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Appendix A

We provide a proof for proposition1. Before moving to the proposition, we first state the following
lemmas, which easily lead to the proposition. For the sake of clarity of discussion, we will split the
summand term in the summation δj(i) as follows:

δj (i) = f1 (j, i) + f2 (j, i) =

|P|∑
k=i

g1 (j, k) +

|P|∑
k=i

g2 (j, k) ,

g1 (j, k) =
1

|P|

(
j

j + k
− j − 1

j + k − 1

)
, g2 (j, k) = −

2
(
spk − snj

)
|P||N |

.

Please note that the functions f1(j, i) and f2(j, i) are cumulative sums of g1(j, i) and g2(j, i) re-
spectively, in the decreasing direction of i. Therefore, for ease of reasoning, we shall analyse the
trend of these functions in the decreasing direction of i.
Lemma 1. For k < j, g1(j, k) monotonically decreases with decreasing k, that is ∀ k < j
g1(j, k − 1) ≤ g1(j, k).

Proof. For j ≥ 1 and k ≥ 1, (j+k) > j ⇒ j(j+k)−(j+k) < j(j+k)−j ⇒ j
j+k >

j−1
j+k−1 .

So, term g1(j, k) > 0 for all k ≥ 1. It can also be verified that the function g1(j, k) is 0 at 0 and
has a single maxima for k ∈ <+, at k =

√
j(j − 1). From this we can conclude that for discrete

k ∈ Z+, g1(j, k) would have maximum value either at k = j or k = j − 1. Therefore, for k < j,
g1(j, k) would monotonically decrease with decreasing k.

Lemma 2. For k < j, g2(j, k) monotonically decreases with decreasing k, that is ∀ k < j
g2(j, k − 1) ≤ g2(j, k).

Proof. In g2(j, k), the negative score snj is a constant for a given j. Whereas, the positive scores spk
being sorted in descending order, monotonically increase as k decreases. Therefore, g2(j, k) which
is −spk + constant, monotonically decreases as k decreases.

Proposition 1. The discrete function δj(i), defined in equation-5 of the main text, is unimodal in the
domain {1, · · · , p}, where p = min{|P|, j}.

Proof. From lemmas 1 and 2, for k < j, g1(j, k) and g2(j, k) monotonically decreases with
decreasing k. As a result, g1(j, k) + g2(j, k) also monotonically decreases when k is decreased
from right to left of the number line. Here, there can be 3 scenarios,
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(i) (g1(j, 1) + g2(j, 1)) ≥ 0. In this case, as the function is monotonic and decreases towards left,

(g1(j, i) + g2(j, i)) ≥ 0, for i ∈ {1, 2, ..., j}
⇒ δj(i)− δj(i+ 1) ≥ 0, for i ∈ {1, 2, ..., }
⇒ δj(i) ≥ δj(i+ 1), for i ∈ {1, 2, ..., }

Therefore, according to definition of unimodality, δj(i) would be unimodal with k = 1.

(ii) (g1(j, j − 1) + g2(j, j − 1)) ≤ 0. In this case, using similar reasoning as above,

(g1(j, i) + g2(j, i)) ≤ 0, for i ∈ {j − 1, ..., 1}
⇒ δj(i)− δj(i+ 1) ≤ 0, for i ∈ {j − 1, ..., 1}
⇒ δj(i) ≤ δj(i+ 1), for i ∈ {j − 1, ..., 1}

Therefore, δj(i) would be unimodal with k = j − 1.

(iii) (g1(j, 1) + g2(j, 1)) ≤ 0 and (g1(j, j − 1) + g2(j, j − 1)) ≥ 0. In this case, there should exist
a point across which the function (g1 + g2) changes its sign from positive to negative when moving
from right to left. In other words, there should exist k ∈ 1, 2, . . . , j − 1, such that,

(g1(j, i) + g2(j, i)) ≥ 0, i ∈ {k + 1, ..., j}
(g1(j, i) + g2(j, i)) ≤ 0, i ∈ {1, ..., k}

⇒ δj(i)− δj(i+ 1) ≥ 0, for i ∈ {k, ..., j − 1}
δj(i)− δj(i+ 1) ≤ 0, for i ∈ {j − 1, ..., 1}

⇒ δj(i) ≥ δj(i+ 1), for i ∈ {k, ..., j − 1}
δj(i) ≤ δj(i+ 1), for i ∈ {j − 1, ..., 1}

Here too, δj(i) satisfies the conditions for unimodality with k being the maximum point.

In all the 3 of the exhaustive cases, δj(i) satisfies the conditions for unimodality. Hence, δj(i) is
unimodal in the region {1, 2, . . . , j − 1}. As a function which is unimodal in a certain region would
also be unimodal in a subset of the region, δj(i) is unimodal in the region {1, 2, . . . , p}, where,
p = min(|P|, j).

Appendix B

Here we report some more results which helps in analysing the effect of varying the number of
positive and negative training samples. We perform experiments in which we vary the number of
positives and negatives training samples for the action class ’phoning’. As can be seen in Fig. 1
the time required to perform loss-augmented inference is significantly lower for our methods. The
computation time for the loss augmented inference in AP-SVM-SEARCH is more stable as for large
negative set sizes the improvement is always guaranteed.

Appendix C

For our object detection experiments, we report the detection AP for all the 20 object categories
obtained by latent AP-SVM as well as by the standard latent SVM which is used as a baseline. For all
object categories other than ’bottle’, latent AP-SVM does better than latent SVM on the test set. For
15 of the 20 object categories, we get statistically significant improvement with latent AP-SVM over
latent SVM (using paired t-test with p-value less than 0.05). While latent AP-SVM gives an overall
improvement of 7.12% compared to latent SVM, for 5 classes it gives an improvement of more than
10%. The bottom 2 classes with the least improvement obtained by latent AP-SVM, ’chair’ and
’bottle’ seem to be difficult object categories to detect, with detectors registering very low detection
APs. In conjunction with the overall superior performance of latent AP-SVM, the efficient method
proposed by this paper makes a good case for optimizing AP loss rather than 0-1 loss for tasks like
object detection.
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Figure 1: Computation time for solving all the loss augmented inference problems during the com-
plete training of the SVMs, while the no. of total, negative and positive samples are varied.

Object category latent SVM latent AP-SVM

Aeroplane 46.60 48.18
Bicycle 48.53 61.45
Bird 33.31 36.73
Boat 15.23 19.66
Bottle 6.10 1.01
Bus 37.01 49.51
Car 61.28 66.78
Cat 38.12 40.77
Chair 2.71 3.23
Cow 21.06 38.52
Dining-table 14.20 39.53
Dog 33.55 36.25
Horse 46.14 53.86
Motorbike 29.97 34.81
Person 29.58 30.41
Potted-plant 21.27 23.03
Sheep 11.65 32.20
Sofa 36.66 42.03
Train 29.71 37.10
TV-monitor 27.31 37.26

Table 1: Object category wise detection AP (%) on PASCAL VOC 2007 test set.
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