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Abstract

Hippocampal place fields have been shown to reflect behaviorally relevant aspects
of space. For instance, place fields tend to be skewed along commonly traveled
directions, they cluster around rewarded locations, and they are constrained by the
geometric structure of the environment. We hypothesize a set of design principles
for the hippocampal cognitive map that explain how place fields represent space
in a way that facilitates navigation and reinforcement learning. In particular, we
suggest that place fields encode not just information about the current location,
but also predictions about future locations under the current transition distribu-
tion. Under this model, a variety of place field phenomena arise naturally from
the structure of rewards, barriers, and directional biases as reflected in the tran-
sition policy. Furthermore, we demonstrate that this representation of space can
support efficient reinforcement learning. We also propose that grid cells compute
the eigendecomposition of place fields in part because is useful for segmenting an
enclosure along natural boundaries. When applied recursively, this segmentation
can be used to discover a hierarchical decomposition of space. Thus, grid cells
might be involved in computing subgoals for hierarchical reinforcement learning.

1 Introduction

A cognitive map, as originally conceived by Tolman [46]], is a geometric representation of the en-
vironment that can support sophisticated navigational behavior. Tolman was led to this hypothesis
by the observation that rats can acquire knowledge about the spatial structure of a maze even in the
absence of direct reinforcement (latent learning; [46]). Subsequent work has sought to formalize the
representational content of the cognitive map [13]], the algorithms that operate on it [33,135]], and its
neural implementation [34} [27]]. Much of this work was galvanized by the discovery of place cells
in the hippocampus [34], which selectively respond when an animal is in a particular location, thus
supporting the notion that the brain contains an explicit map of space. The later discovery of grid
cells in the entorhinal cortex [[16], which respond periodically over the entire environment, indicated
a possible neural substrate for encoding metric information about space.

Metric information is very useful if one considers the problem of spatial navigation to be comput-
ing the shortest path from a starting point to a goal. A mechanism that accumulates a record of
displacements can easily compute the shortest path back to the origin, a technique known as path
integration. Considerable empirical evidence supports the idea that animals use this technique for
navigation [13]]. Many authors have proposed theories of how grid cells and place cells can be used
to carry out the necessary computations [27]].

However, the navigational problems faced by humans and animals are inextricably tied to the more
general problem of reward maximization, which cannot be reduced to the problem of finding the
shortest path between two points. This raises the question: does the brain employ the same machin-
ery for spatial navigation and reinforcement learning (RL)? A number of authors have suggested
how RL mechanisms can support spatial learning, where spatial representations (e.g., place cells or



grid cells), serve as the input to the learning system [[L1}[15]]. In contrast to the view that spatial rep-
resentation is extrinsic to the RL system, we pursue the idea that the brain’s spatial representations
are designed to support RL. In particular, we show how spatial representations resembling place
cells and grid cells emerge as the solution to the problem of optimizing spatial representation in the
service of RL.

We first review the formal definition of the RL problem, along with several algorithmic solutions.
Special attention is paid to the successor representation (SR) [6], which enables a computationally
convenient decomposition of value functions. We then show how the successor representation nat-
urally comes to represent place cells when applied to spatial domains. The eigendecomposition of
the successor representation reveals properties of an environment’s spectral graph structure, which
is particularly useful for discovering hierarchical decompositions of space. We demonstrate that the
eigenvectors resemble grid cells, and suggest that one function of the entorhinal cortex may be to
encode a compressed representation of space that aids hierarchical RL [3].

2 The reinforcement learning problem

Here we consider the problem of RL in a Markov decision process, which consists of the following
elements: a set of states S, a set of actions A, a transition distribution P(s’|s,a) specifying the
probability of transitioning to state s’ € S from state s € S after taking action a € A, a reward
function R(s) specifying the expected reward in state s, and a discount factor v € [0, 1]. An agent
chooses actions according to a policy 7(a|s) and collects rewards as it moves through the state space.
The standard RL problem is to choose a policy that maximizes the value (expected discounted future
return), V(s) = E; [, 7 R(s:) | so = s]. Our focus here is on policy evaluation (computing V).
In our simulations we feed the agent the optimal policy; in the Supplementary Materials we discuss
algorithms for policy improvement. To simplify notation, we assume implicit dependence on 7 and

define the state transition matrix 7', where T'(s, s") = ) 7(a|s)P(s'|s,a).

Most work on RL has focused on two classes of algorithms for policy evaluation: “model-free”
algorithms that estimate V' directly from sample paths, and “model-based” algorithms that estimate
T and R from sample paths and then compute V' by some form of dynamic programming or tree
search [44, I5]. However, there exists a third class that has received less attention. As shown by
Dayan [6], the value function can be decomposed into the inner product of the reward function with
the SR, denoted by M:

Vi(s)=> o M(s,s")R(s'), M= (I -~T)"! ()
where I denotes the identity matrix. The SR encodes the expected discounted future occupancy of
state s’ along a trajectory initiated in state s:

M(s,s") = B[220 v s = 5"} | s0 = 5], (2)
where I{-} = 1 if its argument is true, and 0 otherwise.

The SR obeys a recursion analogous to the Bellman equation for value functions:
M(s,j) =Us =g} + 72, T(s, )M (s, ). 3)
This recursion can be harnessed to derive a temporal difference learning algorithm for incrementally

updating an estimate M of the SR [6, [14]. After observing a transition s — ', the estimate is
updated according to:

NI(s,j) < N(s,3) +n [Hs = } + 30 (s',j) = M(s,5)] @

where 7 is a learning rate (unless specified otherwise, n = 0.1 in our simulations). The SR combines
some of the advantages of model-free and model-based algorithms: like model-free algorithms,
policy evaluation is computationally efficient, but at the same time the SR provides some of the same
flexibility as model-based algorithms. As we illustrate later, an agent using the SR will be sensitive
to distal changes in reward, whereas a model-free agent will be insensitive to these changes.

3 The successor representation and place cells

In this section, we explore the neural implications of using the SR for policy evaluation: if the brain
encoded the SR, what would the receptive fields of the encoding population look like, and what
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Figure 1: SR place fields. Top two rows show place fields without reward, bottom two show
retrospective place fields with reward (marked by +). Maximum firing rate (a.u.) indicated for each
plot. (a, b) Empty room. (c, d) Single barrier. (e, f) Multiple rooms.
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would the population look like at any point in time? This question is most easily addressed in spatial
domains, where states index spatial locations (see Supplementary Materials for simulation details).

For an open field with uniformly distributed rewards we assume a random walk policy, and the
resulting SR for a particular location is an approximately symmetric, gradually decaying halo around
that location (Fig. [Th)—the canonical description of a hippocampal place cell. In order for the
population to encode the expected visitations to each state in the domain from the current starting
state (i.e. a row of M), each receptive field corresponds to a column of the SR matrix. This allows
the current state’s value to be computed by taking the dot product of its population vector with the
reward vector. The receptive field (i.e. column of M) will encode the discounted expected number
of times that state was visited for each starting state, and will therefore skew in the direction of the
states that likely preceded the current state.

More interesting predictions can be made when we examine the effects of obstacles and direction
preference that shape the transition structure. For instance, when barriers are inserted into the en-
vironment, the probability of transitioning across these obstacles will go to zero. SR place fields
are therefore constrained by environmental geometry, and the receptive field will be discontinuous
across barriers (Fig. [Tk,e). Consistent with this idea, experiments have shown that place fields be-
come distorted around barriers 140]]. When an animal has been trained to travel in a preferred
direction along a linear track, we expect the response of place fields to become skewed opposite the
direction of travel (Fig. [2), a result that has been observed experimentally [28| 29].

Another way to alter the transition policy is by introducing a goal, which induces a tendency to move
in the direction that maximizes reward. Under these conditions, we expect firing fields centered near
rewarded locations to expand to include the surrounding locations and to increase their firing rate,
as has been observed experimentally [10] 21]]. Meanwhile, we expect the majority of place fields



a Percentage of Neurons Firing
4

i ;!_A
0
0.4
— T —}
0

Distance around annular track

Depth &

Figure 3: Reward clustering in annular maze. (a) Histogram of number of cells firing above
baseline at each displacement around an annular track. (b) Heat map of number of firing cells at
each location on unwrapped annular maze. Reward is centered on track. Baseline firing rate set to
10% maximum.
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Figure 4: Tolman detour task. The starting location is at the bottom of the maze where the
three paths meet, and the reward is at the top. Barriers are shown as black horizontal lines. Three
conditions are shown: No detour, early detour, and late detour. (a, b, ¢) SR place fields centered near
and far from detours. Maximum firing rate (a.u.) indicated by each plot. (d) Value function.

that encode non-rewarded states to skew slightly away from the reward. Under certain settings
for what firing rate constitutes baseline (see Supplementary Materials), the spread of the rewarded
locations’ fields compensates for the skew of surrounding fields away from the reward, and we
observe “clustering” around rewarded locations (Fig. [3), as has been observed experimentally in the
annular water maze task [18]]. This parameterization sensitivity may explain why goal-related firing
is not observed in all tasks [23] 24} [41]].

As another illustration of the model’s response to barriers, we simulated place fields in a version
of the Tolman detour task [46], as described in [1]. Rats are trained to move from the start to the
rewarded location. At some point, an “early” or a “late” transparent barrier is placed in the maze
so that the rat must take a detour. For the early barrier, a short detour is available, and for the later
barrier, the only detour is a longer one. Place fields near the detour are more strongly affected than
places far away from the detour (Fig. fa.b.c), consistent with experimental findings [1]. Fig. @d
shows the value function in each of these detour conditions.

4 Behavioral predictions: distance estimation and latent learning

In this section, we examine some of the behavioral consequences of using the SR for RL. We first
show that the SR anticipates biases in distance estimation induced by semi-permeable boundaries.
We then explore the ability of the SR to support latent learning in contextual fear conditioning.
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Figure 6: Context preexposure facilitation
effect. (a) Simulated conditioned response
(CR) to the context following one-trial contex-
tual fear conditioning, shown as a function of
preexposure duration. The CR was approxi-
mated as the negative value summed over the
0 environment. The “Lesion” corresponds to
-1 agents with hippocampal damage, simulated by
o> setting the SR learning rate to 0.01. The “Con-
s trol” group has a learning rate of 0.1. (b) value
Lesion for a single location after preexposure in a con-
trol agent. (c) same as (b) in a lesioned agent.
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Stevens and Coupe reported that people overestimated the distance between two locations when
they were separated by a boundary (e.g., a state or country line). This bias was hypothesized to arise
from a hierarchical organization of space (see also [17]). We show (Fig. [3) how distance estimates
(using the Euclidean distance between SR state representations, /(M (s') — M(s))2, as a proxy
for the perceived distance between s and s’) between points in different regions of the environment
are altered when an enclosure is divided by a soft (semi-permeable) boundary. We see that as the
permeability of the barrier decreases (making the boundary harder), the percent increase in perceived
distance between locations increases without bound. This gives rise to a discontinuity in perceived
travel time at the soft boundary. Interestingly, the hippocampus is directly involved in distance
estimation [31]], suggesting the hippocampal cognitive map as a neural substrate for distance biases
(although a direct link has yet to be established).

The context preexposure facilitation effect refers to the finding that placing an animal inside a condi-
tioning chamber prior to shocking it facilitates the acquisition of contextual fear [9]. In essence, this
is a form of latent learning [46]]. The facilitation effect is thought to arise from the development of a
conjunctive representation of the context in the hippocampus, though areas outside the hippocampus
may also develop a conjunctive representation in the absence of the hippocampus, albeit less effi-
ciently [48]]. The SR provides a somewhat different interpretation: over the course of preexposure,
the hippocampus develops a predictive representation of the context, such that subsequent learning
is rapidly propagated across space. Fig. [6] shows a simulation of this process and how it accounts
for the facilitation effect. We simulated hippocampal lesions by reducing the SR learning rate from
0.1 to 0.01, resulting in a more punctate SR following preexposure and a reduced facilitation effect.

5 Eigendecomposition of the successor representation: hierarchical
decomposition and grid cells

Reinforcement learning and navigation can often be made more efficient by decomposing the envi-
ronment hierarchically. For example, the options framework utilizes a set of subgoals to divide
and conquer a complex learning environment. Recent experimental work suggests that the brain may
exploit a similar strategy [3} 36} [8]]. A key problem, however, is discovering useful subgoals; while
progress has been made on this problem in machine learning, we still know very little about how the
brain solves it (but see [37]). In this section, we show how the eigendecomposition of the SR can
be used to discover subgoals. The resulting eigenvectors strikingly resemble grid cells observed in
entorhinal cortex.
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Figure 7. Eigendecomposition of the SR. Each panel shows the same 20 eigenvectors randomly
sampled from the top 100 (excluding the constant first eigenvector) for the environmental geometries
shown in Fig. [T] (no reward). (a) Empty room. (b) Single barrier. (c) Multiple rooms.

Eigendecomposition Figure 8: Eigendecomposition of the SR in a
hairpin maze. Since the walls of the maze effec-
tively elongate a dimension of travel (the track
of the maze), the low frequency eigenvectors re-
semble one-dimensional sinusoids that have been
folded to match the space. Meanwhile, the low
frequency eigenvectors exhibit the compartmen-
talization shown by [[7].
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A number of authors have used graph partitioning techniques to discover subgoals [39]]. These
approaches cluster states according to their community membership (a community is defined as a
highly interconnected set of nodes with relatively few outgoing edges). Transition points between
communities (bottleneck states) are then used as subgoals. One important graph partitioning tech-
nique, used by [39] to find subgoals, is the normalized cuts algorithm [38]], which recursively thresh-
olds the second smallest eigenvector (the Fiedler vector) of the normalized graph Laplacian to obtain
a graph partition. Given an undirected graph with symmetric weight matrix W, the graph Laplacian
is given by L = D — W. The normalized graph Laplacian is given by £ = I — D~Y/2W D~1/2,
where D is a diagonal degree matrix with D(s,s) =), W (s, s"). When states are projected onto
the second eigenvector, they are pulled along orthogonal dimensions according to their community
membership. Locations in distinct regions but close in Euclidean distance — for instance, nearby
points on opposite sides of a boundary — will be represented as distant in the eigenspace.

The normalized graph Laplacian is closely related to the SR [26]. Under a random walk policy,
the transition matrix is given by 7 = D~1W. If ¢ is an eigenvector of the random walk’s graph
Laplacian I—T', then D'/2¢ is an eigenvector of the normalized graph Laplacian. The corresponding
eigenvector for the discounted Laplacian, I — 7T, is v¢. Since the matrix inverse preserves the
eigenvectors, the normalized graph Laplacian has the same eigenvectors as the SR, M = (I—yT)~1,
scaled by yD~1/2. These spectral eigenvectors can be approximated by slow feature analysis [42].
Applying hierarchical slow feature analysis to streams of simulated visual inputs produces feature
representations that resemble hippocampal receptive fields [12].

A number of representative SR eigenvectors are shown in Fig. [/} for three different room topologies.
The higher frequency eigenvectors display the latticing characteristic of grid cells [16]. The eigen-
decomposition is often discontinuous at barriers, and in many cases different rooms are represented
by independent sinusoids. Fig. [8] shows the eigendecomposition for a hairpin maze. The eigen-
vectors resemble folded up one-dimensional sinusoids, and high frequency eigenvectors appear as
repeating phase-locked “submaps” with firing selective to a subset of hallways, much like the grid
cells observed by Derdikman and Moser [[7].

In the multiple rooms environment, visual inspection reveals that the SR eigenvector with the second
smallest eigenvalue (the Fiedler vector) divides the enclosure along the vertical barrier: the left half
is almost entirely blue and the right half almost entirely red, with a smooth but steep transition
at the doorway (Fig. [Op). As discussed above, this second eigenvector can therefore be used to
segment the enclosure along the vertical boundary. Applying this segmentation recursively, as in
the normalized cuts algorithm, produces a hierarchical decomposition of the environment (Figure
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Ob.c). By identifying useful subgoals from the environmental topology, this decomposition can be
exploited by hierarchical learning algorithms [3}37].

One might reasonably question why the brain should represent high frequency eigenvectors (like
grid cells) if only the low frequency eigenvectors are useful for hierarchical decomposition. Spectral
features also serve as generally useful representations [26, [22]], and high frequency components are
important for representing detail in the value function. The progressive increase in grid cell spacing
along the dorsal-ventral axis of the entorhinal cortex may function as a multi-scale representation
that supports both fine and coarse detail [2].

6 Discussion

We have shown how many empirically observed properties of spatial representation in the brain,
such as changes in place fields induced by manipulations of environmental geometry and reward,
can be explained by a predictive representation of the environment. This predictive representation
is intimately tied to the problem of RL: in a certain sense, it is the optimal representation of space
for the purpose of computing value functions, since it reduces value computation to a simple matrix
multiplication [6]. Moreover, this optimality principle is closely connected to ideas from manifold
learning and spectral graph theory [26]. Our work thus sheds new computational light on Tolman’s
cognitive map [46].

Our work is connected to several lines of previous work. Most relevant is Gustafson and Daw
[L5], who showed how topologically-sensitive spatial representations recapitulate many aspects of
place cells and grid cells that are difficult to reconcile with a purely Euclidean representation of
space. They also showed how encoding topological structure greatly aids reinforcement learning in
complex spatial environments. Earlier work by Foster and colleagues [[11] also used place cells as
features for RL, although the spatial representation did not explicitly encode topological structure.
While these theoretical precedents highlight the importance of spatial representation, they leave
open the deeper question of why particular representations are better than others. We showed that
the SR naturally encodes topological structure in a format that enables efficient RL.

Spectral graph theory provides insight into the topological structure encoded by the SR. In particular,
we showed that eigenvectors of the SR can be used to discover a hierarchical decomposition of the
environment for use in hierarchical RL. These eigenvectors may also be useful as a representational
basis for RL, encoding multi-scale spatial structure in the value function. Spectral analysis has
frequently been invoked as a computational motivation for entorhinal grid cells (e.g., [23]). The
fact that any function can be reconstructed by sums of sinusoids suggested that the entorhinal cortex
implements a kind of Fourier transform of space, and that place cells are the result of reconstructing
spatial signals from their spectral decomposition. Two problems face this interpretation. Fist, recent
evidence suggests that the emergence of place cells does not depend on grid cell input [4} 47].
Second, and more importantly for our purposes, Fourier analysis is not the right mathematical tool
when dealing with spatial representation in a topologically structured environment, since we do not
expect functions to be smooth over boundaries in the environment. This is precisely the purpose of
spectral graph theory: the eigenvectors of the graph Laplacian encode the smoothest approximation
of a function that respects the graph topology [26].

Recent work has elucidated connections between models of episodic memory and the SR. Specif-
ically, in [14] it was shown that the SR is closely related to the Temporal Context Model (TCM)
of episodic memory [20]. The core idea of TCM is that items are bound to their temporal context
(a running average of recently experienced items), and the currently active temporal context is used



to cue retrieval of other items, which in turn cause their temporal context to be retrieved. The SR
can be seen as encoding a set of item-context associations. The connection to episodic memory is
especially interesting given the crucial mnemonic role played by the hippocampus and entorhinal
cortex in episodic memory. Howard and colleagues [19] have laid out a detailed mapping between
TCM and the medial temporal lobe (including entorhinal and hippocampal regions).

An important question for future work concerns how biologically plausible mechanisms can imple-
ment the computations posited in our paper. We described a simple error-driven updating rule for
learning the SR, and in the Supplementary Materials we derive a stochastic gradient learning rule
that also uses a simple error-driven update. Considerable attention has been devoted to the imple-
mentation of error-driven learning rules in the brain, so we expect that these learning rules can be
implemented in a biologically plausible manner.
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