
On Multiplicative Multitask Feature Learning

Xin Wang†, Jinbo Bi†, Shipeng Yu‡, Jiangwen Sun†
†Dept. of Computer Science & Engineering ‡ Health Services Innovation Center

University of Connecticut Siemens Healthcare
Storrs, CT 06269 Malvern, PA 19355

wangxin,jinbo,javon@engr.uconn.edu shipeng.yu@siemens.com

Abstract

We investigate a general framework of multiplicative multitask feature learning
which decomposes each task’s model parameters into a multiplication of two com-
ponents. One of the components is used across all tasks and the other component
is task-specific. Several previous methods have been proposed as special cases of
our framework. We study the theoretical properties of this framework when dif-
ferent regularization conditions are applied to the two decomposed components.
We prove that this framework is mathematically equivalent to the widely used
multitask feature learning methods that are based on a joint regularization of all
model parameters, but with a more general form of regularizers. Further, an an-
alytical formula is derived for the across-task component as related to the task-
specific component for all these regularizers, leading to a better understanding of
the shrinkage effect. Study of this framework motivates new multitask learning
algorithms. We propose two new learning formulations by varying the parameters
in the proposed framework. Empirical studies have revealed the relative advan-
tages of the two new formulations by comparing with the state of the art, which
provides instructive insights into the feature learning problem with multiple tasks.

1 Introduction

Multitask learning (MTL) captures and exploits the relationship among multiple related tasks and
has been empirically and theoretically shown to be more effective than learning each task indepen-
dently. Multitask feature learning (MTFL) investigates a basic assumption that different tasks may
share a common representation in the feature space. Either the task parameters can be projected to
explore the latent common substructure [18], or a shared low-dimensional representation of data can
be formed by feature learning [10]. Recent methods either explore the latent basis that is used to
develop the entire set of tasks, or learn how to group the tasks [16, 11], or identify if certain tasks
are outliers to other tasks [6].

A widely used MTFL strategy is to impose a blockwise joint regularization of all task parameters
to shrink the effects of features for the tasks. These methods employ a regularizer based on the
so-called `1,p matrix norm [12, 13, 15, 22, 24] that is the sum of the `p norms of the rows in a
matrix. Regularizers based on the `1,p norms encourage row sparsity. If rows represent features
and columns represent tasks, they shrink the entire rows of the matrix to have zero entries. Typical
choices for p are 2 [15, 4] and∞ [20] which are used in the very early MTFL methods. Effective
algorithms have since then been developed for the `1,2 [13] and `1,∞ [17] regularization. Later,
the `1,p norm is generalized to include 1 < p ≤ ∞ with a probabilistic interpretation that the
resultant MTFL method solves a relaxed optimization problem with a generalized normal prior for
all tasks [22]. Recent research applies the capped `1,1 norm as a nonconvex joint regularizer [5].
The major limitation of joint regularized MTFL is that it either selects a feature as relevant to all
tasks or excludes it from all models, which is very restrictive in practice where tasks may share some
features but may have their own specific features as well.
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To overcome this limitation, one of the most effective strategies is to decompose the model param-
eters into either summation [9, 3, 6] or multiplication [21, 2, 14] of two components with different
regularizers applied to the two components. One regularizer is used to take care of cross-task sim-
ilarities and the other for cross-feature sparsity. Specifically, for the methods that decompose the
parameter matrix into summation of two matrices, the dirty model in [9] employs `1,1 and `1,∞
regularizers to the two components. A robust MTFL method in [3] uses the trace norm on one com-
ponent for mining a low-rank structure shared by tasks and a column-wise `1,2-norm on the other
component for identifying task outliers. Another method applies the `1,2-norm both row-wisely to
one component and column-wisely to the other [6].

For the methods that work with multiplicative decompositions, the parameter vector of each task
is decomposed into an element-wise product of two vectors where one is used across tasks and
the other is task-specific. These methods either use the `2-norm penalty on both of the component
vectors [2], or the sparse `1-norm on the two components (i.e., multi-level LASSO) [14]. The
multi-level LASSO method has been analytically compared to the dirty model [14], showing that
the multiplicative decomposition creates better shrinkage on the global and task-specific parameters.
The across-task component can screen out the features irrelevant to all tasks. To exclude a feature
from a task, the additive decomposition requires the corresponding entries in both components to
be zero whereas the multiplicative decomposition only requires one of the components to have a
zero entry. Although there are different ways to regularize the two components in the product, no
systematic work has been done to analyze the algorithmic and statistical properties of the different
regularizers. It is insightful to answer the questions such as how these learning formulations differ
from the early methods based on blockwise joint regularization, how the optimal solutions of the two
components look like, and how the resultant solutions are compared with those of other methods that
also learn both shared and task-specific features.

In this paper, we investigate a general framework of the multiplicative decomposition that enables
a variety of regularizers to be applied. This general form includes all early methods that represent
model parameters as a product of two components [2, 14]. Our theoretical analysis has revealed that
this family of methods is actually equivalent to the joint regularization based approach but with a
more general form of regularizers, including those that do not correspond to a matrix norm. The
optimal solution of the across-task component can be analytically computed by a formula of the
optimal task-specific parameters, showing the different shrinkage effects. Statistical justification
and efficient algorithms are derived for this family of formulations. Motivated by the analysis, we
propose two new MTFL formulations. Unlike the existing methods [2, 14] where the same kind of
vector norm is applied to both components, the shrinkage of the global and task-specific parameters
differ in the new formulations. Hence, one component is regularized by the `2-norm and the other
is by the `1-norm, which aims to reflect the degree of sparsity of the task-specific parameters rela-
tive to the sparsity of the across-task parameters. In empirical experiments, simulations have been
designed to examine the various feature sharing patterns where a specific choice of regularizer may
be preferred. Empirical results on benchmark data are also discussed.

2 The Proposed Multiplicative MTFL

Given T tasks in total, for each task t, t ∈ {1, · · · , T}, we have sample set (Xt ∈ R`t×d,yt ∈ R`t).
The data set of Xt has `t examples, where the i-th row corresponds to the i-th example xti of task
t, i ∈ {1, · · · , `t}, and each column represents a feature. The vector yt contains yti , the label of the
i-th example of task t. We consider functions of the linear form Xtαt where αt ∈ Rd. We define
the parameter matrix or weight matrix A = [α1, · · · ,αT ] and αj are the rows, j ∈ {1, · · · , d}.
A family of multiplicative MTFL methods can be derived by rewriting αt = diag(c)βt where
diag(c) is a diagonal matrix with its diagonal elements composing a vector c. The c vector is used
across all tasks, indicating if a feature is useful for any of the tasks, and the vector βt is only for task
t. Let j index the entries in these vectors. We have αtj = cjβ

t
j . Typically c comprises binary entries

that are equal to 0 or 1, but the integer constraint is often relaxed to require just non-negativity. We
minimize a regularized loss function as follows for the best c and βt:t=1,··· ,T :

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1

T∑
t=1
||βt||pp + γ2||c||kk (1)
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where L(·) is a loss function, e.g., the least squares loss for regression problems or the logistic loss
for classification problems, ||βt||pp =

∑d
j=1 |βtj |p and ||c||kk =

∑d
j=1(cj)

k, which are the `p-norm
of βt to the power of p and the `k-norm of c to the power of k if p and k are positive integers.
The tuning parameters γ1, γ2 are used to balance the empirical loss and regularizers. At optimality,
if cj = 0, the j-th variable is removed for all tasks, and the corresponding row vector αj = 0;
otherwise the j-th variable is selected for use in at least one of the α’s. Then, a specific βt can rule
out the j-th variable from task t if βtj = 0.

In particular, if both p = k = 2, Problem (1) becomes the formulation in [2] and if p = k = 1,
Problem (1) becomes the formulation in [14]. Any other choices of p and k will derive into new
formulations for MTFL. We first examine the theoretical properties of this entire family of methods,
and then empirically study two new formulations by varying p and k.

3 Theoretical Analysis

The joint `1,p regularized MTFL method minimizes
∑T
t=1 L(αt,Xt,yt) + λ

∑d
j=1 ||αj ||p for the

best αt:t=1,··· ,T where λ is a tuning parameter. We now extend this formulation to allow more
choices of regularizers. We introduce a new notation that is an operator applied to a vector, such

as αj . The operator ||αj ||p/q = q

√∑T
t=1 |αtj |p, p, q ≥ 0, which corresponds to the `p norm if

p = q and both are positive integers. A joint regularized MTFL approach can solve the following
optimization problem with pre-specified values of p, q and λ, for the best parameters αt:t=1,··· ,T :

min
αt

T∑
t=1

L(αt,Xt,yt) + λ
d∑
j=1

√
||αj ||p/q. (2)

Our main result of this paper is (i) a theorem that establishes the equivalence between the models
derived from solving Problem (1) and Problem (2) for properly chosen values of λ, q, k, γ1 and γ2;
and (ii) an analytical solution of Problem (1) for c which shows how the sparsity of the across-task
component is relative to the sparsity of task-specific components.

Theorem 1 Let α̂t be the optimal solution to Problem (2) and (β̂t, ĉ) be the optimal solution to

Problem (1). Then α̂t = diag(ĉ)β̂t when λ = 2

√
γ

2− p
kq

1 γ
p
kq

2 and q = k+p
2k (or k = p

2q−1 ).

Proof. The theorem holds by proving the following two Lemmas. The first lemma proves that the
solution α̂t of Problem (2) also minimizes the following optimization problem:

minαt,σ≥0

∑T
t=1 L(αt,Xt,yt) + µ1

∑d
j=1 σ

−1
j ||αj ||p/q + µ2

∑d
j=1 σj , (3)

and the optimal solution of Problem (3) also minimizes Problem (2) when proper values of λ, µ1

and µ2 are chosen. The second lemma connects Problem (3) to our formulation (1). We show that
the optimal σ̂j is equal to (ĉj)

k, and then the optimal β̂ can be computed from the optimal α̂.

Lemma 1 The solution sets of Problem (2) and Problem (3) are identical when λ = 2
√
µ1µ2.

Proof. First, we show that when λ = 2
√
µ1µ2, the optimal solution α̂tj of Problem (2) minimizes

Problem (3) and the optimal σ̂j = µ
1
2
1 µ
− 1

2
2

√
||α̂j ||p/q . By the Cauchy-Schwarz inequality, the

following inequality holds

µ1

d∑
j=1

σ−1
j ||α

j ||p/q + µ2

d∑
j=1

σj ≥ 2
√
µ1µ2

d∑
j=1

√
||αj ||p/q

where the equality holds if and only if σj = µ
1
2
1 µ
− 1

2
2

√
||αj ||p/q . Since Problems (3) and (2) use

the exactly same loss function, when we set σ̂j = µ
1
2
1 µ
− 1

2
2

√
||α̂j ||p/q , Problems (3) and (2) have

identical objective function if λ = 2
√
µ1µ2. Hence the pair (Â = (α̂tj)jt, σ̂ = (σ̂j)j=1,··· ,d)

minimizes Problem (3) as it entails the objective function to reach its lower bound.
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Second, it can be proved that if the pair (Â, σ̂) minimizes Problem (3), then Â also minimizes
Problem (2) by proof of contradiction. Suppose that Â does not minimize Problem (2), which means
that there exists α̃j ( 6= α̂j for some j) that is an optimal solution to Problem (2) and achieves a lower

objective value than α̂j . We set σ̃j = µ
1
2
1 µ
− 1

2
2

√
||α̃j ||p/q . The pair (Ã, σ̃) is an optimal solution

of Problem (3) as proved in the first paragraph. Then (Ã, σ̃) will bring the objective function of
Problem (3) to a lower value than that of (Â, σ̂), contradicting to the assumption that (Â, σ̂) be
optimal to Problem (3).

Hence, we have proved that Problems (3) and (2) have identical solutions when λ = 2
√
µ1µ2.

From the proof of Lemma (1), we also see that the optimal objective value of Problem (2) gives a
lower bound to the objective of Problem (3). Let σj = (cj)

k, k ∈ R, k 6= 0 and αtj = cjβ
t
j , an

equivalent objective function of Problem (3) can be derived.

Lemma 2 The optimal solution (Â, σ̂) of Problem (3) is equivalent to the optimal solution (B̂, ĉ) of

Problem (1) where α̂tj = ĉj β̂
t
j and σ̂j = (ĉj)

k when γ1 = µ
kq

2kq−p

1 µ
kq−p
2kq−p

2 , γ2 = µ2, and k = p
2q−1 .

Proof. First, by proof of contradiction, we show that if α̂tj and σ̂j optimize Problem (3), then

ĉj = k
√
σ̂j and β̂tj =

α̂t
j

ĉj
optimize Problem (1). Denote the objectives of (1) and (3) by J (1)

and J (3). Substituting β̂tj , ĉj for α̂tj , σ̂j in J (3) yields an objective function L(ĉ, β̂t,Xt,yt) +

µ1

∑d
j=1 ||β̂

j
||p/q ĉ(p−kq)/qj + µ2

∑d
j=1(ĉj)

k. By the proof of Lemma 1, σ̂j = µ
1
2
1 µ
− 1

2
2

√
||α̂j ||p/q .

Hence, ĉj =
(
µ1µ

−1
2 ||β̂

j
||p/q

) q
2kq−p

. Applying the formula of ĉj and substituting µ1 and µ2 by

γ1 and γ2 yield an objective identical to J (1). Suppose ∃(β̃tj , c̃j)(6= (β̂tj , ĉj)) that minimize (1), and
J (1)(β̃tj , c̃j) < J (1)(β̂tj , ĉj). Let α̃tj = c̃j β̃

t
j and substitute β̃tj by α̃tj/c̃j in J (1). By Cauchy-Schwarz

inequality, we similarly have c̃j = (γ1γ
−1
2

∑T
t=1(α̃tj)

p)
1

p+k . Thus, J (1)(α̃tj , c̃j) can be derived into
J (3)(α̃tj , c̃j). Let σ̃j = (c̃j)

k, and we have J (3)(α̃tj , σ̃j) < J (3)(α̂tj , σ̂j), which contradicts with
the optimality of (α̂tj , σ̂j). Second, we similarly prove that if β̂tj and ĉj optimize Problem (1), then
α̂tj = ĉj β̂

t
j and σ̂j = (ĉj)

k optimize Problem (3).

Now, combining the results from the two Lemmas, we can derive that when λ = 2

√
γ

2− p
kq

1 γ
p
kq

2 and
q = k+p

2k , the optimal solutions to Problems (1) and (2) are equivalent. Solving Problem (1) will
yield an optimal solution α̂ to Problem (2) and vice versa.

Theorem 2 Let β̂t, t = 1, · · · , T, be the optimal solutions of Problem (1), Let B̂ = [β̂1, · · · , β̂T ]

and β̂
j

denote the j-th row of the matrix B̂. Then,

ĉj = (γ1/γ2)
1
k ||β̂

j
||

p
2kq−p , (4)

for all j = 1, · · · , d, is optimal to Problem (1).

Proof. This analytical formula can be directly derived from Lemma 1 and Lemma 2. When we set

σ̂j = (ĉj)
k and α̂tj = ĉj β̂

t
j in Problem (3), we obtain ĉj =

(
µ1µ

−1
2 ||β̂

j
||p/q

) q
2kq−p

. In the proof

of Lemma 2, we obtain that µ1 = γ
2kq−p

kq

1 γ
p−kq
kq

2 and µ2 = γ2. Substituting these formula into the
formula of c yields the formula (4).

Based on the derivation, for each pair of {p, q} and λ in Problem (2), there exists an equivalent
problem (1) with determined values of k, γ1 and γ2, and vice versa. Note that if q = p/2, the
regularization term on αj in Problem (2) becomes the standard p-norm. In particular, if {p, q} =
{2, 1} in Problem (2) as used in the methods of [15] and [1], the `2-norm regularizer is applied
to αj . Then, this problem is equivalent to Problem (1) when k = 2 and λ = 2

√
γ1γ2, the same

formulation in [2]. If {p, q} = {1, 1}, the square root of `1-norm regularizer is applied to αj . Our
theorem 1 shows that this problem is equivalent to the multi-level LASSO MTFL formulation [14]
which is Problem (1) with k = 1 and λ = 2

√
γ1γ2.
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4 Probabilistic Interpretation

In this section we show the proposed multiplicative formalism is related to the maximum a pos-
teriori (MAP) solution of a probabilistic model. Let p(A|∆) be the prior distribution of the
weight matrix A = [α1, . . . ,αT ] = [α1>, . . . ,αd>]> ∈ Rd×T , where ∆ denote the param-
eter of the prior. Then the a posteriori distribution of A can be calculated via Bayes rule as
p(A|X,y,∆) ∝ p(A|∆)

∏T
t=1 p(yt|Xt,αt). Denote z ∼ GN (µ, ρ, q) the univariate generalized

normal distribution, with the density function p(z) = 1
2ρΓ(1+1/q) exp(− |z−µ|

q

ρq ), in which ρ > 0,
q > 0, and Γ(·) is the Gamma function [7]. Now let each element of A, αtj , follow a generalized
normal prior, αtj ∼ GN (0, δj , q). Then with the i.i.d. assumption, the prior takes the form (also
refer to [22] for a similar treatment)

p(A|∆) ∝
d∏
j=1

T∏
t=1

1

δj
exp

(
−
|αtj |q

δqj

)
=

d∏
j=1

1

δTj
exp

(
−
‖αj‖qq
δqj

)
, (5)

where ‖·‖q denote vector q-norm. With an appropriately chosen likelihood function p(yt|Xt,αt) ∝
exp(−L(αt,Xt,yt)), finding the MAP solution is equivalent to solving the following problem:

minA,∆ J =
∑T
t=1 L(αt,Xt,yt) +

∑d
j=1

(
‖αj‖qq
δqj

+T ln δj

)
. By setting the derivative of J with

respect to δj to zero, we obtain:

min
A

J =
∑T

t=1
L(αt,Xt,yt) + T

∑d

j=1
ln ‖αj‖q. (6)

Now let us look at the multiplicative nature of αtj with different q ∈ [1,∞]. When q = 1, we have:

d∑
j=1

ln ‖αj‖1 =

d∑
j=1

ln

(
T∑
t=1

|αtj |

)
=

d∑
j=1

ln

(
T∑
t=1

|cjβtj |

)
=

d∑
j=1

(
ln |cj |+ ln

T∑
t=1

|βtj |

)
. (7)

Because of ln z ≤ z − 1 for any z > 0, we can optimize an upper bound of J in (6). We then have
minA J1 =

∑T
t=1 L(αt,Xt,yt) + T

∑d
j=1 |cj | + T

∑d
j=1

∑T
t=1 |βtj |, which is equivalent to the

multiplicative formulation (1) where {p, k} = {1, 1}. For q > 1, we have:

d∑
j=1

ln ‖αj‖q =
1

q

d∑
j=1

ln

(
T∑
t=1

|cjβtj |q
)
≤ 1

q

d∑
j=1

ln

(
max{|c1|, . . . , |cd|}q ·

T∑
t=1

|βtj |q
)

(8)

=

d∑
j=1

ln ‖c‖∞ +
1

q

d∑
j=1

ln

T∑
t=1

|βtj |q ≤ d‖c‖∞ +
1

q

T∑
t=1

‖βt‖qq − (d+
d

q
). (9)

Since vector norms satisfy ‖z‖∞ ≤ ‖z‖k for any vector z and k ≥ 1, these inequalities lead to
an upper bound of J in (6), i.e., minA Jq,k =

∑T
t=1 L(αt,Xt,yt) + Td‖c‖k + T

q

∑T
t=1 ‖βt‖qq ,

which is equivalent to the general multiplicative formulation in (1).

5 Optimization Algorithm

Alternating optimization algorithms have been used in both of the early methods [2, 14] to solve
Problem (1) which alternate between solving two subproblems: solve for βt with fixed c; solve for
c with fixed βt. The convergence property of such an alternating algorithm has been analyzed in [2]
that it converges to a local minimizer. However, both subproblems in the existing methods can only
be solved using iterative algorithms such as gradient descent, linear or quadratic program solvers.
We design a new alternating optimization algorithm that utilizes the property that both Problems (1)
and (2) are equivalent to Problem (3) used in our proof and we derive a closed-form solution for c
for the second subproblem. The following theorem characterizes this result.

Theorem 3 For any given values of αt:t=1,··· ,T , the optimal σ of Problem (3) when αt:t=1,··· ,T are

fixed to the given values can be computed by σj = γ
1− p

2kq

1 γ
1
2−

p
2kp

2
2q

√∑T
t=1(αtj)

p, j = 1, · · · , d.
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Proof. By the Cauchy-Schwarz inequality and the same argument used in the proof of Lemma 1,
we obtain that the best σ for a given set of αt:t=1,··· ,T is σj = µ

1
2
1 µ
− 1

2
2

√
||αj ||p/q . We also know

that µ1 and µ2 are chosen in such a way that γ1 = µ
kq

2kq−p

1 µ
kq−p
2kq−p

2 and γ2 = µ2. This is equivalent to

have µ1 = γ
2kq−p

kq

1 γ
p−kq
kq

2 and µ2 = γ2. Substituting them into the formula of σ yields the result.

Now, in the algorithm to solve Problem (1), we solve the first subproblem to obtain a new iterate
βnewt , then we use the current value of c, cold, to compute the value of αnewt = diag(cold)βnewt ,
which is then used to compute σj according to the formula in Theorem 3. Then, c is computed as
cj = k

√
σj , j = 1, · · · , d. The overall procedure is summarized in Algorithm 1.

Algorithm 1 Alternating optimization for multiplicative MTFL

Input: Xt, yt, t = 1, · · · , T , as well as γ1, γ2, p and k
Initialize: cj = 1, ∀j = 1, · · · , d
repeat

1. Convert Xtdiag(cs−1)→ X̃t, ∀ t = 1, · · · , T
for t = 1, · · · , T do

Solve minβt
L(βt, X̃t,yt) + γ1||βt||pp for βst

end for
2. Compute αst = diag(c(s−1))βst , and compute cs as csj = k

√
σj where σj is computed

according to the formula in Theorem 3.
until max(|(αtj)s − (αtj)

s−1|) < ε
Output: αt, c and βt, t = 1, · · · , T

Algorithm 1 can be used to solve the entire family of methods characterized by Problem (1). The
first subproblem involves convex optimization if a convex loss function is chosen and p ≥ 1, and
can be solved separately for individual tasks using single task learning. The second subproblem
is analytically solved by a formula that guarantees that Problem (1) reaches a lower bound for the
current αt. In this paper, the least squares and logistic regression losses are used and both of them are
convex and differentiable loss functions. When convex and differentiable losses are used, theoretical
results in [19] can be used to prove the convergence of the proposed algorithm. We choose to monitor
the maximum norm of the A matrix to terminate the process, but it can be replaced by any other
suitable termination criterion. Initialization can be important for this algorithm, and we suggest
starting with c = 1, which considers all features initially in the learning process.

6 Two New Formulations

The two existing methods discussed in [2, 14] use p = k in their formulations, which renders βtj and
cj the same amount of shrinkage. To explore other feature sharing patterns among tasks, we propose
two new formulations where p 6= k. For the common choices of p and k, the relation between the
optimal c and β can be computed according to Theorem 2, and is summarized in Table 1.

1. When the majority of the features is not relevant to any of the tasks, it requires a sparsity-
inducing norm on c. However, within the relevant features, many features are shared between tasks.
In other words, the features used in each task are not sparse relative to all the features selected by
c, which requires a non-sparsity-inducing norm on β. Hence, we use `1 norm on c and `2 norm
on all β’s in Formulation (1). This formulation is equivalent to the joint regularization method of

minαt

∑T
t=1 L(αt,Xt,yt) + λ

∑d
j=1

3

√∑T
t=1(αtj)

2 where λ = 2γ
1
3
1 γ

2
3
2 .

2. When many or all features are relevant to the given tasks, it may prefer the `2 norm penalty on
c. However, only a limited number of features are shared between tasks, i.e., the features used by
individual tasks are sparse with respect to the features selected as useful across tasks by c. We can
impose the `1 norm penalty on β. This formulation is equivalent to the joint regularization method

of minαt

∑T
t=1 L(αt,Xt,yt) + λ

∑d
j=1

3

√(∑T
t=1 |αtj |

)2

where λ = 2γ
2
3
1 γ

1
3
2 .
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Table 1: The shrinkage effect of c with respect to β for four common choices of p and k.

p k c p k c

2 2 ĉj =
√
γ1γ

−1
2

√∑T
t=1 β̂

t
j

2
2 1 ĉj = γ1γ

−1
2

∑T
t=1 β̂

t
j

2

1 1 ĉj = γ1γ
−1
2

∑T
t=1

ˆ|βt
j | 1 2 ĉj =

√
γ1γ

−1
2

√∑T
t=1

ˆ|βt
j |

7 Experiments

In this section, we empirically evaluate the performance of the proposed multiplicative MTFL with
the four parameter settings listed in Table 1 on synthetic and real-world data for both classification
and regression problems. The first two settings (p, k) = (2, 2), (1, 1) give the same methods re-
spectively in [2, 14], and the last two settings correspond to our new formulations. The least squares
and logistic regression losses are used, respectively, for regression and classification problems. We
focus on the understanding of the shrinkage effects created by the different choices of regularizers
in multiplicative MTFL. These methods are referred to as MMTFL and are compared with the dirty
model (DMTL) [9] and robust MTFL (rMTFL) [6] that use the additive decomposition.

The first subproblem of Algorithm 1 was solved using CPLEX solvers and single task learning in the
initial first subproblem served as baseline. We used respectively 25%, 33% and 50% of the available
data in each data set for training and the rest data for test. We repeated the random split 15 times
and reported the averaged performance. For each split, the regularization parameters of each method
were tuned by a 3-fold cross validation within the training data. The regression performance was
measured by the coefficient of determination, denoted as R2, which was computed as 1 minus the
ratio of the sum of squared residuals and the total sum of squares. The classification performance
was measured by the F1 score, which was the harmonic mean of precision and recall.

Synthetic Data. We created two synthetic data sets which included 10 and 20 tasks, respectively.
For each task, we created 200 examples using 100 features with pre-defined combination weights
α. Each feature was generated following the N(0,1) distribution. We added noise and computed
yt = Xtαt + εt for each task t where the noise ε followed a distribution N(0, 1). We put the
different tasks’ α’s together as rows in Figure 1. The values of α’s were specified in such a way
for us to explore how the structure of feature sharing influences the multitask learning models when
various regularizers are used. In particular, we illustrate the cases where the two newly proposed
formulations outperformed other methods.

(a) Synthetic data D1 (b) Synthetic data D2

Figure 1: Parameter matrix learned by different methods (darker color indicates greater values.).

Synthetic Data 1 (D1). As shown in Figure 1a, 40% of components in all α’s were set to 0, and
these features were irrelevant to all tasks. The rest features were used in every task’s model and
hence these models were sparse with respect to all of the features, but not sparse with respect to the
selected features. This was the assumption for the early joint regularized methods to work. To learn
this feature sharing structure, however, we observed that the amount of shrinkage needed would be
different for c and β. This case might be in favor of the `1 norm penalty on c.

Synthetic Data 2 (D2). The designed parameter matrix is shown in Figure 1b where tasks were split
into 6 groups. Five features were irrelevant to all tasks, 10 features were used by all tasks, and each
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of the remaining 85 features was used by only 1 or 2 groups. The neighboring groups of tasks in
Figure 1b shared only 7 features besides those 10 common features. Non-neighboring tasks did not
share additional features. We expected c to be non-sparse. However, each task only used very few
features with respect to all available features, and hence each β should be sparse.

Figure 1 shows the parameter matrices (with columns representing features for illustrative conve-
nience) learned by different methods using 33% of the available examples in each data set. We can
clearly see that MMTFL(2,1) performs the best for Synthetic data D1. This result suggests that the
classic choices of using `2 or `1 penalty on both c and β (corresponding to early joint regularized
methods) might not always be optimal. MMTFL(1,2) is superior for Synthetic data D2, where each
model shows strong feature sparsity but few features can be removed if all tasks are considered.
Table 2 summarizes the performance comparison where the best performance is highlighted in bold
font. Note that the feature sharing patterns may not be revealed by the recent methods on clustered
multitask learning that cluster tasks into groups [10, 8, 23] because no cluster structure is present in
Figure 1b, for instance. Rather, the sharing pattern in Figure 1b is in the shape of staircase.

Table 2: Comparison of the performance between various multitask learning models
Data set STL DMTL rMTFL MMTFL(2,2) MMTFL(1,1) MMTFL(2,1) MMTFL(1,2)

Synthetic data
D1 (R2) 25% 0.40±0.02 0.60±0.02 0.58±0.02 0.64±0.02 0.54±0.03 0.73±0.02 0.42±0.04

33% 0.55±0.03 0.73±0.01 0.61±0.02 0.79±0.02 0.76±0.01 0.86±0.01 0.65±0.03
50% 0.60±0.02 0.75±0.01 0.66±0.01 0.86±0.01 0.88±0.01 0.90±0.01 0.84±0.01

D2 (R2) 25% 0.28±0.02 0.36±0.01 0.46±0.01 0.45±0.01 0.35±0.05 0.46±0.02 0.49±0.02
33% 0.35±0.01 0.42±0.02 0.63±0.03 0.69±0.02 0.75±0.01 0.67±0.03 0.83±0.02
50% 0.75±0.01 0.81±0.01 0.83±0.01 0.91±0 0.95±0 0.92±0.01 0.97±0

Real-world data
SARCOS 25% 0.78±0.02 0.90± 0 0.90±0 0.89± 0 0.89± 0 0.90±0.01 0.87±0.01

(R2) 33% 0.78±0.02 0.88±0.11 0.89±0.1 0.90± 0 0.90± 0 0.91±0.01 0.89±0.01
50% 0.83±0.06 0.87± 0.1 0.89±0.1 0.91± 0 0.90± 0.01 0.91±0.01 0.89±0.01

USPS 25% 0.83±0.01 0.89±0.01 0.91±0.01 0.90±0.01 0.90±0.01 0.90±0.01 0.91±0.01
(F1 score) 33% 0.84±0.02 0.90±0.01 0.90±0.01 0.89±0.01 0.90±0.01 0.90±0.01 0.91±0.01

50% 0.87±0.02 0.91±0.01 0.92±0.01 0.92±0.01 0.92±0.01 0.92±0.01 0.93±0.01

Real-world Data. Two benchmark data sets, the Sarcos [1] and the USPS data sets [10], were used
for regression and classification tests respectively. The Sarcos data set has 48,933 observations and
each observation (example) has 21 features. Each task is to map from the 21 features to one of the 7
consecutive torques of the Sarcos robot arm. We randomly selected 2000 examples for use in each
task. USPS handwritten digits data set has 2000 examples and 10 classes as the digits from 0 to 9.
We first used principle component analysis to reduce the feature dimension to 87. To create binary
classification tasks, we randomly chose images from the other 9 classes to be the negative examples.
Table 2 provides the performance of the different methods on these two data sets, which shows the
effectiveness of MMTFL(2,1) and MMTFL(1,2).

8 Conclusion

In this paper, we study a general framework of multiplicative multitask feature learning. By decom-
posing the model parameter of each task into a product of two components: the across-task feature
indicator and task-specific parameters, and applying different regularizers to the two components,
we can select features for individual tasks and also search for the shared features among tasks. We
have studied the theoretical properties of this framework when different regularizers are applied and
found that this family of methods creates models equivalent to those of the joint regularized MTL
methods but with a more general form of regularization. Further, an analytical formula is derived for
the across-task component as related to the task-specific component, which shed light on the differ-
ent shrinkage effects in the various regularizers. An efficient algorithm is derived to solve the entire
family of methods and also tested in our experiments. Empirical results on synthetic data clearly
show that there may not be a particular choice of regularizers that is universally better than other
choices. We empirically show a few feature sharing patterns that are in favor of two newly-proposed
choices of regularizers, which is confirmed on both synthetic and real-world data sets.
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