
A Comparison betweenG-allocation and XY-allocation
We define two examples illustrating the difference between the G and the XY allocation strategies.
Let us consider a problem with X ⊂ R

2 and arms x1 = [1 ǫ/2]⊤ and x2 = [1 − ǫ/2]⊤, where ǫ ∈
(0, 1). In this case, both static allocations pull the two arms the same number of times, thus inducing
an optimal design λ(x1) = λ(x2) = 1/2. We want to study the (asymptotic) performance of
the allocation according to the different definition of errormaxx∈X x

⊤Λ−1
λ x andmaxy∈Y y

⊤Λ−1
λ y

used by G and XY-allocation respectively. We first notice that

Λλ =
1

2

�
1 ǫ/2
ǫ/2 ǫ2/4

�
+

1

2

�
1 −ǫ/2

−ǫ/2 ǫ2/4

�
=

�
1 0
0 ǫ2/4

�
.

As a result, for both x1 and x2 we have

[1 ǫ/2]Λ−1
λ

�
1
ǫ/2

�
= [1 ǫ/2]

�
1 0
0 4/ǫ2

� �
1
ǫ/2

�
= 2.

On the other hand, if we consider the direction y = x1 − x2 = [0 ǫ], we have

[0 ǫ]Λ−1
λ

�
0
ǫ

�
= [0 ǫ]

�
1 0
0 4/ǫ2

� �
0
ǫ

�
= 4.

This example shows that indeed the performance achieved byXY may be similar to the performance
of G-optimal. Let us now consider a different setting where the two arms x1 = [1 0] and x2 =
[1 − ǫ 0] are aligned on the same axis. In this case, the problem reduces to a 1-dimensional
problem and both strategies would concentrate their allocation on x1 = [1 0] since it is the arm
with larger norm and it may provide a better estimate of θ∗. As a result, while the G-allocation has
a performance of 1, the XY-allocation over the direction [ǫ 0] has a performance ǫ2, which can be
arbitrarily smaller than 1.

B Proofs

B.1 Lemmas

Proof of Lemma 1. The proof follows from the fact that if S∗(xn) ⊆ C(x∗) and θ̂n ∈ S∗(xn)

with high probability, then θ̂n ∈ C(x∗) which implies that Π(θ̂n) = x∗ by definition of the cone
C(x∗).

Before proceeding to the proof of Lemma 2 we introduce the following technical tool.

Proposition 3 (Equivalence-Theorem in [13]). Define f(x; ξ) = x⊤M(ξ)−1x, where M(ξ) is a
d× d non-singular matrix and x is a column vector in R

d. We consider two extremum problems.

The first is to choose ξ so that

(1) ξ maximizes detM(ξ) (D-optimal design)

The second one is to choose ξ so that

(2) ξ minimizes max f(x; ξ) (G-optimal design)

We note that the integral with respect to ξ of f(x; ξ) is d; hence, max f(x; ξ) ≥ d, and thus a
sufficient condition for ξ to satisfy (2) is

(3) max f(x; ξ) = d.

Statements (1), (2) and (3) are equivalent.

Proof of Lemma 2. Upper-bound. We have the following sequence of inequalities

max
y∈Y∗

||y||2
Λ−1

λ

Δ2(y)
≤ 1

Δ2
min

max
y∈Y∗

||y||2
Λ−1

λ

≤ 4

Δ2
min

max
x∈X

||x||2
Λ−1

λ

,

10

where the second inequality comes from a triangle inequality on ||y||2
Λ−1

λ

. Thus we obtain

ρ∗(λ∗) = min
λ∈Dk

max
y∈Y∗

||y||2
Λ−1

λ

Δ2(y)
≤ 4

Δ2
min

min
λ∈Dk

max
x∈X

||x||2
Λ−1

λ

=
4d

Δ2
min

,

where the last equality follows from the Kiefer-Wolfowitz equivalence theorem presented in Prop. 3.

Lower-bound.

We focus on the numerator y⊤Λ−1
λ y. Since Λλ is a positive definite matrix, we define its decompo-

sition Λλ = QΓQ⊤, where Q is an orthogonal matrix and Γ is the diagonal matrix containing the
eigenvalues. As a result the numerator can be written as

y⊤Λ−1
λ y = y⊤QΓ−1Q⊤y = w⊤Γ−1w,

where we renamed Q⊤y = w. If we denote by γmax the largest eigenvalue of Λλ (i.e., the largest
value in Γ), then

w⊤Γ−1w ≥ 1/γmaxw
⊤w = 1/γmax||y||2.

The largest eigenvalue γmax is upper-bounded by the sum of the largest eigenvalues of the matrices
λ(x)xx⊤ which is λ(x)||x||2. As a result, we obtain the bound γmax ≤ �

x λ(x)||x||2 ≤ L, since
||x||2 ≤ L and λ is in the simplex. Thus we have

min
λ∈Dk

max
y∈Y∗

||y||2
Λ−1

λ

Δ2(y)
≥ 1

L
max
y∈Y∗

||y||2
Δ(y)2

≥ maxy∈Y∗ ||y||2
LΔ2

min

.

Comparison with theK-armed bandit complexity.

Finally, we show how the sample complexity reduces to the known quantity in the MAB case. If the
arms in X coincide with the canonical basis of Rd, then for any allocation λ the design matrix Λλ

becomes a diagonal matrix of the form diag(λ(x1), . . . , λ(xK)). As a result, we obtain

HLB = min
λ∈Dk

max
y∈Y∗

||y||2
Λ−1

λ

Δ2(y)
= min

λ∈Dk
max

x∈X−{x∗}

1/λ(x) + 1/λ(x∗)

Δ2(x)
.

If we use the allocation λ(x) = 1/(νΔ2(x)) and λ(x∗) = 1/(νΔmin), with ν = 1/Δ2
min +�

x=x∗ 1/Δ2(x), we obtain

HLB ≤ max
x∈X−{x∗}

νΔ2(x) + νΔ2
min

Δ2(x)
= max

x∈X−{x∗}
ν + ν

Δ2
min

Δ2(x)

= 2ν = 2
� 1

Δ2
min

+
�

x=x∗

1

Δ2(x)

�
= 2HMAB.

On the other hand, letting x̃ be the second best arm and Δ(x∗) = Δmin, we have that

HLB = min
λ∈Dk

max
x=x∗

1/λ(x) + 1/λ(x∗)

Δ2(x)

= min
λ∈Dk

max

�
max
x=x∗

1/λ(x) + 1/λ(x∗)

Δ2(x)
;

1/λ(x̃) + 1/λ(x∗)

Δ2(x∗)

�

≥ min
λ∈Dk

max

�
max
x=x∗

1/λ(x)

Δ2(x)
;

1/λ(x∗)

Δ2(x∗)

�

= min
λ∈Dk

max
x∈X

1/λ(x)

Δ2(x)
.

We set 1/λ(x)
Δ2(x) equal to a constant c and thus we get λ(x) = 1

cΔ2(x) . Since
1
c

�
x∈X

1
Δ2(x) = 1, it

follows that:

c =
�

x∈X

1

Δ2(x)
=

�

x=x∗

1

Δ2(x)
+

1

Δ2
min

= HMAB.

11

Thus, we get that HMAB ≤ HLB ≤ 2HMAB. This shows that HLB is a well defined notion of
complexity for the linear best-arm identification problem and the corresponding sample complexity
N∗ is coherent with existing results in the MAB case.

Proof of Lemma 3. The proof follows from the fact that if �S(xn) ⊆ C(x) and θ∗ ∈ �S(xn) with high
probability, then θ∗ ∈ C(x) which implies that Π(θ̂n) = x = x∗.

B.2 Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. The statement follows from Prop. 1 and the performance guarantees for the
different implementations of the G-optimal design. By recalling the empirical stopping condition in
Eq. 11 and the definition ρG(λ) = maxx x

⊤Λ−1
λ x, we notice that from a simple triangle inequality

applied to ||y||A−1 , a sufficient condition for stopping is that for any x ∈ X

4c2ρG̃n logn(K2/δ)

n
≤ �Δ2

n(x∗, x),

where ρG̃n = ρG(λ
x
G̃
n

) and x
G̃
n is the allocation obtained from rounding the optimal design λG

obtained from the continuous relaxation or the greedy incremental algorithm. From Prop. 1 we have
that the following inequalities

�Δn(x∗, x) ≥ Δ(x∗, x) − c||x∗ − x||A−1

x
G
n

�
logn(K2/δ) ≥ Δ(x∗, x) − 2c

�
ρG̃n logn(K2/δ)

n
,

hold with probability 1 − δ. Combining this with the previous condition and since the condition
must hold for all x ∈ X , we have that a sufficient condition to stop using the G-allocation is

16c2ρG̃n logn(K2/δ)

n
≤ Δmin,

which defines the level of accuracy that the G-allocation needs to achieve before stopping. Since
ρG̃n ≤ (1 + β)d then the statement follows by inverting the previous inequality.

Proof of Theorem 2. We follow the same steps as in the proof of Theorem 1.

C Implementation of the Allocation Strategies

In this section we discuss about possible implementations of the allocation strategies illustrated in
sections 4 and 5 and we discuss their approximation accuracy guarantees.

The efficient rounding procedure. We first report the general structure of the efficient rounding
procedure defined in [15, Chapter 12] to implement a design λ into an allocation xn for any fixed
number of steps n. Let p = supp(λ) the support of λ,4 then we want to compute the number of pulls
ni (with i = 1, . . . , p) for all the arms in the support of λ. Basically, the fast implementation of the
design is obtained in two phases, as follows:

• In the first phase, given the sample size n and the number of support points p, we calculate
their corresponding frequencies ni = ⌈(n− 1

2p)λi⌉, where n1, n2, . . . , np are positive
integers with

�
i≤p ni ≥ n.

• The second phase loops until the discrepancy
��

i≤p ni
�
− n is 0, either:

– increasing a frequency nj which attains nj/λj = mini≤p(n− 1)/λi to nj+1, or
– decreasing some nk with (nk − 1)/λk = maxi≤p(ni − 1)/λi to n− 1.

An interesting feature of this procedure is that when moving from n to n + 1 the corresponding
allocations xn and xn+1 only differ for one element i which is increased by 1, i.e., the discrete
allocation is monotonic in n.

4For a fixed design λ ∈ R
K , we say that its support is given by all arms in X whose corresponding features

in λ are different than 0.

12

Implementation of the G-allocation. A first option is to optimize a continuous relaxation of the
problem and compute the optimal design. Let ρG(λ) = maxx x

⊤Λ−1
λ x, the optimal design is

λG = arg min
λ∈Dk

max
x∈X

||x||2
Λ−1

λ

= arg min
λ∈Dk

ρG(λ). (21)

This is a convex optimization problem and it can be solved using the projected gradient algorithm,
interior point techniques, or multiplicative algorithms. To move from the design λG to a discrete
allocation we use the efficient rounding technique presented above and we obtain that the resulting
allocation x

G̃
t is guaranteed to be monotonic as the number of times an arm x is pulled is non-

decreasing with t. Thus from x
G̃
t we obtain a simple incremental rule, where the arm xt is the arm

for which xG̃
t recommends one pull more than in x

G̃
t−1. An alternative is to directly implement an

incremental version of Eq. 12 by selecting at each step t the greedy arm

xt = arg min
x∈X

max
x′∈X

x′⊤
�
Axt−1

+xx⊤
�
−1x′ = arg min

x∈X
max
x′∈X

x′⊤
�
A−1

xt−1
−
A−1

xt−1
xx⊤A−1

xt−1

1 + x⊤A−1
xt−1

x

�
x′, (22)

where the second formulation follows from the matrix inversion lemma. This allocation is somehow
simpler and more direct than using the continuous relaxation but it may come with a higher efficiency
loss.

Before reporting the performance guarantees for the two implementations proposed above, we in-
troduce an additional technical lemma which will be useful in the proofs on the performance guar-
antees. Although the lemma is presented for a specific definition of uncertainty ρ, any other notion
including design matrices of the kind Λλ will satisfy the same guarantee.

Lemma 5. Let ρ(λ) = maxx∈X x
⊤Λ−1

λ x be a measure of uncertainty of interest for any design
λ ∈ DK . We denote by λ∗ = arg minλ∈DK ρ(λ) the optimal design and for any n > d we introduce
the optimal discrete allocation as

x
∗
n = arg min

xn∈Xn
max
x∈X

x⊤Λ−1
λxn
x

n
,

where λxn
is the (fractional) design corresponding to xn. Then we have

ρ(λ∗) ≤ ρ(x∗
n) ≤

�
1 +

p

n

�
ρ(λ∗), (23)

where p = supp(λ∗) is the number of points in the support of λ∗. If d linearly independent arms are
available in X , then we can upper bound the size of the support of λ∗ and obtain

ρ(λ∗) ≤ ρ(x∗
n) ≤

�
1 +

d(d+ 1)

n

�
ρ(λ∗). (24)

Proof. The first part of the statement follows by the definition of λ∗ as the minimizer of ρ. Let x̃n

by an efficient rounding technique applied on λ∗ such as the one described in Lemma 12.8 in [15].
Then x̃n has the same support as λ∗ and an efficiency loss bounded by p/n. As a result, we have

ρ(x∗
n) ≤ ρ(x̃n) ≤

�
1 +

p

n

�
ρ(λ∗),

where the first inequality comes from the fact that x∗
n is the minimizer of ρ among allocations of

length n. Then, from Caratheodory’s theorem (see e.g., [15]) the number of support points used
in λ∗ is upper bounded by p ≤ d(d + 1)/2 + 1 (under the assumption that there are d linearly
independent arms in X). The final result follows by a rough maximization of d(d+ 1)/2n+ 1/n ≤
d(d+ 1)/n.

Remark 1. Note that the same upper-bound for the number of support points holds for any design,
due to the properties of the design matrices. In fact, any design matrix is symmetric by construction,
which implies that it is completely described by D = d(d + 1)/2 elements and can thus be seen as
a point in RD. Moreover, a design matrix is a convex combination of a subset of points in RD and
thus it belongs to the convex hull of that subset of points. Caratheodory’s theorem states that each
point in the convex hull of any subset of points in RD can be defined as a convex combination of at

13

mostD+1 points. It directly follows that any design matrix can be expressed using (d(d+1)/2)+1
points.

It follows that the allocation xG̃
t obtained applying the rounding procedure has the following perfor-

mance guarantee.
Lemma 6. For any t ≥ d, the rounding procedure defined in [15, Chapter 12] returns an allocation
x
G̃
t , whose corresponding design λG̃ = λ

x
G̃
t

is such that5

ρG(λG̃) ≤
�

1 +
d+ d2 + 2

2t

�
d.

Proof of Lemma 6. We follow the same steps as in the proof of Lemma 5 to obtain the term β =
d+d2+2

2t . Then, noting that the performance of the optimal strategy ρG(λ∗G) = d (from Prop. 3), the
results follows.

Implementation of the XY-allocation. Notice that the complexity of the XY-allocation triv-
ially follows from the complexity of the G-allocation and it is NP-hard. As a result, we need
to propose approximate solutions to compute an allocation x

�XY
n as for the G-allocation. Let

ρXY(λ) = maxy∈Y y
⊤Λ−1

λ y, then the first option is the compute the optimal solution to the contin-
uous relaxed problem

λXY = arg min
λ∈Dk

max
y∈Y

||y||2
Λ−1

λ

= arg min
λ∈Dk

ρXY(λ). (25)

And then compute the corresponding discrete allocation x�XY
n using the efficient rounding procedure.

Alternatively, we can use an incremental greedy algorithm which at each step t returns the arm

xt = arg min
x∈X

max
y∈Y

y⊤
�
Axt−1

+ xx⊤
�−1
y. (26)

Lemma 7. For any t ≥ d, the rounding procedure defined in [15, Chapter 12] returns an allocation
x
�XY
t , whose corresponding design λ�XY = λ

x

�XY
t

is such that

ρXY(λ
�XY) ≤ 2

�
1 +

d+ d2 + 2

2t

�
d.

Proof of Lemma 7. The proof follows from the fact that for any pair (x, x′)

||x− x′||A−1

xn
≤ 2 max

x′′∈X
||x′′||A−1

xn
.

Then the proof proceeds as in Lemma 6.

Implementation ofXY-adaptive allocation. The allocation rule in Eq. 17 basically coincides with
the XY-allocation and its properties extend smoothly.

D Proof of Theorem 3

Before proceeding to the proof, we first report the proofs of two adittional lemmas.

Proof of Lemma 4. Let y = x′ − x. Using the definition of �S(xn) in Eq. 10, and the fact that
θ∗ ∈ �S(xn) with high probability, we have

(x′ − x)⊤(θ̂n − θ∗) ≤ c||x′ − x||A−1

x

�
logn(K2/δ).

Since the condition in Eq. 16 is true, it follows that

(x′ − x)⊤(θ̂n − θ∗) ≤ c||x′ − x||A−1

x

�
logn(K2/δ) ≤ �Δn(x′, x) ⇔

−(x′ − x)⊤θ∗ ≤ 0 ⇔ x⊤θ∗ ≤ x′⊤θ∗

thus x is dominated by x′ and x cannot be the optimal arm.
5We recall that from any allocation xn the corresponding design λx is such that λxn(x) = Tn(x)/n.

14

Lemma 8. For any phase j, the length is such that nj ≤ max{M∗, 16α N
∗} with probability 1 − δ.

Proof of Lemma 8. We first summarize the different quantities measuring the performance of an
allocation strategy in different settings. For any design λ ∈ DK , we define

ρ∗(λ) = max
y∈Y∗

||y||2
Λ−1

λ

Δ2(y)
; ρXY(λ) = max

y∈Y
||y||2

Λ−1

λ

; ρj(λ) = max
y∈ �Yj

||y||2
Λ−1

λ

. (27)

For any n, we also introduce the value of each of the previous quantities when the corresponding
optimal (discrete) allocation is used

ρ∗n = ρ∗(λx∗
n
); ρXY

n = ρXY(λ
x
XY
n

); ρjn = ρj(λ
x
j
n
). (28)

Finally, we introduce the optimal designs

λ∗ = arg min
λ∈DK

ρ∗(λ); λXY = arg min
λ∈DK

ρXY(λ); λj = arg min
λ∈DK

ρj(λ). (29)

Let ǫ∗ be the smallest ǫ such that there exists a pair (x, x′), with x = x∗ and x′ = x∗, such that the
confidence set S = {θ : ∀y ∈ Y, |y⊤(θ − θ∗)| ≤ ǫ} overlaps with the hyperplane C(x) ∩ C(x′).
SinceM∗ is defined as the smallest number of steps needed by the XY strategy to avoid any overlap
between S∗ and the hyperplanes C(x) ∩ C(x′), then we have that afterM∗ steps

c

�
ρXY
M∗ logn(K2/δ)

M∗
< ǫ∗. (30)

We consider two cases to study the length of a phase j.

Case 1:
�

ρj
nj

nj
≥ ǫ∗

c
√

logn(K
2/δ)

. From Eq. 30 it immediately follows that

ρjnj

nj
≥ ρXY

M∗

M∗
. (31)

From definitions in Eqs. 27 and 28, since �Yj ⊆ Y we have for any n, ρjn ≤ ρXY
n . As a result, if

nj ≥M∗, since ρjn/n is a non-increasing function, then we would have the sequence of inequalities

ρjnj

nj
≤ ρjM∗

M∗
≤ ρXY

M∗

M∗
,

which contradicts Eq. 31. Thus nj ≤M∗.

Case 2:
�

ρj
nj

nj
≤ ǫ∗

c
√

logn(K
2/δ)

. We first relate the performance at phase j with the performance of

the oracle. For any n

ρjn = ρj(λ
x
j
n
) ≤ ρj(λx∗

n
) = max

y∈ �Yj

y⊤Λ−1
λ
x
∗
n

y = max
y∈ �Yj

y⊤Λ−1
λ
x
∗
n

y

Δ2(y)
Δ(y) ≤ max

y∈ �Yj

y⊤Λ−1
λ
x
∗
n

y

Δ2(y)
max
y∈�Yj

Δ2(y).

If now we consider n = nj , then the definition case 2 implies that the estimation error
�
ρjnj/nj is

small enough so that all the directions in Y−Y∗ have already been discarded from �Yj and �Yj ⊆ Y∗.
Thus

ρjnj
≤ max

y∈Y∗

y⊤Λ−1
λ
x
∗
nj

y

Δ2(y)
max
y∈ �Yj

Δ2(y) = ρ∗nj
max
y∈ �Yj

Δ2(y). (32)

This relationship does not provide a bound on nj yet. We first need to recall from Prop. 1 that for
any y ∈ Y (and notably for the directions in �Yj) we have

|y⊤(θ̂j−1 − θ∗)| ≤ c
�
y⊤A−1

j−1y logn(K2/δ),

15

where Aj−1 = A
x
j−1

nj−1

is the matrix constructed from the pulls within phase j − 1. Since xj−1
n is

obtained from a XY-allocation applied on directions in �Yj−1, we obtain that for any y ∈ �Yj

|y⊤(θ̂j−1 − θ∗)| ≤ c
�

logn(K2/δ) max
y∈ �Yj−1

�
y⊤A−1

j−1y = c

�
logn(K2/δ)ρj−1

nj−1

nj−1
,

Reordering the terms in the previous expression we have that for any y ∈ �Yj

Δ(y) ≤ �Δj−1(y) + c

�
logn(K2/δ)ρj−1

nj−1

nj−1
.

Since the direction y is included in �Yj then the discard condition in Eq. 16 failed for y, implying

that �Δj−1(y) ≤ c
�

logn(K
2/δ)ρj−1

nj−1

nj−1

. Thus we finally obtain

max
y∈ �Yj

Δ(y) ≤ 2c

�
logn(K2/δ)ρj−1

nj−1

nj−1
.

Combining this with Eq. 32 we have

ρjnj
≤ ρ∗nj

4c2
logn(K2/δ)ρj−1

nj−1

nj−1
.

Using the stopping condition of phase j and the relationship between the performance ρj , we obtain
that at time n̄ = nj − 1

ρjn̄
n̄

≥ α
ρj−1
nj−1

nj−1
≥ α

4c2 logn(K2/δ)

ρjnj

ρ∗nj

We can further refine the previous inequality as

ρjn̄
n̄

≥ αρ∗N∗

4N∗

N∗

c2 logn(K2/δ)ρ∗N∗

ρjnj

ρ∗nj

≥ αρ∗N∗

4N∗

ρjnj

ρ∗nj

,

where we use the definition ofN∗ in Eq. 7, which implies c
�

logn(K2/δ)ρ∗N∗/N∗ ≤ 1. Reordering
the terms and using n̄ = nj − 1, we obtain

nj ≤ 1 +
4N∗

α

ρjnj−1

ρjnj

ρ∗nj

ρ∗N∗

.

From Lemma 5 and the optimal designs defined in Eq. 29 we have

nj ≤ 1 +
4N∗

α

(1 + d(d+ 1)/(nj − 1))ρj(λj)

ρj(λj)

(1 + d(d+ 1)/(nj − 1))ρ∗(λ∗)

ρ∗(λ∗)
.

Using the fact that the algorithm forces nj ≥ d(d+ 1) + 1, the statement follows.

Proof of Theorem 3. Let J be the index of any phase for which | �XJ | > 1. Then there exist at least
one arm x ∈ X (beside x∗) for which the discarding condition in Lemma 4 is not triggered, which
corresponds to the fact that for all arms x′ ∈ X

c||x− x′||A−1

x
J
nJ

�
logn(K2/δ) ≥ �ΔJ(x, x′).

By developing the right hand side, we have

�ΔJ (x, x′) ≥ Δ(x, x′) − c||x− x′||A−1

x
J
nJ

�
logn(K2/δ) ≥ Δmin − c

�
ρJnJ

logn(K2/δ)

nJ

16

which leads to the condition

2c

�
ρJnJ

logn(K2/δ)

nJ
≥ Δmin. (33)

Using the phase stopping condition and the initial value of ρ0 we have

ρJnJ

nJ
≤ α

ρJ−1
nJ−1

nJ−1
≤ αJ ρ

0

n0
= αJ .

By joining this inequality with Eq. 33 we obtain

αJ ≥ Δ2
min

4c2 logn(K2/δ)
,

and it follows that J ≤ log(4c2 logn(K2/δ)/Δ2
min)/ log(1/α) which together with Lemma 8 leads

to the final statement.

E Additional Empirical Results

For the setting described in Sec. 6, in order to point out the different repartitions of the sampling
budget over arms, in Fig. 5 we present the number of samples allocated per arm, for the case when
the input space X ⊆ R

5. We remind that the arms denoted x1, . . . , x5 form the canonical basis and
arm x6 = [cos(ω) sin(ω) 0 0 0].

Samples/arm XY-oracle XY-adaptive XY G Fully-adaptive
x1 207 263 29523 28014 740
x2 41440 52713 29524 28015 149220
x3 2 3 29524 28015 1
x4 2 5 29524 28015 1
x5 1 2 29524 28015 1
x6 0 2 1 1 1
Budget 41652 52988 147620 140075 149964

Figure 5: The budget needed by the allocation strategies to identify the best arm when X ⊆ R
5 and their

sample allocation over arms. XY and G allocate samples uniformly over the canonical arms while XY-oracle
and XY-adaptive use most of the samples for arm x2 (corresponding to the most informative direction).

We can notice that even though the Fully-adaptive algorithm identifies the most informative direction
and focuses the sampling on arm x2, its sample complexity still has a growth linear in the dimension,
due to the extra

√
d term in his bound. Consequently, the advantage over the static strategies is

canceled. On the other hand, XY-adaptive “learns” the gaps from the observations and allocates the
samples very similarly to XY-oracle, without suffering a large loss in terms of the sampling budget.
However, XY-adaptive’s sample complexity has to account for the the re-initializations made at the
beginning of a new phase.

Finally, we notice that in this problem that static allocations, XY and G, perform a uniform alloca-
tion over the canonical arms. Another interesting remark is that the number of pulls to one canonical
arm is smaller than the samples that XY-oracle allocated to x2. This is explained by the “mutual
information” coming from the multiple observations on all directions, which helps in reducing the
overall uncertainty of the confidence set.

17

