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Abstract

A popular approach to neural characterization describes neural responses in terms
of a cascade of linear and nonlinear stages: a linear filter to describe stimulus
integration, followed by a nonlinear function to convert the filter output to spike
rate. However, real neurons respond to stimuli in a manner that depends on the
nonlinear integration of excitatory and inhibitory synaptic inputs. Here we in-
troduce a biophysically inspired point process model that explicitly incorporates
stimulus-induced changes in synaptic conductance in a dynamical model of neu-
ronal membrane potential. Our work makes two important contributions. First, on
a theoretical level, it offers a novel interpretation of the popular generalized linear
model (GLM) for neural spike trains. We show that the classic GLM is a special
case of our conductance-based model in which the stimulus linearly modulates ex-
citatory and inhibitory conductances in an equal and opposite “push-pull” fashion.
Our model can therefore be viewed as a direct extension of the GLM in which we
relax these constraints; the resulting model can exhibit shunting as well as hyper-
polarizing inhibition, and time-varying changes in both gain and membrane time
constant. Second, on a practical level, we show that our model provides a tractable
model of spike responses in early sensory neurons that is both more accurate and
more interpretable than the GLM. Most importantly, we show that we can ac-
curately infer intracellular synaptic conductances from extracellularly recorded
spike trains. We validate these estimates using direct intracellular measurements
of excitatory and inhibitory conductances in parasol retinal ganglion cells. The
stimulus-dependence of both excitatory and inhibitory conductances can be well
described by a linear-nonlinear cascade, with the filter driving inhibition exhibit-
ing opposite sign and a slight delay relative to the filter driving excitation. We
show that the model fit to extracellular spike trains can predict excitatory and in-
hibitory conductances elicited by novel stimuli with nearly the same accuracy as
a model trained directly with intracellular conductances.

1 Introduction

The point process generalized linear model (GLM) has provided a useful and highly tractable tool
for characterizing neural encoding in a variety of sensory, cognitive, and motor brain areas [1–5].
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Figure 1: Schematic of conductance-based spiking model.

However, there is a substantial gap between descriptive statistical models like the GLM and more
realistic, biophysically interpretable neural models. Cascade-type statistical models describe input
to a neuron in terms of a set of linear (and sometimes nonlinear) filtering steps [6–11]. Real neurons,
on the other hand, receive distinct excitatory and inhibitory synaptic inputs, which drive conductance
changes that alter the nonlinear dynamics governing membrane potential. Previous work has shown
that excitatory and inhibitory conductances in retina and other sensory areas can exhibit substantially
different tuning. [12, 13].

Here we introduce a quasi-biophysical interpretation of the generalized linear model. The resulting
interpretation reveals that the GLM can be viewed in terms of a highly constrained conductance-
based model. We expand on this interpretation to construct a more flexible and more plausible
conductance-based spiking model (CBSM), which allows for independent excitatory and inhibitory
synaptic inputs. We show that the CBSM captures neural responses more accurately than the stan-
dard GLM, and allows us to accurately infer excitatory and inhibitory synaptic conductances from
stimuli and extracellularly recorded spike trains.

2 A biophysical interpretation of the GLM

The generalized linear model (GLM) describes neural encoding in terms of a cascade of linear,
nonlinear, and probabilistic spiking stages. A quasi-biological interpretation of GLM is known as
“soft threshold” integrate-and-fire [14–17]. This interpretation regards the linear filter output as a
membrane potential, and the nonlinear stage as a “soft threshold” function that governs how the
probability of spiking increases with membrane potential, specifically:

Vt = k>xt (1)
rt = f(Vt) (2)

yt|rt ∼ Poiss(rt∆t), (3)

where k is a linear filter mapping the stimulus xt to the membrane potential Vt at time t, a fixed
nonlinear function f maps Vt to the conditional intensity (or spike rate) rt, and spike count yt is a
Poisson random variable in a time bin of infinitesimal width ∆t. The log likelihood is

log p(y1:T |x1:T ,k) =

T∑
t=1

−rt∆t + yt log(rt∆t)− log(yt!). (4)

The stimulus vector xt can be augmented to include arbitrary covariates of the response such as the
neuron’s own spike history or spikes from other neurons [2, 3]. In such cases, the output does not
form a Poisson process because spiking is history-dependent.

The nonlinearity f is fixed a priori. Therefore, the only parameters are the coefficients of the filter
k. The most common choice is exponential, f(z) = exp(z), corresponding to the canonical ‘log’
link function for Poisson GLMs. Prior work [6] has shown that if f grows at least linearly and at
most exponentially, then the log-likelihood is jointly concave in model parameters θ. This ensures
that the log-likelihood has no non-global maxima, and gradient ascent methods are guaranteed to
find the maximum likelihood estimate.
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3 Interpreting the GLM as a conductance-based model

A more biophysical interpretation of the GLM can be obtained by considering a single-compartment
neuron with linear membrane dynamics and conductance-based input:

dV

dt
= −glV + ge(t)(V − Ee)− gi(t)(V − Ei)

= −(gl + ge(t) + gi(t))V + ge(t)Ee + gi(t)Ei

= −gtot(t)V + Is(t), (5)

where (for simplicity) we have set the leak current reversal potential to zero. The “total conductance”
at time t is gtot(t) = gl+ge(t)+gi(t) and the “effective input current” is Is(t) = ge(t)Ee+gi(t)Ei.

Suppose that the stimulus affects the neuron via the synaptic conductances ge and gi. It is then
natural to ask under which conditions, if any, the above model can correspond to a GLM. The
definition of a GLM requires the solution V (t) to be a linear (or affine) function of the stimulus.
This arises if the two following conditions are met:

1. Total conductance gtot is constant. Thus, for some constant c:

ge(t) + gi(t) = c. (6)

2. The input Is is linear in x. This holds if we set:

ge(xt) = ke
>xt + be

gi(xt) = ki
>xt + bi. (7)

We can satisfy these two conditions by setting ke = −ki, so that the excitatory and inhibitory
conductances are driven by equal and opposite linear projections of the stimulus. This allows us to
rewrite the membrane equation (eq. 5):

dV

dt
= −gtotV + (ke

>xt + be)Ee + (ki
>xt + bi)Ei

= −gtotV + ktot
>xt + btot, (8)

where gtot = gl + be + bi is the (constant) total conductance, ktot = keEe + kiEi, and btot =
beEe + biEi. If we take the initial voltage V0 to be btot, the equilibrium voltage in the absence of a
stimulus, then the solution to this differential equation is

Vt =

∫ t

0

e−gtot(t−s)
(
ktot

>xs

)
ds+ btot

= kleak ∗ (ktot
>xt) + btot

= kglm
>xt + btot, (9)

where kleak ∗ (ktot
>xt) denotes linear convolution of the exponential decay “leak” filter kleak(t) =

e−gtot t with the linearly projected stimulus train, and kglm = ktot ∗ kleak is the “true” GLM filter
(from eq. 1) that results from temporally convolving the conductance filter with the leak filter. Since
the membrane potential is a linear (affine) function of the stimulus (as in eq. 1), the model is clearly
a GLM.

Thus, to summarize, the GLM can be equated with a synaptic conductance-based dynamical model
in which the GLM filter k results from a common linear filter driving excitatory and inhibitory
synaptic conductances, blurred by convolution with an exponential leak filter determined by the
total conductance.

4 Extending GLM to a nonlinear conductance-based model

From the above, it is easy to see how to create a more realistic conductance-based model of neural
responses. Such a model would allow the stimulus tuning of excitation and inhibition to differ (i.e.,
allow ke 6= −ki), and would include a nonlinear relationship between x and the conductances to
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preclude negative values (e.g., using a rectifying nonlinearity). As with the GLM, we assume that
the only source of stochasticity on the model is in the spiking mechanism: we place no additional
noise on the conductances or the voltage. This simplifying assumption allows us to perform efficient
maximum likelihood inference using standard gradient ascent methods.

We specify the membrane potential of the conductance-based point process model as follows:

dV

dt
= ge(t)(Ee − V ) + gi(t)(Ei − V ) + gl(El − V ), (10)

ge(t) = fe(ke
>xt), gi(t) = fi(ki

>xt), (11)

where fe and fi are nonlinear functions ensuring positivity of the synaptic conductances. In practice,
we evaluate V along a discrete lattice of points (t = 1, 2, 3, . . . T ) of width ∆t. Assuming ge and gi
remain constant within each bin, the voltage equation becomes a simple linear differential equation
with the solution

V (t+ 1) = e−gtot(t)∆t

(
V (t)− Is(t)

gtot(t)

)
+

Is(t)

gtot(t)
(12)

V (1) = El (13)
gtot(t) = ge(t) + gi(t) + gl (14)
Is(t) = ge(t)Ee + gi(t)Ei + glEl (15)

The mapping from membrane potential to spiking is similar to that in the standard GLM (eq. 3):

rt = f(V (t)) (16)

f(V ) = exp

(
(V − VT )

VS

)
(17)

yt|rt ∼ Poiss(rt∆t). (18)

The voltage-to-spike rate nonlinearity f follows the form proposed by Mensi et al. [17], where VT
is a soft spiking threshold and VS determines the steepness of the nonlinearity. To account for
refractory periods or other spike-dependent behaviors, we simply augment the function to include a
GLM-like spike history term:

f(V ) = exp

(
(V − VT )

VS
+ h>yhist

)
(19)

Spiking activity in real neurons influences both the membrane potential and the output nonlinearity.
We could include additional conductance terms that depend on either stimuli or spike history, such as
an after hyper-polarization current; this provides one direction for future work. For spatial stimuli,
the model can include a set of spatially distinct rectified inputs (e.g., as employed in [9]).

To complete the model, we must select a form for the conductance nonlinearities fe and fi. Although
we could attempt to fit these functions (e.g., as in [9, 18]), we fixed them to be the soft-rectifying
function:

fe(·), fi(·) = log(1 + exp(·)). (20)
Fixing these nonlinearities improved the speed and robustness of maximum likelihood parameter
fitting. Moreover, we examined intracellularly recorded conductances and found that the nonlinear
mapping from linearly projected stimuli to conductance was well described by this function (see
Fig. 4).

The model parameters we estimate are {ke,ki, be, bi,h, gl, El}. We set the remaining model param-
eters to biologically plausible values: VT = −70mV, VS = 4mV,Ee = 0mV, and Ei = −80mV .
To limit the total number of parameters, we fit the linear filters ke and ki using a basis consisting of
12 raised cosine functions, and we used 10 raised cosine functions for the spike history filter [3].

The log-likelihood function for this model is not concave in the model parameters, which increases
the importance to selecting a good initialization point. We initialized the parameters by fitting a
simplified model which had only one conductance. We initialized the leak terms as El = −70mV
and gl = 200. We assumed a single synaptic conductance with a linear stimulus dependence,
glin(t) = klin

>xt (note that this allows for negative conductance values). We initialized this filter
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Figure 2: Simulation results. (A) Estimates (solid traces) of excitatory (blue) and inhibitory (red) stimulus
filters from 10 minutes of simulated data. (Dashed lines indicate true filters). (B) The L2 norm between
the estimated input filters and the true filters (calculated in the low-dimensional basis) as a function of the
amount of training data. (C) The log-likelihood of the fit CBSM on withheld test data converges to the log
likelihood of the true model.

the GLM fit, and then numerically maximized the likelihood for klin. We then initialized the pa-
rameters for the complete model using ke = cklin and ki = −cklin, where 0 < c ≤ 1, thereby
exploiting the mapping between the GLM and the CBSM. Although this initialization presumes that
excitation and inhibition have nearly opposite tuning, we found that standard optimization meth-
ods successfully converged to the true model parameters even when ke and ki had similar tuning
(simulation results not shown).

5 Results: simulations

To examine the estimation performance, we fit spike train data simulated from a CBSM with known
parameters (see Fig. 2). The simulated data qualitatively mimicked experimental datasets, with input
filters selected to reproduce the stimulus tuning of macaque ON parasol RGCs. The stimulus con-
sisted of a one dimensional white noise signal, binned at a 0.1ms resolution, and filtered with a low
pass filter with a 60Hz cutoff frequency. The simulated cell produced a firing rate of approximately
32spikes/s. We validated our maximum likelihood fitting procedure by examining error in the fitted
parameters, and evaluating the log-likelihood on a held out five-minute test set. With increasing
amounts of training data, the parameter estimates converged to the true parameters, despite the fact
that the model does not have the concavity guarantees of the standard GLM.

To explore the CBSM’s qualitative response properties, we performed simulated experiments using
stimuli with varying statistics (see Fig. 3). We simulated spike responses from a CBSM with
fixed parameters to stimuli with different standard deviations. We then separately fit responses from
each simulation with a standard GLM. The fitted GLM filters exhibit shifts in both peak height
and position for stimuli with different variance. This suggests that the CBSM can exhibit gain
control effects that cannot be captured by a classic GLM with a spike history filter and exponential
nonlinearity.

6 Results: neural data

We fit the CBSM to spike trains recorded from 7 macaque ON parasol RGCs [12]. The spike trains
were obtained by cell attached recordings in response to full-field, white noise stimuli (identical to
the simulations above). Either 30 or 40 trials were recorded from each cell, using 10 unique 6 second
stimuli. After the spike trains were recorded, voltage clamp recordings were used to measure the
excitatory and inhibitory conductances to the same stimuli. We fit the model using the spike trains
for 9 of the stimuli, and the remaining trials were used to test model fit. Thus, the models were
effectively trained using 3 or 4 repeats of 54 seconds of full-field noise stimulus. We compared the
intracellular recordings to the ge and gi estimated from the CBSM (Fig. 5). Additionally, we fit the
measured conductances with the linear-nonlinear cascade model from the CBSM (the terms ge and
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Figure 3: Qualitative illustration of model’s capacity to exhibit contrast adaptation (or gain control). (A)
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Figure 4: Measured conductance vs. output of a fitted linear stimulus filter (gray points), for both the
excitatory (left) and inhibitory (right) conductances. The green diamonds correspond to a non-parametric
estimate of the conductance nonlinearity, given by the mean conductance for each bin of filter output. For
both conductances, the function is is well described by a soft-rectifying function (black trace).

gi in eq. 11) with a least-squares fit as an upper bound measure for the best possible conductance
estimate given our model. The CBSM correctly determined the stimulus tuning for excitation and
inhibition for these cells: inhibition is oppositely tuned and slightly delayed from excitation.

For the side-by-side comparison shown in Fig. 5, we introduced a scaling factor in the estimated
conductances in order to compare the conductances estimated from spike trains against recorded
conductances. Real membrane voltage dynamics depend on the capacitance of the membrane, which
we do not include because it introduces an arbitrary scaling factor that cannot be estimated by spike
alone. Therefore, for comparisons we chose a scaling factor for each cell independently. However,
we used a single scaling for the inhibitory and excitatory conductances. Additionally, we often had
2 or 3 repeated trials of the withheld stimulus, and we compared the model prediction to the average
conductance recorded for the stimulus. The CBSM predicted the synaptic conductances with an
average r2 = 0.54 for the excitatory and an r2 = 0.39 for the inhibitory input from spike trains,
compared to an average r2 = 0.72 and r2 = 0.59 for the excitatory and inhibitory conductances re-
spectively from the least-squares fit directly to the conductances (Fig. 6). To summarize, using only
a few minutes of spiking data, the CBSM could account for 71% of the variance of the excitatory
input and 62% of the inhibitory input that can possibly be explained using the LN cascade model of
the conductances (eq. 11).

One challenge we discovered when fitting the model to real spike trains was that one filter, typically
ki, would often become much larger than the other filter. This resulted in one conductance becoming
dominant, which the intracellular recordings indicated was not the case. This was likely due to the
fact that we are data-limited when dealing with intracellular recordings: the spike train recordings
include only 1 minute of unique stimulus. To alleviate this problem, we added a penalty term, φ, to
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Figure 5: Two example ON parasol RGC responses to a full-field noise stimulus fit with the CBSM. The
model parameters were fit to spike train data, and then used to predict excitatory and inhibitory synaptic
currents recorded separately in response to novel stimuli. For comparison, we show predictions of an LN
model fit directly to the conductance data. Left: Linear kernels for the excitatory (blue) and inhibitory
(red) inputs estimated from the conductance-based model (light red, light blue) and estimated by fitting a
linear-nonlinear model directly to the measured conductances (dark red, dark blue). The filters represent a
combination of events that occur in the retinal circuitry in response to a visual stimulus, and are primarily
shaped by the cone transduction process. Right: Conductances predicted by our model on a withheld test
stimulus. Measured conductances (black) are compared to the predictions from the CBSM filters (fit to
spiking data) and an LN model (fit to conductance data).

the log likelihood on the difference of the L2 norms of ke and ki:

φ(ke,ki) = λ
(
||ke||2 − ||ki||2

)2
(21)

This differentiable penalty ensures that the model will not rely too strongly on one filter over the
other, without imposing any prior on the shape of the filters (with λ = 0.05). We note that unlike
the a typical situation with statistical models that contain more abstract parameters, the terms we
wish to regularize can be measured with intracellular recordings. Future work with this model could
include more informative, data-driven priors on ke and ki.

Finally, we fit the CBSM and GLM to a population of nine extracellularly recorded macaque RGCs
in response to a full-field binary noise stimulus [20]. We used a five minute segment for model
fitting, and compared predicted spike rate using a 6s test stimulus for which we had repeated trials.
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of 9 cells. The red circle indicates cell used in left plot.

The CBSM achieved a 0.08 higher average r2 in PSTH prediction performance compared to the
GLM. All nine cells showed an improved fit with the CBSM.

7 Discussion

The classic GLM is a valuable tool for describing the relationship between stimuli and spike re-
sponses. However, the GLM describes this map as a mathematically convenient linear-nonlinear
cascade, which does not take account of the biophysical properties of neural processing. Here we
have shown that the GLM may be interpreted as a biophysically inspired, but highly constrained,
synaptic conductance-based model. We proposed a more realistic model of the conductance, remov-
ing the artificial constraints present in the GLM interpretation, which results in a new, more accurate
and more flexible conductance-based point process model for neural responses. Even without the
benefit of a concave log-likelihood, numerical optimization methods provide accurate estimates of
model parameters.

Qualitatively, the CBSM has a stimulus-dependent time constant, which allows it change gain as a
function of stimulus statistics (e.g., contrast), an effect that cannot be captured by a classic GLM. The
model also allows the excitatory and inhibitory conductances to be distinct functions of the sensory
stimulus, as is expected in real neurons. We demonstrate that the CBSM not only achieves improved
performance as a phenomenological model of neural encoding compared to the GLM, the model
accurately estimates the tuning of the excitatory and inhibitory synaptic inputs to RGCs purely from
measured spike times. As we move towards more naturalistic stimulus conditions, we believe that
the conductance-based approach will become a valuable tool for understanding the neural code in
sensory systems.
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