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A Symmetry breaking in πSB

The stick-breaking map πSB : RK → [0, 1]K is asymmetric in the sense that while the logistic map
πLN : RK → [0, 1]K can be written as the composition of an coordinate-wise logistic function and
a normalization,

πLN(ψ) =
(
π

(1)
LN (ψ), · · · , π

(K)
LN (ψ)

)
π

(k)
LN (ψ) =

eψk∑K
j=1 e

ψj

, (1)

the stick-breaking map does not have such a coordinate-wise separation:

πSB(ψ) =
(
π

(1)
LN (ψ), · · · , π

(K)
SB (ψ)

)
π

(k)
SB (ψ) = σ(ψk)

∑
j<k

σ(ψj)

 . (2)

In particular, πSB does not preserve permutation symmetries in the density p(ψ), so that while for
any permutation matrix P we have

p(Pψ) = p(ψ) =⇒ p(PπLN(ψ)) = p(πLN(ψ)) (3)
the same does not hold when πLN is replaced with πSB. As a result, the stick-breaking model used
in this paper (and in Khan et al. [1]) yields priors (and posteriors) that are not invariant to relabeling
of the entries of the corresponding multinomial parameter or the multinomial counts themselves.
See Figure 1 and compare it to Figure 1 of the main text.

This symmetry breaking may be undesirable in some cases, but in the models we have studied
so far (and in those studied in Khan et al. [1]) the effect does not seem detrimental in terms of
learning informative correlation structures or in terms of model predictions. For example, in the
correlated topic model (CTM) studied in Section 3, the model is unidentifiable up to permutation on
the topic labels and therefore breaking this symmetry does not reduce its representational capacity.
For models in which the counts from multinomials with correlated parameters are observed directly,
such as in the models of Sections 4 and 5, based on the experiments in this paper the loss of symmetry
does not seem to impact performance while the inference advantages are significant. See also the
discussion in Khan et al. [1, Section 3].

B Transforming between p(ψ) and p(π)

Since the mapping between π and ψ is invertible, we can compute the distribution on π that is
implied by a Gaussian distribution on ψ. Assume ψ ∼ N (µ,Σ). Then,

p(π |µ,Σ) = N (π−1
SB (π) |µ,Σ)

∣∣∣∣dψdπ
∣∣∣∣
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Figure 1: Correlated 2D Gaussian priors on ψ and their implied densities on πLN(ψ). Compare to Figure 1 of
the main text, which shows an analogous plot of implied densities on πSB(ψ).

From above, we have

ψ1 = σ−1(π1), ψ2 = σ−1

(
π2

1− π1

)
, . . . , ψk = σ−1

(
πk

1−
∑
j<k πj

)
.

Let

g(x) =
dσ−1(x )

dx

∣∣∣∣
x=x

=
d

dx
log

(
x

1− x

)
=

1

x
+

1

1− x
=

1

x(1− x)
.

Then,

∂ψ1

∂π1
= g(π1),

∂ψk
∂πk

= g

(
πk

1−
∑
j<k πj

)
1

1−
∑
j<k πj

,
∂ψk
∂πj>k

= 0.

Since the Jacobian of the inverse transformation is lower triangular, its determinant is simply the
product of its diagonal entries,∣∣∣∣dψdπ

∣∣∣∣ = K∏
k=1

[
g

(
πk

1−
∑
j<k πj

)
1

1−
∑
j<k πj

]

=

K∏
k=1

[
1−

∑
j<k πj

πk

1−
∑
j<k πj

1−
∑
j<k πj − πk

1

1−
∑
j<k πj

]

=

K∏
k=1

[
1−

∑k−1
j=1 πj

πk(1−
∑k
j=1 πj)

]
Thus, the final density is,

p(π |µ,Σ) = N (π−1
SB (π) |µ,Σ) ·

K∏
k=1

[
1−

∑k−1
j=1 πj

πk(1−
∑k
j=1 πj)

]
.

Now, suppose we are given a Dirichlet distribution, π ∼ Dir(π |α), and we wish to compute the
density on ψ. We have,

p(ψ |α) = Dir(πSB(ψ) |α) ·
∣∣∣∣dπdψ

∣∣∣∣
= Dir(πSB(ψ) |α) ·

K∏
k=1

[
πk(1−

∑k
j=1 πj)

1−
∑k−1
j=1 πj

]
,
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Figure 2: Density and log density of p(ψ |α = 1), the density on ψ implied by a K = 9 dimensional
symmetric Dirichlet density on π with parameter α = 1.

where we have used the fact that the Jacobian of the inverse transformation is simply the inverse of
the Jacobian of the forward transformation. We simply need to rewrite the Jacobian in terms of ψ
rather than π. Note that 1−

∑
j<k πj is the length of the remaining stick and σ(ψk) is the fraction

of the remaining “stick” allocated to πk. Thus, the remaining stick length is equal to,

1−
∑
j<k

πj ≡
∏
j<k

(1− σ(ψj)) ≡
∏
j<k

σ(−ψj).

Moreover, πk = σ(ψk)(1−
∑
j<k πj) = σ(ψk)

∏
j<k σ(−ψj). Thus,

p(ψ |α) = Dir(πSB(ψ) |α) ·
K∏
k=1


(
σ(ψk)

∏
j<k σ(−ψj)

)(∏
j≤k σ(−ψj)

)
∏
j<k σ(−ψj)

 ,
= Dir(πSB(ψ) |α) ·

K∏
k=1

σ(ψk)∏
j≤k

σ(−ψj)

 ,
Expanding the Dirichlet distribution and substituting ψ for π, we conclude that,

p(ψ |α) = 1

B(α)

K−1∏
k=1

σ(ψk)
αk · σ(−ψk)

∑K
j=k+1 αj .

This factorized form is unsurprising given that the Dirichlet distribution can be written as a stick-
breaking product of beta distributions in the same way that the multinomial can be written as a
product of binomials. Each term in the product above corresponds to the transformed beta distribu-
tion over π̃k.

Figure 2 shows the marginal densities on ψk implied by a K = 9 dimensional symmetric Dirichlet
prior on π with α = 1. The densities of ψk become increasingly skewed for small values of k,
but they are still well approximate by a Gaussian distribution. In order to approximate a uniform
distribution, we numerically compute the mean and variance of these densities to set the parameters
of a diagonal Guassian distribution.
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Figure 3: Marginal density, p(ψ |x) in red shading along with the ellipses of multivariate normal conditional
distribution p(ψ |x,ω) for 4 steps of the Gibbs sampler. In Gaussian models where we aim to predict ψtest

on test data, there are substantial gains to be had from making marginal predictions of ψtest |x,ω, integrating
out ψtrain. The key is that the conditional densities overlap substantially with the marginal density.

C Marginal Predictions with the Augmented Model

One of the primary advantages offered by the Pólya-gamma augmentation is the ability to make
marginal predictions about ψtest |x,ω, integrating out the value of ψtrain. For example, in the
GP multinomial regression models described in the main text, the methods were evaluated on
the accuracy of their predictions about future name probabilities, which were functions of ψtest.
When p(ψtrain) and p(ψtest |ψtrain) are both Gaussian, we can integrate out the latent training vari-
ables in order to predict their test values. In a latent Gaussian-multinomial model, the posterior
distribution over those latent training variables is non-Gaussian, but after Pólya-gamma augmenta-
tion, it is rendered Gaussian.

With the augmentation, we can write

p(ψtest |x) ≈
1

M

M∑
m=1

∫
p(ψtest |ψtrain) p(ψtrain |x,ω(m)) dψtrain ω(m) ∼ p(ω |x),

and perform Monte Carlo integration over ω in order to compute the predictive distribution. By
contrast, in the standard formulation we must perform Monte Carlo integration over ψ,

p(ψtest |x) =
1

M

M∑
m=1

p(ψtest |ψ
(m)
train) ψ

(m)
train ∼ p(ψtrain |x).

Why does the augmented model confer a predictive advantage? It does not come from performing
Monte Carlo integration over a smaller dimension since ω and ψtrain are of the same size. Instead,
it comes from the ability of the conjugate Gibbs sampler to efficiently mix over ψ and ω, and from
the ability of a single sample of ω to render a conditional Gaussian distribution over ψ that captures
much of the volume of the true marginal distribution.

This latter point is illustrated in Figure 3. The red shading shows the true marginal density of ψ
and the blue ellipses show the conditional density for a fixed value of ω. Each ellipse capture a
significant amount of the marginal distribution, indicating that with a single sample of ω we can
integrate over a substantial amount of the uncertainty in ψ. This example is only for a K = 3
dimensional multinomial observation, but this intuition should extend to higher dimensions in which
the advantages of analytical integration should be more readily apparent.
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