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Abstract

The accurate estimation of covariance matrices is essential for many signal pro-
cessing and machine learning algorithms. In high dimensional settings the sample
covariance is known to perform poorly, hence regularization strategies such as
analytic shrinkage of Ledoit/Wolf are applied. In the standard setting, i.i.d. data
is assumed, however, in practice, time series typically exhibit strong autocorrela-
tion structure, which introduces a pronounced estimation bias. Recent work by
Sancetta has extended the shrinkage framework beyond i.i.d. data. We contribute
in this work by showing that the Sancetta estimator, while being consistent in the
high-dimensional limit, suffers from a high bias in finite sample sizes. We propose
an alternative estimator, which is (1) unbiased, (2) less sensitive to hyperparame-
ter choice and (3) yields superior performance in simulations on toy data and on a
real world data set from an EEG-based Brain-Computer-Interfacing experiment.

1 Introduction and Motivation

Covariance matrices are a key ingredient in many algorithms in signal processing, machine learning
and statistics. The standard estimator, the sample covariance matrix S, has appealing properties in
the limit of large sample sizes n: its entries are unbiased and consistent [HTF08]. On the other hand,
for sample sizes of the order of the dimensionality p or even smaller, its entries have a high variance
and the spectrum has a large systematic error. In particular, large eigenvalues are overestimated and
small eigenvalues underestimated, the condition number is large and the matrix difficult to invert
[MP67, ER05, BS10]. One way to counteract this issue is to shrink S towards a biased estimator T
(the shrinkage target) with lower variance [Ste56],

Csh := (1− λ)S + λT,

the default choice being T = p−1trace(S)I, the identity multiplied by the average eigenvalue.
For the optimal shrinkage intensity λ?, a reduction of the expected mean squared error is guaran-
teed [LW04]. Model selection for λ can be done by cross-validation (CV) with the known draw-
backs: for (i) problems with many hyperparameters, (ii) very high-dimensional data sets, or (iii)
online settings which need fast responses, CV can become unfeasible and a faster model selection
method is required. A popular alternative to CV is Ledoit and Wolf’s analytic shrinkage proce-
dure [LW04] and more recent variants [CWEH10, BM13]. Analytic shrinkage directly estimates the
shrinkage intensity which minimizes the expected mean squared error of the convex combination
with a negligible computational cost, especially for applications which rely on expensive matrix
inversions or eigendecompositions in high dimensions.

All of the above algorithms assume i.i.d. data. Real world time series, however, are often non-i.i.d. as
they possess pronounced autocorrelation (AC). This makes covariance estimation in high dimensions
even harder: the data dependence lowers the effective sample size available for constructing the
estimator [TZ84]. Thus, stronger regularization λ will be needed. In Figure 1 the simple case of an
autoregressive model serves as an example for an arbitrary generative model with autocorrelation.
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Figure 1: Dependency of the eigendecomposition on autocorrelation. p = 200, n = 250.

The Figure shows, for three levels of autocorrelation (left), the population and sample eigenvalues
(middle): with increasing autocorrelation the sample eigenvalues become more biased. This bias
is an optimistic measure for the quality of the covariance estimator: it neglects that population and
sample eigenbasis also differ [LW12]. Comparing sample eigenvalues to the population variance in
the sample eigenbasis, the bias is even larger (right).

In practice, violations of the i.i.d. assumption are often ignored [LG11, SBMK13, GLL+14], al-
though Sancetta proposed a consistent shrinkage estimator under autocorrelation [San08]. In this
paper, we contribute by showing in theory, simulations and on real world data, that (i) ignoring au-
tocorrelations for shrinkage leads to large estimation errors and (ii) for finite samples Sancetta’s es-
timator is still substantially biased and highly sensitive to the number of incorporated time lags. We
propose a new bias-corrected estimator which (iii) outperforms standard shrinkage and Sancetta’s
method under the presence of autocorrelation and (iv) is robust to the choice of the lag parameter.

2 Shrinkage for autocorrelated data

Ledoit and Wolf derived a formula for the optimal shrinkage intensity [LW04, SS05]:

λ? =

∑
ij Var

(
Sij

)
∑

ij E
[(
Sij − Tij

)2] . (1)

The analytic shrinkage estimator λ̂ is obtained by replacing expectations with sample estimates:

Var
(
Sij

)
−→ V̂ar

(
Sij

)
=

1

n2

n∑
s=1

(
xisxjs −

1

n

n∑
t=1

xitxjt

)2
(2)

E
[(
Sij − Tij

)2] −→ Ê
[
(Sij − Tij)2

]
= (Sij − Tij)2, (3)

where xit is the tth observation of variable i. While the estimator eq. (3) is unbiased even under a
violation of the i.i.d. assumption, the estimator eq. (2) is based on

Var

(
1

n

n∑
t=1

xitxjt

)
i.i.d.
=

1

n
Var (xitxjt) .

If the data are autocorrelated, cross terms cannot be ignored and we obtain

Var

(
1

n

n∑
t=1

xitxjt

)
=

1

n2

n∑
s,t=1

Cov(xitxjt, xisxjs)

=
1

n
Cov(xitxjt, xitxjt) +

2

n

n−1∑
s=1

n− s
n

Cov(xitxjt, xi,t+sxj,t+s)

=:
1

n
Γij(0) +

2

n

n−1∑
s=1

Γij(s) (4)

Figure 2 illustrates the effect of ignoring the cross terms for increasing autocorrelation (larger AR-
coefficients, see section 3 for details on the simulation). It compares standard shrinkage to an oracle
shrinkage based on the population variance of the sample covariance1. The population variance of S

1calculated by resampling.
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Figure 2: Dependency of shrinkage on autocorrelation. p = 200, n = 250.

increases because the effective sample size is reduced [TZ84], yet the standard shrinkage variance
estimator eq. (2) does not increase (outer left). As a consequence, for oracle shrinkage the shrinkage
intensity increases, for the standard shrinkage estimator it even decreases because the denominator
in eq. (1) grows (middle left). With increasing autocorrelation, the sample covariance becomes
a less precise estimator: for optimal (stronger) shrinkage more improvement becomes possible,
yet standard shrinkage does not improve (middle right). Looking at the variance estimates in the
sample eigendirections for AR-coefficients of 0.7, we see that the bias of standard shrinkage is only
marginally smaller than the bias of the sample covariance, while oracle shrinkage yields a substantial
bias reduction (outer right).

Sancetta-estimator An estimator for eq. (4) was proposed by [San08]:

Γ̂San
ij (s) :=

1

n

n−s∑
t=1

(xitxjt − Sij) (xi,t+sxj,t+s − Sij) , (5)

V̂ar
(
Sij

)San,b
:=

1

n

(
Γ̂San
ij (0) + 2

n−1∑
s=1

κ(s/b)Γ̂San
ij (s)

)
, b > 0,

where κ is a kernel which has to fulfill Assumption B in [And91]. We will restrict our analysis to
the truncated kernel κTR(x) = {1 for |x| ≤ 1, 0 otherwise} to obtain less cluttered formulas2. The
kernel parameter b describes how many time lags are taken into account.

The Sancetta estimator behaves well in the high dimensional limit: the main theoretical result states
that for (i) a fixed decay of the autocorrelation, (ii) b, n → ∞ and (iii) b2 increasing at a lower rate
than n, the estimator is consistent independently of the rate of p (for details, see [San08]). This is
in line with the results in [LW04, CWEH10, BM13]: as long as n increases, all of these shrinkage
estimators are consistent.

Bias of the Sancetta-estimator In the following we will show that the Sancetta-estimator is sub-
optimal in finite samples: it has a non-negligible bias. To understand this, consider a lag s large
enough to have Γij(s) ≈ 0. If we approximate the expectation of the Sancetta-estimator, we see that
it is biased downwards:

E
[
Γ̂San
ij (s)

]
≈ E

[
1

n

n−s∑
t=1

(
xitxjtxi,t+sxj,t+s − S2

ij

)]
.

≈ n− s
n

(
E2 [Sij ]− E

[
S2
ij

])
= −n− s

n
Var (Sij) < 0.

Bias-corrected (BC) estimator We propose a bias-corrected estimator for the variance of the
entries in the sample covariance matrix:

Γ̂BC
ij (s) :=

1

n

n−s∑
t=1

(
xitxjtxi,t+sxj,t+s − S2

ij

)
, (6)

V̂ar
(
Sij

)BC,b
:=

1

n− 1− 2b+ b(b+ 1)/n

(
Γ̂BC
ij (0) + 2

n−1∑
s=1

κTR(s/b)Γ̂BC
ij (s)

)
, b > 0.

2in his simulations, Sancetta uses the Bartlett kernel. For fixed b, this increases the truncation bias.
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The estimator Γ̂BC
ij (s) is very similar to Γ̂San

ij (s), but slightly easier to compute. The main difference

is the denominator in V̂ar
(
Sij

)BC,b
: it is smaller than n and thus corrects the downwards bias.

2.1 Theoretical results

It is straightforward to extend the theoretical results on the Sancetta estimator ([San08], see sum-
mary above) to our proposed estimator. In the following, to better understand the limitations of the
Sancetta estimator, we will provide a complementary theoretical analysis on the behaviour of the
estimator for finite n.

Our theoretical results are based on the analysis of a sequence of statistical models indexed by p. Xp

denotes a p × n matrix of n observations of p variables with mean zero and covariance matrix Cp.
Yp = R>p Xp denotes the same observations rotated in their eigenbasis, having diagonal covariance
Λp = R>p CpRp. Lower case letters xpit and ypit denote the entries of Xp and Yp, respectively3. The
analysis is based on the following assumptions:
Assumption 1 (A1, bound on average eighth moment). There exists a constant K1 independent of
p such that

1

p

p∑
i=1

E[(xpi1)8] ≤ K1.

Assumption 2 (A2, uncorrelatedness of higher moments). Let Q denote the set of quadruples
{i,j,k,l} of distinct integers.∑

i,j,kl,l∈Qp
Cov2[ypi1y

p
j1, y

p
k,1+sy

p
l,1+s]

|Qp|
= O

(
p−1
)
,

and

∀s :

∑
i,j,kl,l∈Qp

Cov
[
(ypi1y

p
j1)2, (ypk,1+sy

p
l,1+s)

2
]

|Qp|
= O

(
p−1
)
,

hold.
Assumption 3 (A3, non-degeneracy). There exists a constant K2 such that

1

p

p∑
i=1

E[(xpi1)2] ≥ K2.

Assumption 4 (A4, moment relation). There exist constants α4, α8, β4 and β8 such that

E[y8i ] ≤ (1 + α8)E2[y4i ], E[y4i ] ≤ (1 + α4)E2[y2i ],

E[y8i ] ≥ (1 + β8)E2[y4i ], E[y4i ] ≥ (1 + β4)E2[y2i ].

Remarks on the assumptions A restriction on the eighth moment (assumption A1) is necessary
because the estimators eq. (2), (3), (5) and (6) contain fourth moments, their variances therefore
contain eighths moments. Note that, contrary to the similar assumption in the eigenbasis in [LW04],
A1 poses no restriction on the covariance structure [BM13]. To quantify the effect of averaging
over dimensions, assumption A2 restricts the correlations of higher moments in the eigenbasis. This
assumption is trivially fulfilled for Gaussian data, but much weaker (see [LW04]). Assumption A3
rules out the degenerate case of adding observation channels without any variance and assumption
A4 excludes distributions with arbitrarily heavy tails.

Based on these assumptions, we can analyse the difference between the Sancetta-estimator and our
proposed estimator for large p:
Theorem 1 (consistency under “fixed n”-asympotics). Let A1, A2, A3, A4 hold. We then have

1

p2

∑
ij

Var (Sij) = Θ(1)

3We shall often drop the sequence index p and the observation index t to improve readability of formulas.
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Figure 3: Dependence of the variance estimates on the dimensionality. Averaged over R = 50
models. n = 250.

E

∥∥∥∥∥∥ 1

p2

∑
ij

(
V̂ar

San,b
(Sij)−Var (Sij)

)∥∥∥∥∥∥
2

=
(
BiasSan,b + BiasSan,b

TR

)2
+O

( ∑
j γ

2
j

(
∑

j γj)
2

)

E

∥∥∥∥∥∥ 1

p2

∑
ij

(
V̂ar

BC,b
(Sij)−Var (Sij)

)∥∥∥∥∥∥
2

=
(
BiasBC,b

TR

)2
+O

( ∑
j γ

2
j

(
∑

j γj)
2

)

where the γi denote the eigenvalues of C and

BiasSan,b := − 1

p2

∑
ij

{
1 + 2b− b(b+ 1)/n

n
Var (Sij)−

4

n3

b∑
s=1

n∑
t=n−s

n∑
u=1

Cov [xitxjt, xiuxju]

}

BiasSan,b
TR := − 1

p2
2

n

∑
ij

n∑
s=b+1

n− s
n

Cov [xitxjt, xi,t+sxj,t+s]

BiasBC,b
TR := − 1

p2
2

n− 1− 2b+ b(b+1)
n

∑
ij

n−1∑
s=b+1

Cov [xitxjt, xi,t+sxj,t+s]

Proof. see the supplemental material.

Remarks on Theorem 1 (i) The mean squared error of both estimators consists of a bias and a
variance term. Both estimators have a truncation bias which is a consequence of including only a
limited number of time lags into the variance estimation. When b is chosen sufficiently high, this
term gets close to zero. (ii) The Sancetta-estimator has an additional bias term which is smaller than
zero in each dimension and therefore does not average out. Simulations will show that, as a conse-
quence, the Sancetta-estimator has a strong bias which gets larger with increasing lag parameter b.
(iii) The variance of both estimators behaves as O(

∑
i γ

2
i / (
∑

i γi)
2
): the more the variance of the

data is spread over the eigendirections, the smaller the variance of the estimators. This bound is
minimal if the eigenvalues are identical. (iv) Theorem 1 does not make a statement on the relative
sizes of the variances of the estimators. Note that the BC estimator mainly differs by a multiplicative
factor > 1, hence the variance is larger, but not relative to the expectation of the estimator.

3 Simulations

Our simulations are based on those in [San08]: We average over R = 50 multivariate Gaussian
AR(1) models

~xt = A~xt−1 + ~εt,

with parameter matrix4 A = ψAC · I , with ψno AC = 0, ψlow AC = 0.7, and ψhigh AC = 0.95 (see Fig-
ure 1). The innovations εit are Gaussian with variances σ2

i drawn from a log-normal distribution

4more complex parameter matrices or a different generative model do not pose a problem for the bias-
corrected estimator. The simple model was chosen for clarity of presentation.
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Figure 4: Robustness to the choice of lag parameter b. Variance estimates (upper row), shrinkage
intensities (middle row) and improvement over sample covariance (lower row). Averaged over R =
50 models. p = 200, n = 250.

with mean µ = 1 and scale parameter σ = 0.5. For each model, we generate K = 50 data sets to
calculate the std. deviations of the estimators and to obtain an approximation of p−2

∑
ij Var (Sij).

Simulation 1 analyses the dependence of the estimators on the dimensionality of the data. The num-
ber of observations is fixed at n = 250 and the lag parameter b chosen by hand such that the whole
autocorrelation is covered5: bno AC = 10, blow AC = 20 and bhigh AC = 90. Figure 3 shows that the
standard shrinkage estimator is unbiased and has low variance in the no AC-setting, but under the
presence of autocorrelation it strongly underestimates the variance. As predicted by Theorem 1,
the Sancetta estimator is also biased; its remains stays constant for increasing dimensionality. Our
proposed estimator has no visible bias. For increasing dimensionality the variances of all estima-
tors decrease. Relative to the average estimate, there is no visible difference between the standard
deviations of the Sancetta and the BC estimator.

Simulation 2 analyses the dependency on the lag parameter b for fixed dimensionality p = 200
and number of observations n = 250. In addition to variance estimates, Figure 4 reports shrinkage
intensities and the percentage improvement in absolute loss (PRIAL) over the sample covariance
matrix:

PRIAL
(
C{pop., shr, San., BC}) =

E‖S−C‖ − E‖C{pop., shr, San., BC} −C‖
E‖S−C‖

.

The three quantities show very similar behaviour. Standard shrinkage performs well in the no AC-
case, but is strongly biased in the autocorrelated settings. The Sancetta estimator is very sensitive to
the choice of the lag parameter b. For low AC, the bias at the optimal b is small: only a small number
of biased terms are included. For high AC the optimal b is larger, the higher number of biased terms
causes a larger bias. The BC-estimator is very robust: it performs well for all b large enough to
capture the autocorrelation. For very large b its variance increases slightly, but this has practically

5for b < 1, optimal in the no AC-setting, Sancetta and BC estimator are equivalent to standard shrinkage.
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Figure 5: BCI motor imagery data for lag parameter b = 75 (upper row) and b = 300 (lower row).
Averaged over subjects and K = 100 runs.

no effect on the PRIAL. An interesting aspect is that our proposed estimator even outperforms
shrinkage based on the the population Var (Sij) (calculated by resampling). This results from the
correlation of the estimator V̂ar

(
Sij

)BC,b
with the sample estimate eq. (3) of the denominator in

eq. (1).

4 Real World Data: Brain Computer Interface based on Motor Imagery

As an example of autocorrelated data we reanalyzed a data set from a motor imagery experiment. In
the experiment, brain activity for two different imagined movements was measured via EEG (p = 55
channels, 80 subjects, 150 trials per subject, each trial with ntrial = 390 measurements [BSH+10]).
The frequency band was optimized for each subject and from the class-wise covariance matrices, 1-3
filters per class were extracted by Common Spatial Patterns (CSP), adaptively chosen by a heuristic
(see [BTL+08]). We trained Linear Discriminant Analysis on log-variance features.

To improve the estimate of the class covariances on these highly autocorrelated data, standard shrink-
age, Sancetta shrinkage, cross-validation and and our proposed BC shrinkage estimator were ap-
plied. The covariance structure is far from diagonal, therefore, for each subject, we used the average
of the class covariances of the other subjects as shrinkage target [BLT+11]. Shrinkage is domi-
nated by the influence of high-variance directions [BM13], which are pronounced in this data set.
To reduce this effect, we rescaled, only for the calculation of the shrinkage intensities, the first five
principal components to have the same variance as the sixth principal component.

We analyse the dependency of the four algorithms on the number of supplied training trials. Figure 5
(upper row) shows results for an optimized time lag (b = 75) which captures well the autocorre-
lation of the data (outer left). Taking the autocorrelation into account makes a clear difference
(middle left/right): while standard shrinkage outperforms the sample covariance, it is clearly out-
performed by the autocorrelation-adjusted approaches. The Sancetta-estimator is slightly worse
than our proposed estimator. The shrinkage intensities (outer right) are extremely low for standard
shrinkage and the negative bias of the Sancetta-estimator shows clearly for small numbers of train-
ing trials. Figure 5 (lower row) shows results for a too large time lag (b = 300). The performance
of the Sancetta-estimator strongly degrades as its shrinkage intensities get smaller, while our pro-
posed estimator is robust to the choice of b, only for the smallest number of trials we observe a
small degradation in performance. Figure 6 (left) compares our bias-corrected estimator to the four
other approaches for 10 training trials: it significantly outperforms standard shrinkage and Sancetta
shrinkage for both the larger (b = 300, p ≤ 0.01) and the smaller time lag (b = 75, p ≤ 0.05).
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Figure 6: Subject-wise BCI classification accuracies for 10 training trials (left) and time demands
(right). ∗∗/∗ := significant at p ≤ 0.01 or p ≤ 0.05, respectively.

Analytic shrinkage procedures optimize only the mean squared error of the covariance matrix, while
cross-validation directly optimizes the classification performance. Yet, Figure 5 (middle) shows that
for small numbers of training trials our proposed estimator outperforms CV, although the difference
is not significant (see Fig. 6). For larger numbers of training trials CV performs better. This shows
that the MSE is not a very good proxy for classification accuracies in the context of CSP: for op-
timal MSE, shrinkage intensities decrease with increasing number of observations. CV shrinkage
intensities instead stay on a constant level between 0.1 and 0.15. Figure 6 (right) shows that the
three shrinkage approaches (b = 300) have a huge performance advantage over cross-validation (10
folds/10 parameter candidates) with respect to runtime.

5 Discussion

Analytic Shrinkage estimators are highly useful tools for covariance matrix estimation in time-
critical or computationally expensive applications: no time-consuming cross-validation procedure
is required. In addition, it has been observed that in some applications, cross-validation is not a
good predictor for out-of-sample performance [LG11, BKT+07]. Its speed and good performance
has made analytic shrinkage widely used: it is, for example, state-of-the-art in ERP experiments
[BLT+11]. While standard shrinkage assumes i.i.d. data, many real world data sets, for example
from video, audio, finance, biomedical engineering or energy systems clearly violate this assump-
tion as strong autocorrelation is present. Intuitively this means that the information content per data
point becomes lower, and thus the covariance estimation problem becomes harder: the dimension-
ality remains unchanged but the effective number of samples available decreases. Thus stronger
regularization is required and standard analytic shrinkage [LW04] needs to be corrected.

Sancetta already moved the first step into this important direction by providing a consistent estimator
under i.i.d. violations [San08]. In this work we analysed finite sample sizes and showed that (i) even
apart from truncation bias —which results from including a limited number of time lags— Sancetta’s
estimator is biased, (ii) this bias is only negligible if the autocorrelation decays fast compared to
the length of the time series and (iii) the Sancetta estimator is very sensitive to the choice of lag
parameter.

We proposed an alternative estimator which is (i) both consistent and —apart from truncation bias—
unbiased and (ii) highly robust to the choice of lag parameter: In simulations on toy and real world
data we showed that the proposed estimator yields large improvements for small samples and/or sub-
optimal lag parameter. Even for optimal lag parameter there is a slight but significant improvement.
Analysing data from BCI motor imagery experiments we see that (i) the BCI data set possesses
significant autocorrelation, that (ii) this adversely affects CSP based on the sample covariance and
standard shrinkage (iii) this effect can be alleviated using our novel estimator, which is shown to
(iv) compare favorably to Sancetta’s estimator.

Acknowledgments

This research was also supported by the National Research Foundation grant (No. 2012-005741)
funded by the Korean government. We thank Johannes Höhne, Sebastian Bach and Duncan Blythe
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