeakdown
points. For simplicity,(t, +) are not optimized but set to the optimal (in the sense of LiMak)
choice(t§, ) in the noiseless case. The underlying derivations can balfouthe supplement.

M b=1[b=2]b=3]b=4 () |[b=1|b=2b=3]0b=41
P | 1/2 | 3/4 [ 7/8 | 15/16 | p» | 1/2 | 042 | 0.36 | 0.31

Figure[d and the table provide one more argument in favounefliit measurements as they offer
better robustness vis-a-vis adversarial corruptionsfatt, once the fraction of such corruptions
reache9.2, b = 1 performs best- on the measurement scale. For the milder corruption schime (
b = 2 turns out to the best choice for significant but modepate
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02 I b -{(mverla ) %

0// = Y N

0 0.1 0.5 0 0.4 0.5

0.2 03 01 02 3 0.
fraction of bin flips fraction of gross corruptions

Figure 1:%, ,/ X, (log,-scale) b € {1,2,3,4},p € [0,0.5] for mechanisms (I..) and (II,R).
4 Scale estimation

In Section[2, we have decomposetl = z}¢* into a product of a unit vectar} and a scale
parameter)* > 0. We have pointed out that’ can be estimated by-bit Marginal Regression



separately fromy* since the latter can be absorbed into the definition of the{di). }. Accordingly,

we may estimate* asz = z,,4 with z,, anci) estimatinge}; andy*, respectively. We here consider
the maximum likelihood estimator (MLE) faf*, by following [15] which studied the estimation of
the scale parameter for the entirestable family of distributions. The work df [15] was motied
by a different line of one scan 1-bit CS algorithm|[16] basadvestable designs [17].

First, we consider the case= 0, so that the{y; } are i.i.d.N (0, (v*)?). The likelihood function is

m K
=[ID_ 1w € Ri)P(lyil € Ri) H{2 (tr/¥) — ®(tr—1/¥))} ™, (14)

1=1 k=1

wheremy, = |{i : |yi| € Ri}|, k € [K], and® denotes the standard Gaussian cdf. Note that for
K =1, L(¢) is constant (i.e. does not dependwwhich confirms that fob = 1, it is impossible
to recover)y*. For K = 2 (i.e.b = 2), the MLE has a simple a closed form expression given by

$ =t1/®1(0.5(1 + m1/m)). The following tail bound establishes fast convergence tf v*.

Proposition 4. Lets € (0,1) andc = 2{¢/(t1/1*)}?, where¢’ denotes the derivative of the
standard Gaussian pdf. With probability at ledst 2 exp(—cme?), we havey/¢* — 1| <e.

The exponent is maximized fort; = * and becomes smaller as/¢* moves away from.
While scale estimation from-bit measurements is possible, convergence can be slowisfnot
well chosen. Fob > 3, convergence can be faster but the MLE is not available isedldorm [15].

We now turn to the case > 0. The MLE based ori.(14) is no longer consistent:Jfis known then
the joint likelihood of for(y*, o) is given by

m

zw.3) = [[{o (Hmtlntid) g (ftinsil) ], (15)

=1

wherell;, u;] denotes the interval theth observation is contained in before quantizatioa,[m]. It

is not clear to us whether the likelihood is log-concave chiwould ensure that the global optimum
can be obtained by convex programming. Empirically, we haveencountered any issue with
spurious local minima when using = 0 ands as the MLE from the noiseless case as starting
point. The only issue witH (15) we are aware of concerns tise @@ which there existg so that

Y {ai,xk) € [li,wi], 4 € [m]. In this situation, the MLE for equals zero and the MLE faf may

not be unique. However, this is a rather unlikely scenarioag as there is a noticeable noise level.
As z? is typically unknown, we may follow the plug-in principlesplacingz;; by an estimatog,,.

5 Experiments

We here provide humerical results supporting/illust@gome of the key points made in the previ-
ous sections. We also comparbit Marginal Regression to alternative recovery algarih

Setup. Our simulations follow model{1) witm = 500, s € {10,20,...,50}, ¢ € {0,1,2}
andb € {1,2}. Regardingz*, the support and its signs are selected uniformly at randamie
the absolute magnitude of the entries corresponding to uppast are drawn from the uniform
distribution on|8,23], where3 = f - (1/\1,)+/log(n)/m andm = f2(1/\1 ,)*slogn with

f € {1.5,3,4.5,...,12} controlling the signal strength. The resulting signal iertthormalized
to unit 2-norm. Before normalization, the norm of the signal lieglin/2] by construction which
ensures that ag increases the signal strength conditibnl (12) is satisfigd imcreasing probabil-
ity. Forb = 2, we use Lloyd-Max quantization for & (0, 1)-random variable which is optimal for
o = 0, but not fore > 0. Each possible configuration fer f ando is replicated20 times. Due to
space limits, a representative subset of the results isrsttbw rest can be found in the supplement.

Empirical verification of the analysis in Section[3 The experiments reveal that what is predicted
by the analysis of the comparison of the relative perforrearfd -bit and2-bit measurements for
estimatingz* closely agrees with what is observed empirically, as careba & FiguréR2.

Estimation of the scale and the noise levelFigure[3 suggests that the plug-in MLE fap* =
|lz*]|2, o) is a suitable approach, at least as long/ago is not too small. For = 2, the plug-in
MLE for ¢* appears to have a noticeable bias as it tendsd®instead ofl for increasingf (and
thus increasingn). Observe that fos = 0, convergence to the true valtiés smaller as for = 1,
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Figure 2: Averagé,-estimation errorgz* — z||» for b = 1 andb = 2 on thelog,-scale in depen-
dence of the signal strenggh The curve 'predicted improvement’ (6f= 2 vs.b = 1) is obtained
by scaling the/>-estimation error by the factor predicted by the theory aftlea[3. Likewise the
curve 'required improvement’ results by scaling the erbbo= 1 by 1/4/2 and indicates what
would be required by = 2 to improve oveb = 1 at the level of total #bits.
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Figure 3: Estimation ofy = ||z*||2 (herel) ando. The curves depict the average of the plug-in
MLE discussed in Sectidd 4 while the bars indicatestandard deviation.

while o is over-estimated (abo0t2) for small f. The above two issues are presumably a plug-in
effect, i.e. a consequence of usingin place ofz.

b-bit Marginal Regression and alternative recovery algorihms. We compare thé;-estimation
error ofb-bit Marginal Regression to several common recovery algors. Compared to apparently
more principled methods which try to enforce agreemer®@f) andQ(Az) w.r.t. the Hamming
distance (or a surrogate theredfhit Marginal Regression can be seen as a crude approaclsas it
based on maximizing the inner product betwgemdAxz. One may thus expect that its performance
is inferior. In summary, our experiments confirm that thigrige in low-noise settings, but not so if
the noise level is substantial. Below we briefly present ttexrmatives that we consider.

Plan-Vershynin: The approach in [23] based dn (7) which only differs in tha tonstraint set
results from a relaxation. As shown in Figlile 4 the perforoess similar though slightly inferior.

IHT-quadratic: Standard Iterative Hard Thresholding based on quadmsi[ll]. As pointed out
above p-bit Marginal Regression can be seen as one-step versiterafive Hard Thresholding.



IHT-hinge (b = 1): The variant of Iterative Hard Threshold for binary obsgions using a hinge
loss-type loss function as proposediini[11].

SVM (b = 1): Linear SVM with squared hinge loss and @npenalty, implemented inl BLI NEAR
[6]. The cost parameter is chosen fragh/mlogm-{273,272, ..., 23} by 5-fold cross-validation.

IHT-Jacques (b = 2): A variant of Iterative Hard Threshold for quantized olsgions based on a
specific piecewiese linear loss function [9].

SVM-type (b = 2): This approach is based on solving the following convexrojatation problem:
mlH%{&} ’7”56”1 + ZZI 51 Subject tol; — 51 < <CL1',£C> < wu; + fi, 51 > O, 1€ [m], Where[li,ul-]
is the bin observationis assigned to. The essential idea is to enforce consistatbg observed
and predicted bin assignments up to slafkg while promoting sparsity of the solution via &p
penalty. The parameteris chosen from/mlogm-{271°,279 ... 23} by 5-fold cross-validation.

Turning to the results as depicted by Figlie 4, the diffeedpetween a noiselegs = 0) and
heavily noisy settingo = 2) is perhaps most striking.

o = 0: bothIHT variants significantly outperforibit Marginal Regression. By comparing errors
for IHT, b = 2 can be seen to improve ovier= 1 at the level of the total # bits.

o = 2: b-bit Marginal Regression is on par with the best performirgghods.|IHT-quadratic for

b = 2 only achieves a moderate reduction in error avet 1, while IHT-hinge is supposedly
affected by convergence issues. Overall, the results stigigat a setting with substantial noise
favours a crude approach (low-bit measurements and caralgpsimple recovery algorithms).
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Figure 4: Averagd,-estimation errors for several recovery algorithms onltlgg-scale in depen-
dence of the signal strength We contrast = 0 (L) vs.c =2 (R),b =1 (T) vs.b = 2 (B).

6 Conclusion

Bridging Marginal Regression and a popular approach-bit CS due to Plan & Vershynin, we
have considered signal recovery fréabit quantized measurements. The main finding is that for
b-bit Marginal Regression it is not beneficial to increadeeyond2. A compelling argument for

b = 2 is the fact that the norm of the signal can be estimated utiikecaseé = 1. Compared to
high-precision measuremengshit measurements also exhibit strong robustness pregettiis of
interest if and under what circumstances the conclusiondifésr for other recovery algorithms.
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