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Abstract
We consider the problem of sparse signal recovery fromm linear measurements
quantized tob bits. b-bit Marginal Regression is proposed as recovery algorithm.
We study the question of choosingb in the setting of a given budget of bitsB =
m · b and derive a single easy-to-compute expression characterizing the trade-off
betweenm andb. The choiceb = 1 turns out to be optimal for estimating the unit
vector corresponding to the signal for any level of additiveGaussian noise before
quantization as well as for adversarial noise. Forb ≥ 2, we show that Lloyd-Max
quantization constitutes an optimal quantization scheme and that the norm of the
signal can be estimated consistently by maximum likelihoodby extending [15].

1 Introduction
Consider the common compressed sensing (CS) model

yi = 〈ai, x∗〉+ σεi, i = 1, . . . ,m, or equivalently

y = Ax∗ + σε, y = (yi)
m
i=1, A = (Aij)

m,n
i,j=1, {ai = (Aij)

n
j=1}mi=1, ε = (εi)

m
i=1,

(1)

where the{Aij} and the{εi} are i.i.d.N(0, 1) (i.e. standard Gaussian) random variables, the latter
of which will be referred to by the term “additive noise” and accordinglyσ > 0 as “noise level”, and
x∗ ∈ R

n is the signal of interest to be recovered given(A, y). Let s = ‖x∗‖0 := |S(x∗)|, where
S(x∗) = {j : |x∗j | > 0}, be theℓ0-norm ofx∗ (i.e. the cardinality of its supportS(x∗)). One of the
celebrated results in CS is that accurate recovery ofx∗ is possible as long asm & s logn, and can
be carried out by several computationally tractable algorithms e.g. [3, 5, 21, 26, 29].

Subsequently, the concept of signal recovery from an incomplete set (m < n) of linear measure-
ments was developed further to settings in which only coarsely quantized versions of such linear
measurements are available, with the extreme case of single-bit measurements [2, 8, 11, 22, 23, 28,
16]. More generally, one can think ofb-bit measurements,b ∈ {1, 2, . . .}. Assuming that one is free
to chooseb given a fixed budget of bitsB = m · b gives rise to a trade-off betweenm andb. An
optimal balance of these two quantities minimizes the errorin recovering the signal. Such optimal
trade-off depends on the quantization scheme, the noise level, and the recovery algorithm. This
trade-off has been considered in previous CS literature [13]. However, the analysis therein concerns
an oracle-assisted recovery algorithm equipped with knowledge ofS(x∗) which is not fully realistic.

In [9] a specific variant of Iterative Hard Thresholding [1] for b-bit measurements is considered. It is
shown via numerical experiments that choosingb ≥ 2 can in fact achieve improvements overb = 1
at the level of the total number of bits required for approximate signal recovery. On the other hand,
there is no analysis supporting this observation. Moreover, the experiments in [9] only concern a
noiseless setting. Another approach is to treat quantization as additive error and to perform signal
recovery by means of variations of recovery algorithms for infinite-precision CS [10, 14, 18]. In this
line of research,b is assumed to be fixed and a discussion of the aforementioned trade-off is missing.

In the present paper we provide an analysis of compressed sensing fromb-bit measurements using a
specific approach to signal recovery which we termb-bit Marginal Regression. This approach builds
on a method for one-bit compressed sensing proposed in an influential paper by Plan and Vershynin
[23] which has subsequently been refined in several recent works [4, 24, 28]. As indicated by the
name,b-bit Marginal Regression can be seen as a quantized version of Marginal Regression, a simple

1



yet surprisingly effective approach to support recovery that stands out due to its low computational
cost, requiring only a single matrix-vector multiplication and a sorting operation [7]. Our analysis
yields a precise characterization of the above trade-off involving m and b in various settings. It
turns out that the choiceb = 1 is optimal for recovering the normalized signalx∗u = x∗/‖x∗‖2,
under additive Gaussian noise as well as under adversarial noise. It is shown that the choiceb =
2 additionally enables one to estimate‖x∗‖2, while being optimal for recoveringx∗u for b ≥ 2.
Hence for the specific recovery algorithm under consideration, it does not pay off to takeb > 2.
Furthermore, once the noise level is significantly high,b-bit Marginal Regression is empirically
shown to perform roughly as good as several alternative recovery algorithms, a finding suggesting
that in high-noise settings takingb > 2 does not pay off in general. As an intermediate step in our
analysis, we prove that Lloyd-Max quantization [19, 20] constitutes an optimalb-bit quantization
scheme in the sense that it leads to a minimization of an upperbound on the reconstruction error.

Notation: We use[d] = {1, . . . , d} andS(x) for the support ofx ∈ R
n. x ⊙ x′ = (xj · x′j)nj=1.

I(P ) is the indicator function of expressionP . The symbol∝ means “up to a positive universal
constant”.Supplement: Proofs and additional experiments can be found in the supplement.

2 From Marginal Regression tob-bit Marginal Regression

Some background on Marginal Regression.It is common to perform sparse signal recovery by
solving an optimization problem of the form

min
x

1

2m
‖y −Ax‖22 +

γ

2
P (x), γ ≥ 0, (2)

whereP is a penalty term encouraging sparse solutions. Standard choices forP areP (x) = ‖x‖0,
which is computationally not feasible in general, its convex relaxationP (x) = ‖x‖1 or non-convex
penalty terms like SCAD or MCP that are more amenable to optimization than theℓ0-norm [27].
AlternativelyP can as well be used to enforce a constraint by settingP (x) = ιC(x), whereιC(x) =
0 if x ∈ C and+∞ otherwise, withC = {x ∈ R

n : ‖x‖0 ≤ s} or C = {x ∈ R
n : ‖x‖1 ≤ r} being

standard choices. Note that (2) is equivalent to the optimization problem

min
x

−〈η, x〉+ 1

2
x⊤

A⊤A

m
x+

γ

2
P (x), where η =

A⊤y

m
.

ReplacingA⊤A/m byE[A⊤A/m] = I (recall that the entries ofA are i.i.d.N(0, 1)), we obtain

min
x

−〈η, x〉+ 1

2
‖x‖22 +

γ

2
P (x), η =

A⊤y

m
, (3)

which tends to be much simpler to solve than (2) as the first twoterms are separable in the compo-
nents ofx. For the choices ofP mentioned above, we obtain closed form solutions:

P (x) = ‖x‖0 : x̂j = ηjI(|ηj | ≥ γ1/2) P (x) = ‖x‖1 : x̂j = (|ηj | − γ)+ sign(ηj),

P (x) = ιx:‖x‖0≤s : x̂j = ηjI(|ηj | ≥ |η(s)|) P (x) = ιx:‖x‖1≤r : x̂j = (|ηj | − γ∗)+ sign(ηj) (4)

for j ∈ [n], where+ denotes the positive part and|η(s)| is thesth largest entry inη in absolute
magnitude andγ∗ = min{γ ≥ 0 :

∑n
j=1(|ηj | − γ)+ ≤ r}. In other words, the estimators are hard-

respectively soft-thresholded versions ofηj = A⊤
j y/m which are essentially equal to the univariate

(or marginal) regression coefficientsθj = A⊤
j y/‖Aj‖22 in the sense thatηj = θj(1 + OP(m

−1)),
j ∈ [n], hence the term “marginal regression”. In the literature, it is the estimator in the left half of
(4) that is popular [7], albeit as a means to infer the supportof x∗ rather thanx∗ itself. Under (2) the
performance with respect to signal recovery can still be reasonable in view of the statement below.

Proposition 1. Consider model(1) with x∗ 6= 0 and the Marginal Regression estimatorx̂ defined
component-wise bŷxj = ηjI(|ηj | ≥ |η(s)|), j ∈ [n], whereη = A⊤y/m. Then there exists positive
constantsc, C > 0 such that with probability at least1− cn−1

‖x̂− x∗‖2
‖x∗‖2

≤ C
‖x∗‖2 + σ

‖x∗‖2

√
s logn

m
. (5)

In comparison, the relativeℓ2-error of more sophisticated methods like the lasso scales as
O({σ/‖x∗‖2}

√
s log(n)/m) which is comparable to (5) onceσ is of the same order of magni-

tude as‖x∗‖2. Marginal Regression can also be interpreted as a single projected gradient iteration
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from 0 for problem (2) withP = ιx:‖x‖0≤s. Taking more than one projected gradient iteration gives
rise to a popular recovery algorithm known as Iterative HardThresholding (IHT, [1]).

Compressed sensing with non-linear observations and the method of Plan & Vershynin. As a
generalization of (1) one can consider measurements of the form

yi = Q(〈ai, x∗〉+ σεi), i ∈ [m] (6)

for some mapQ. Without loss generality, one may assume that‖x∗‖2 = 1 as long asx∗ 6= 0 (which
is assumed in the sequel) by definingQ accordingly. Plan and Vershynin [23] consider the following
optimization problem for recoveringx∗, and develop a framework for analysis that covers even more
general measurement models than (6). The proposed estimator minimizes

min
x:‖x‖2≤1,‖x‖1≤

√
s
−〈η, x〉 , η = A⊤y/m. (7)

Note that the constraint set{x : ‖x‖2 ≤ 1, ‖x‖1 ≤ √
s} contains{x : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}. The

authors prefer the former because it is suited for approximately sparse signals as well and second
because it is convex. However, the optimization problem with sparsity constraint is easy to solve:

min
x:‖x‖2≤1,‖x‖0≤s

−〈η, x〉 , η = A⊤y/m. (8)

Lemma 1. The solution of problem(8) is given bŷx = x̃/‖x̃‖2, x̃j = ηjI(|ηj | ≥ |η(s)|), j ∈ [n].

While this is elementary we state it as a separate lemma as there has been some confusion in the ex-
isting literature. In [4] the same solution is obtained after (unnecessarily) convexifying the constraint
set, which yields the unit ball of the so-calleds-support norm. In [24] a family of concave penalty
terms including the SCAD and MCP is proposed in place of the cardinality constraint. However, in
light of Lemma 1, the use of such penalty terms lacks motivation.

The minimization problem (8) is essentially that of Marginal Regression (3) withP = ιx:‖x‖0≤s, the
only difference being that the norm of the solution is fixed toone. Note that the Marginal Regression
estimator is equi-variant w.r.t. re-scaling ofy, i.e. fora · y with a > 0, x̂ changes toax̂. In addition,
let α, β > 0 and definêx(α) andx̂[β] as the minimizers of the optimization problems

min
x:‖x‖0≤s

−〈η, x〉 + α

2
‖x‖22, min

x:‖x‖2≤β,‖x‖0≤s
−〈η, x〉 . (9)

It is not hard to verify that̂x(α)/‖x̂(α)‖2 = x̂[β]/‖x̂[β]‖2 = x̂[1]. In summary, for estimating the
directionx∗u = x∗/‖x∗‖2 it does not matter if a quadratic term in the objective or anℓ2-norm con-
straint is used. Moreover, estimation of the ’scale’ψ∗ = ‖x∗‖2 and the direction can be separated.
Adopting the framework in [23], we provide a straightforward bound on theℓ2-error ofx̂minimizing
(8). To this end we define two quantities which will be of central interest in subsequent analysis.

λ = E[g θ(g)], g ∼ N(0, 1), whereθ is defined byE[y1|a1] = θ(〈a1, x∗〉)
Ψ = inf{C > 0 : P{max1≤j≤n |ηj −E[ηj ]| ≤ C

√
log(n)/m} ≥ 1− 1/n.}.

(10)

The quantityλ concerns the deterministic part of the analysis as it quantifies the distortion of the
linear measurements under the mapQ, whileΨ is used to deal with the stochastic part. The definition
of Ψ is based on the usual tail bound for the maximum of centered sub-Gaussian random variables.
In fact, as long asQ has bounded range, Gaussianity of the{Aij} implies that the{ηj −E[ηj ]}nj=1
are zero-mean sub-Gaussian. Accordingly, the constantΨ is proportional to the sub-Gaussian norm
of the{ηj −E[ηj ]}nj=1, cf. [25].

Proposition 2. Consider model(6) s.t.‖x∗‖2 = 1 and (10). Suppose thatλ > 0 and denote bŷx
the minimizer of(8). Then with probability at least1− 1/n, it holds that

‖x∗ − x̂‖2 ≤ 2
√
2
Ψ

λ

√
s logn

m
. (11)

So fars has been assumed to be known. If that is not the case,s can be estimated as follows.
Proposition 3. In the setting of Proposition 2, considerŝ = |{j : |ηj | > Ψ

√
log(n)/m}| andx̂ as

the minimizer of(8) with s replaced bŷs. Then with probability at least1 − 1/n, S(x̂) ⊆ S(x∗)
(i.e. no false positive selection). Moreover, if

min
j∈S(x∗)

|x∗j | > (2Ψ/λ)
√
log(n)/m, one hasS(x̂) = S(x∗). (12)
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b-bit Marginal Regression. b-bit quantized measurements directly fit into the non-linear obser-
vation model (6). Here the mapQ represents a quantizer that partitionsR+ into K = 2b−1 bins
{Rk}Kk=1 given by distinct thresholdst = (t1, . . . , tK−1)

⊤ (in increasing order) andt0 = 0,
tK = +∞ such thatR1 = [t0, t1), . . . ,RK = [tK−1, tK). Each bin is assigned a distinct rep-
resentative fromM = {µ1, . . . , µK} (in increasing order) so thatQ : R → −M∪M is defined by
z 7→ Q(z) = sign(z)

∑K
k=1 µkI(|z| ∈ Rk). Expanding model (6) accordingly, we obtain

yi = sign(〈ai, x∗〉+ σεi)
∑K

k=1 µkI( |(〈ai, x∗〉+ σεi)| ∈ Rk)

= sign(〈ai, x∗u〉+ τεi)
∑K

k=1 µkI( |(〈ai, x∗u〉+ τεi)| ∈ Rk/ψ
∗), i ∈ [m],

whereψ∗ = ‖x∗‖2, x∗u = x∗/ψ∗ andτ = σ/ψ∗. Thus the scaleψ∗ of the signal can be absorbed
into the definition of the bins respectively thresholds which should be proportional toψ∗. We may
thus again fixψ∗ = 1 and in turnx∗ = x∗u, σ = τ w.l.o.g. for the analysis below. Estimation ofψ∗

separately fromx∗u will be discussed in an extra section.

3 Analysis

In this section we study in detail the central question of theintroduction. Suppose we have a fixed
budgetB of bits available and are free to choose the number of measurementsm and the number
of bits per measurementb subject toB = m · b such that theℓ2-error‖x̂ − x∗‖2 of b-bit Marginal
Regression is as small as possible. What is the optimal choice of (m, b)? In order to answer this
question, let us go back to the error bound (11). That bound applies tob-bit Marginal Regression for
any choice ofb and varies withλ = λb andΨ = Ψb, both of which additionally depend onσ, the
choice of the thresholdst and the representativesµ. It can be shown that the dependence of (11) on
the ratioΨ/λ is tight asymptotically asm → ∞. Hence it makes sense to compare two different
choicesb andb′ in terms of the ratio ofΩb = Ψb/λb andΩb′ = Ψb′/λb′ . Since the bound (11)
decays with

√
m, for b′-bit measurements,b′ > b, to improve overb-bit measurements with respect

to the total #bits used, it is then required thatΩb/Ωb′ >
√
b′/b. The route to be taken is thus as

follows: we first derive expressions forλb andΨb and then minimize the resulting expression forΩb

w.r.t. the free parameterst andµ. We are then in position to compareΩb/Ωb′ for b 6= b′.

Evaluating λb = λb(t,µ). Below,⊙ denotes the entry-wise multiplication between vectors.

Lemma 2. We haveλb(t,µ) = 〈α(t),E(t) ⊙ µ〉 /(1 + σ2), where

α(t) = (α1(t), . . . , αK(t))
⊤
, αk(t) = P {|g̃| ∈ Rk(t)} , g̃ ∼ N(0, 1 + σ2), k ∈ [K],

E(t) = (E1(t), . . . , EK(t))⊤ , Ek(t) = E[g̃|g̃ ∈ Rk(t)], g̃ ∼ N(0, 1 + σ2), k ∈ [K].

Evaluating Ψb = Ψb(t,µ). Exact evaluation proves to be difficult. We hence resort to ananalyti-
cally more tractable approximation which is still sufficiently accurate as confirmed by experiments.

Lemma 3. As|x∗j | → 0, j = 1, . . . , n, and asm→ ∞, we haveΨb(t,µ) ∝
√
〈α(t),µ⊙ µ〉.

Note that the proportionality constant (not depending onb) in front of the given expression does not
need to be known as it cancels out when computing ratiosΩb/Ωb′ . The asymptotics|x∗j | → 0, j ∈
[n], is limiting but still makes sense fors growing withn (recall that we fix‖x∗‖2 = 1 w.l.o.g.).

Optimal choice of t and µ. It turns that the optimal choice of(t,µ) minimizingΨb/λb coincides
with the solution of an instance of the classical Lloyd-Max quantization problem [19, 20] stated
below. Leth be a random variable with finite variance andQ the quantization map from above.

min
t,µ

E[{h−Q(h; t,µ)}2] = min
t,µ

E[{h− sign(h)
∑K

k=1 µkI(|h| ∈ Rk(t) )}2]. (13)

Problem (13) can be seen as a one-dimensionalk-means problem at the population level, and it is
solved in practice by an alternating scheme similar to that used fork-means. Forh from a log-
concave distribution (e.g. Gaussian) that scheme can be shown to deliver the global optimum [12].

Theorem 1. Consider the minimization problemmint,µ Ψb(t,µ)/λb(t,µ). Its minimizer(t∗,µ∗)
equals that of the Lloyd-Max problem(13) for h ∼ N(0, 1 + σ2). Moreover,

Ωb(t
∗,µ∗) = Ψb(t

∗,µ∗)/λb(t
∗,µ∗) ∝

√
(σ2 + 1)/λb,0(t∗0,µ

∗
0),

whereλb,0(t∗0,µ
∗
0) denotes the value ofλb for σ = 0 evaluated at(t∗0,µ

∗
0), the choice of(t,µ)

minimizingΩb for σ = 0.
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Regarding the choice of(t,µ) the result of Theorem 1 may not come as a suprise as the entriesof y
are i.i.d.N(0, 1 + σ2). It is less immediate though that this specific choice can also be motivated
as the one leading to the minimization of the error bound (11). Furthermore, Theorem 1 implies
that the relative performance ofb- andb′-bit measurements does not depend onσ as long as the
respective optimal choice of(t,µ) is used, which requiresσ to be known. Theorem 1 provides
an explicit expression forΩb that is straightforward to compute. The following table lists ratios
Ωb/Ωb′ for selected values ofb andb′.

b = 1, b′ = 2 b = 2, b′ = 3 b = 3, b′ = 4
Ωb/Ωb′ : 1.178 1.046 1.013
required forb′ ≫ b:

√
2 ≈ 1.414

√
3/2 ≈ 1.225

√
4/3 ≈ 1.155

These figures suggests that the smallerb, the better the performance for a given budget of bitsB.

Beyond additive noise.Additive Gaussian noise is perhaps the most studied form of perturbation,
but one can of course think of numerous other mechanisms whose effect can be analyzed on the
basis of the same scheme used for additive noise as long as it is feasible to obtain the corresponding
expressions forλ andΨ. We here do so for the following mechanisms actingafter quantization.

(I) Random bin flip.For i ∈ [m]: with probability1− p, yi remains unchanged. With probabilityp,
yi is changed to an element from(−M∪M) \ {yi} uniformly at random.
(II) Adversarial bin flip. For i ∈ [m]: Write yi = qµk for q ∈ {−1, 1} andµk ∈ M. With
probability1− p, yi remains unchanged. With probabilityp, yi is changed to−qµK .

Note that forb = 1, (I) and (II) coincide (sign flip with probabilityp). Depending on the magnitude
of p, the corresponding valueλ = λb,p may even be negative, which is unlike the case of additive
noise. Recall that the error bound (11) requiresλ > 0. Borrowing terminology from robust statistics,
we consider̄pb = min{p : λb,p ≤ 0} as thebreakdown point, i.e. the (expected) proportion of
contaminated observations that can still be tolerated so that (11) continues to hold. Mechanism (II)
produces a natural counterpart of gross corruptions in the standard setting (1). It can be shown
that among all maps−M ∪ M → −M ∪ M applied randomly to the observations with a fixed
probability, (II) maximizes the ratioΨ/λ, hence the attribute “adversarial”. In Figure 1 we display
Ψb,p/λb,p for b ∈ {1, 2, 3, 4} for both (I) and (II). The table below lists the corresponding breakdown
points. For simplicity,(t,µ) are not optimized but set to the optimal (in the sense of Lloyd-Max)
choice(t∗0,µ

∗
0) in the noiseless case. The underlying derivations can be found in the supplement.

(I) b = 1 b = 2 b = 3 b = 4 (II) b = 1 b = 2 b = 3 b = 4
p̄b 1/2 3/4 7/8 15/16 p̄b 1/2 0.42 0.36 0.31

Figure 1 and the table provide one more argument in favour of one-bit measurements as they offer
better robustness vis-à-vis adversarial corruptions. Infact, once the fraction of such corruptions
reaches0.2, b = 1 performs best− on the measurement scale. For the milder corruption scheme (I),
b = 2 turns out to the best choice for significant but moderatep.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

fraction of bin flips

lo
g 1

0
(Ψ

/λ
)

b = 1

b = 2

b = 3 / 4 (~overlap)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

fraction of gross corruptions

lo
g
10
(Ψ

/λ
)

b = 1

b = 2

b = 3

b = 4

Figure 1:Ψb,p/λb,p (log10-scale),b ∈ {1, 2, 3, 4}, p ∈ [0, 0.5] for mechanisms (I,L ) and (II,R).

4 Scale estimation

In Section 2, we have decomposedx∗ = x∗uψ
∗ into a product of a unit vectorx∗u and a scale

parameterψ∗ > 0. We have pointed out thatx∗u can be estimated byb-bit Marginal Regression
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separately fromψ∗ since the latter can be absorbed into the definition of the bins{Rk}. Accordingly,
we may estimatex∗ asx̂ = x̂uψ̂ with x̂u andψ̂ estimatingx∗u andψ∗, respectively. We here consider
the maximum likelihood estimator (MLE) forψ∗, by following [15] which studied the estimation of
the scale parameter for the entireα-stable family of distributions. The work of [15] was motivated
by a different line of one scan 1-bit CS algorithm [16] based onα-stable designs [17].

First, we consider the caseσ = 0, so that the{yi} are i.i.d.N(0, (ψ∗)2). The likelihood function is

L(ψ) =

m∏

i=1

K∑

k=1

I(yi ∈ Rk)P(|yi| ∈ Rk) =

K∏

k=1

{2(Φ(tk/ψ)− Φ(tk−1/ψ))}mk , (14)

wheremk = |{i : |yi| ∈ Rk}|, k ∈ [K], andΦ denotes the standard Gaussian cdf. Note that for
K = 1, L(ψ) is constant (i.e. does not depend onψ) which confirms that forb = 1, it is impossible
to recoverψ∗. ForK = 2 (i.e. b = 2), the MLE has a simple a closed form expression given by
ψ̂ = t1/Φ

−1(0.5(1 +m1/m)). The following tail bound establishes fast convergence ofψ̂ toψ∗.

Proposition 4. Let ε ∈ (0, 1) and c = 2{φ′(t1/ψ∗)}2, whereφ′ denotes the derivative of the
standard Gaussian pdf. With probability at least1− 2 exp(−cmε2), we have|ψ̂/ψ∗ − 1| ≤ ε.

The exponentc is maximized fort1 = ψ∗ and becomes smaller ast1/ψ∗ moves away from1.
While scale estimation from2-bit measurements is possible, convergence can be slow ift1 is not
well chosen. Forb ≥ 3, convergence can be faster but the MLE is not available in closed form [15].

We now turn to the caseσ > 0. The MLE based on (14) is no longer consistent. Ifx∗u is known then
the joint likelihood of for(ψ∗, σ) is given by

L(ψ, σ̃) =

m∏

i=1

{
Φ

(
ui − ψ 〈ai, x∗u〉

σ̃

)
− Φ

(
li − ψ 〈ai, x∗u〉

σ̃

)}
, (15)

where[li, ui] denotes the interval thei-th observation is contained in before quantization,i ∈ [m]. It
is not clear to us whether the likelihood is log-concave, which would ensure that the global optimum
can be obtained by convex programming. Empirically, we havenot encountered any issue with
spurious local minima when usingψ = 0 and σ̃ as the MLE from the noiseless case as starting
point. The only issue with (15) we are aware of concerns the case in which there existsψ so that
ψ 〈ai, x∗u〉 ∈ [li, ui], i ∈ [m]. In this situation, the MLE forσ equals zero and the MLE forψ may
not be unique. However, this is a rather unlikely scenario aslong as there is a noticeable noise level.
As x∗u is typically unknown, we may follow the plug-in principle, replacingx∗u by an estimator̂xu.

5 Experiments
We here provide numerical results supporting/illustrating some of the key points made in the previ-
ous sections. We also compareb-bit Marginal Regression to alternative recovery algorithms.

Setup. Our simulations follow model (1) withn = 500, s ∈ {10, 20, . . . , 50}, σ ∈ {0, 1, 2}
andb ∈ {1, 2}. Regardingx∗, the support and its signs are selected uniformly at random,while
the absolute magnitude of the entries corresponding to the support are drawn from the uniform
distribution on[β, 2β], whereβ = f · (1/λ1,σ)

√
log(n)/m andm = f2(1/λ1,σ)

2s logn with
f ∈ {1.5, 3, 4.5, . . . , 12} controlling the signal strength. The resulting signal is then normalized
to unit 2-norm. Before normalization, the norm of the signal lies in[1,

√
2] by construction which

ensures that asf increases the signal strength condition (12) is satisfied with increasing probabil-
ity. For b = 2, we use Lloyd-Max quantization for aN(0, 1)-random variable which is optimal for
σ = 0, but not forσ > 0. Each possible configuration fors, f andσ is replicated20 times. Due to
space limits, a representative subset of the results is shown; the rest can be found in the supplement.

Empirical verification of the analysis in Section 3. The experiments reveal that what is predicted
by the analysis of the comparison of the relative performance of 1-bit and2-bit measurements for
estimatingx∗ closely agrees with what is observed empirically, as can be seen in Figure 2.

Estimation of the scale and the noise level.Figure 3 suggests that the plug-in MLE for(ψ∗ =
‖x∗‖2, σ) is a suitable approach, at least as long asψ∗/σ is not too small. Forσ = 2, the plug-in
MLE for ψ∗ appears to have a noticeable bias as it tends to0.92 instead of1 for increasingf (and
thus increasingm). Observe that forσ = 0, convergence to the true value1 is smaller as forσ = 1,
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Figure 2: Averageℓ2-estimation errors‖x∗ − x̂‖2 for b = 1 andb = 2 on thelog2-scale in depen-
dence of the signal strengthf . The curve ’predicted improvement’ (ofb = 2 vs. b = 1) is obtained
by scaling theℓ2-estimation error by the factor predicted by the theory of Section 3. Likewise the
curve ’required improvement’ results by scaling the error of b = 1 by 1/

√
2 and indicates what

would be required byb = 2 to improve overb = 1 at the level of total #bits.
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Figure 3: Estimation ofψ = ‖x∗‖2 (here1) andσ. The curves depict the average of the plug-in
MLE discussed in Section 4 while the bars indicate±1 standard deviation.

while σ is over-estimated (about0.2) for smallf . The above two issues are presumably a plug-in
effect, i.e. a consequence of usingx̂u in place ofx∗u.

b-bit Marginal Regression and alternative recovery algorithms. We compare theℓ2-estimation
error ofb-bit Marginal Regression to several common recovery algorithms. Compared to apparently
more principled methods which try to enforce agreement ofQ(y) andQ(Ax̂) w.r.t. the Hamming
distance (or a surrogate thereof),b-bit Marginal Regression can be seen as a crude approach as itis
based on maximizing the inner product betweeny andAx. One may thus expect that its performance
is inferior. In summary, our experiments confirm that this istrue in low-noise settings, but not so if
the noise level is substantial. Below we briefly present the alternatives that we consider.

Plan-Vershynin: The approach in [23] based on (7) which only differs in that the constraint set
results from a relaxation. As shown in Figure 4 the performance is similar though slightly inferior.

IHT-quadratic: Standard Iterative Hard Thresholding based on quadratic loss [1]. As pointed out
above,b-bit Marginal Regression can be seen as one-step version of Iterative Hard Thresholding.
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IHT-hinge (b = 1): The variant of Iterative Hard Threshold for binary observations using a hinge
loss-type loss function as proposed in [11].

SVM (b = 1): Linear SVM with squared hinge loss and anℓ1-penalty, implemented inLIBLINEAR
[6]. The cost parameter is chosen from1/

√
m logm.{2−3, 2−2, . . . , 23} by 5-fold cross-validation.

IHT-Jacques (b = 2): A variant of Iterative Hard Threshold for quantized observations based on a
specific piecewiese linear loss function [9].

SVM-type (b = 2): This approach is based on solving the following convex optimization problem:
minx,{ξi} γ‖x‖1 +

∑m
i=1 ξi subject toli − ξi ≤ 〈ai, x〉 ≤ ui + ξi, ξi ≥ 0, i ∈ [m], where[li, ui]

is the bin observationi is assigned to. The essential idea is to enforce consistencyof the observed
and predicted bin assignments up to slacks{ξi} while promoting sparsity of the solution via anℓ1-
penalty. The parameterγ is chosen from

√
m logm ·{2−10, 2−9, . . . , 23} by 5-fold cross-validation.

Turning to the results as depicted by Figure 4, the difference between a noiseless(σ = 0) and
heavily noisy setting(σ = 2) is perhaps most striking.
σ = 0: bothIHT variants significantly outperformb-bit Marginal Regression. By comparing errors
for IHT, b = 2 can be seen to improve overb = 1 at the level of the total # bits.
σ = 2: b-bit Marginal Regression is on par with the best performing methods.IHT-quadratic for
b = 2 only achieves a moderate reduction in error overb = 1, while IHT-hinge is supposedly
affected by convergence issues. Overall, the results suggest that a setting with substantial noise
favours a crude approach (low-bit measurements and conceptually simple recovery algorithms).
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Figure 4: Averageℓ2-estimation errors for several recovery algorithms on thelog2-scale in depen-
dence of the signal strengthf . We contrastσ = 0 (L ) vs.σ = 2 (R), b = 1 (T) vs.b = 2 (B).

6 Conclusion
Bridging Marginal Regression and a popular approach to1-bit CS due to Plan & Vershynin, we
have considered signal recovery fromb-bit quantized measurements. The main finding is that for
b-bit Marginal Regression it is not beneficial to increaseb beyond2. A compelling argument for
b = 2 is the fact that the norm of the signal can be estimated unlikethe caseb = 1. Compared to
high-precision measurements,2-bit measurements also exhibit strong robustness properties. It is of
interest if and under what circumstances the conclusion maydiffer for other recovery algorithms.
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