
A Polynomial-time Mixing Proofs

For sets A,B, we denote A⊕B := (A \B) ∪ (B \A).

Lemma A.1. Define the maps ηSS′ : CSS′ → E , for each pair (S, S′) ∈ E × E with S ∼ S′, as
follows:

ηSS′(A,B) =

{
A⊕B ⊕ S , if F (S′) ≥ F (S)
A⊕B ⊕ S′ , otherwise .

Then, each map ηSS′ is injective.

Proof. Assume that F (S′) ≥ F (S), and S′ = S ∪ {r}, for some r ∈ V . Assume that we are given
C := A⊕B⊕S, and we want to recover A and B. We will denote by ≺ the natural ordering of the
ground set V . First, we define

K− := {v ∈ C ⊕ S | v ≺ r}
K+ := {v ∈ C ⊕ S | v � r} .

Then, we can recover A and V as follows:

A = S ⊕K−

B = S′ ⊕K+.

The case S′ = S \ {r}, as well as the two cases for F (S′) < F (S) are completely analogous.
Note that the distinction based on the value of the function has no effect on the proof here, but is
technically needed for the next lemma. The only thing that changes between the cases is whether the
element r that gets added or removed in the transition (S, S′) belongs to A or B, which is always
straightforward to determine from the type of the transition (for additions it belongs to B, and for
removals to A).

Lemma 1. For any S ∼ S′, and any A,B ∈ E , it holds that

p(A)p(B) ≤ 2n exp(2βζF )Q(S, S′)p(ηSS′(A,B)).

If F is submodular or supermodular, then the bound is improved to

p(A)p(B) ≤ 2n exp(βζf )Q(S, S′)p(ηSS′(A,B)).

Proof. We will consider the case S′ = S ∪ {r}, for some r ∈ V , with F (S′) ≥ F (S). Again, the
other three cases are completely analogous by using ηSS′ as defined in Lemma A.1.

We first compute

Q(S, S′) = p(S)P (S, S′)

=
1

n

p(S)p(S′)

p(S) + p(S′)
by definition of the Gibbs sampler

=
1

nZ

exp(βF (S)) exp(βF (S′))

exp(βF (S)) + exp(βF (S′))
by definition of our models

≥ 1

nZ

exp(βF (S)) exp(βF (S′))

2 exp(βF (S′))
by F (S′) ≥ F (S)

=
exp(βF (S))

2nZ
.

As a result, we get

p(A)p(B)

Q(S, S′)
≤ 2n

Z
exp(β(F (A) + F (B)− F (S))). (5)
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Let us denote ζF (A,B) := F (A) + F (B) − F (A ∪ B) − F (A ∩ B), for any A,B ⊆ V , so that
ζF = maxA,B⊆V |ζF (A,B)|. Then, if we denote C := ηSS′(A,B) = A⊕B ⊕ S, we have

F (A) + F (B)− F (S)

= (F (A) + F (B)− F (A ∪B)− F (A ∩B))− (F (S) + F (C)− F (A ∪B)− F (A ∩B)) + F (C)

= (F (A) + F (B)− F (A ∪B)− F (A ∩B))− (F (S) + F (C)− F (S ∪ C)− F (S ∩ C)) + F (C)

= ζF (A,B)− ζF (S,C) + F (C)

≤ 2ζF + F (C).

If F is submodular, then ζF (A,B) and ζF (S,C) are both non-negative, therefore ζF (A,B) −
ζF (S,C) +F (C) ≤ ζF +F (C) = ζf +F (C). Similarly, if F is supermodular, then ζF (A,B) and
ζF (S,C) are both non-positive, therefore ζF (A,B)−ζF (S,C)+F (C) ≤ ζF +F (C) = ζf+F (C).
Substituting these bounds in (5) gives us the result of the lemma.

B Fast Mixing Proofs

Lemma B.1. For any S,R ⊆ V with R = S ∪ {r}, if we define

pdif(v) :=

∣∣∣∣ p(S ∪ {v})
p(S ∪ {v}) + p(S \ {v})

− p(R ∪ {v})
p(R ∪ {v}) + p(R \ {v})

∣∣∣∣ ,
then it holds that ∑

v 6=r

pdif(v) ≤ γF,β .

Proof. For any v 6= r, we have

pdif(v) =

∣∣∣∣ exp(βF (S ∪ {v}))
exp(βF (S ∪ {v})) + exp(βF (S \ {v}))

− exp(βF (R ∪ {v}))
exp(βF (R ∪ {v})) + exp(βF (R \ {v}))

∣∣∣∣
=

∣∣∣∣ exp(β∆F (v|S))

1 + exp(β∆F (v|S))
− exp(β∆F (v|R))

1 + exp(β∆F (v|R))

∣∣∣∣
=

∣∣∣∣ exp(β∆F (v|S))− exp(β∆F (v|R))

(1 + exp(β∆F (v|S)))(1 + exp(β∆F (v|R)))

∣∣∣∣
≤
∣∣∣∣exp(β∆F (v|S))− exp(β∆F (v|R))

exp(β∆F (v|S)) + exp(β∆F (v|R))

∣∣∣∣
=

∣∣∣∣exp(β(∆F (v|S)−∆F (v|R)))− 1

exp(β(∆F (v|S)−∆F (v|R))) + 1

∣∣∣∣
= tanh

(
β

2

∣∣(∆F (v|S)−∆F (v|R))
∣∣) .

The lemma follows then by the definition of γF,β , and the fact that R = S ∪ {r}.

Lemma B.2. If F is submodular or supermodular, and decomposed according to (3), then

γF,β = γf,β .

Proof. For any S,R ⊆ V with R = S ∪ {r}, and any v ∈ V , we have

∆F (v|S)−∆F (v|R) = F (S ∪ {v})− F (S \ {v})− F (R ∪ {v}) + F (R \ {v})
= f(S ∪ {v})− f(S \ {v})− f(R ∪ {v}) + f(R \ {v})
= ∆f (v|S)−∆f (v|R).
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Corollary 2. For any submodular function F that can be written in the form of (2), with f being its
monotone (also decomposable) part according to (3), if we define

θf := max
v∈V

∑
`∈[L]

√
f`(v) and λf := max

`∈[L]

∑
v∈V

√
f`(v),

then it holds that

γf,β ≤
β

2
θfλf .

Proof. For any S,R ⊆ V with R = S ∪ {r}, we have∑
v 6=r

tanh

(
β

2

∣∣(∆f (v|S)−∆f (v|R))
∣∣)

≤
∑
v 6=r

β

2

∣∣(∆f (v|S)−∆f (v|R))
∣∣ by tanh(x) ≤ x, for all x ≥ 0

≤
∑
v 6=r

β

2
(∆f (v|S)−∆f (v|R)) by submodularity of f

=
β

2

∑
v 6=r

(f(S ∪ {v})− f(S \ {v})− f(S ∪ {r} ∪ {v}) + f(S ∪ {r} \ {v}))

=
β

2

∑
v 6=r

∑
`∈[L]

(f`(S ∪ {v})− f`(S \ {v})− f`(S ∪ {r} ∪ {v}) + f`(S ∪ {r} \ {v}))

≤ β

2

∑
v 6=r

∑
`∈[L]

min
{
f`(S ∪ {v})− f`(S \ {v}), f`(S ∪ {r} \ {v})− f`(S \ {v})

}
by monotonicity of f`

≤ β

2

∑
v 6=r

∑
`∈[L]

min
{
f`(v), f`(r)

}
by submodularity of f`

≤ β

2

∑
v 6=r

∑
`∈[L]

√
f`(v)f`(r)

=
β

2

∑
`∈[L]

√
f`(r)

∑
v 6=r

√
f`(v).

The result follows by maximizing both sides over S and r.
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