
A Matrix Products and Related Identities

Definition 1 The Kronecker product A ⊗B ∈ Rmp×nq of matrices A ∈ Rm×n and B ∈ Rp×q is
defined as

A⊗B =

 a1,1B a1,2B . . . a1,nB
...

...
...

...
am,1B am,2B . . . am,nB

 . (5)

Definition 2 The Khatri-Rao product A �B ∈ Rmp×n of matrices A ∈ Rm×n and B ∈ Rp×n is
given by the Kronecker product of the corresponding columns of the two matrices:

A�B = [a:,1 ⊗ b:,1 a:,2 ⊗ b:,2 . . . a:,n ⊗ b:,n] . (6)

Definition 3 The Hadamard product A ∗B ∈ Rn×m of two conforming matrices A ∈ Rn×m and
B ∈ Rn×m is given by

A ∗B =

 a1,1b1,1 a1,2b1,2 . . . a1,mb1,m
...

...
...

...
an,1bn,1 an,2bn,2 . . . an,mbn,m

 (7)

Definition 4 The outer product a ◦ b of vectors a ∈ Rm and b ∈ Rn is given by a matrix M ∈
Rm×n such that

mi,j = aibj . (8)

The definition can be extended to tensors by defining the outer product a ◦ b ◦ c of three vectors
a ∈ Rm, b ∈ Rn, and c ∈ Rp as a tensor M ∈ Rm×n×p with

mi,j,k = aibjck. (9)

Definition 5 Given a matrix A ∈ Rn×m, the linear operator vec(A) yields a vector x ∈ Rnm,
which is obtained by stacking the columns of A:

vec(A) = x =


a:,1

a:,2

...
a:,n

 . (10)

Observe that

xi+(j−1)n = ai,j . (11)

On the other hand, given a vector x ∈ Rnm, the operator unvec(n,m)(x) yields a matrix A ∈
Rn×m:

unvec(n,m)(x) = A = [a:,1 a:,2 . . . a:,n] . (12)

The Kronecker product satisfies the following well known relationship (see e.g., proposition 7.1.9
of [11]):

vec(ABC) =
(
C> ⊗A

)
vec(B). (13)

The Khatri-Rao product satisfies (see e.g., chapter 2 of [1]):

(A�B)
>

(A�B) = A>A ∗B>B. (14)

Plugging this into the definition of the Moore-Penrose pseudo-inverse [11] immediately shows that

(A�B)
†

=
(
A>A ∗B>B

)−1
(A�B)

>
. (15)

10

A.1 An Example of Flattening Tensors

Let X be a 3× 4× 3 tensor with frontal slices[
1 1 4 2
3 4 5 3
5 0 5 1

][
4 5 5 1
1 1 1 4
1 1 0 3

][
1 0 2 4
4 1 5 1
5 2 4 1

]
, then

X1 =

[
1 1 4 2 4 5 5 1 1 0 2 4
3 4 5 3 1 1 1 4 4 1 5 1
5 0 5 1 1 1 0 3 5 2 4 1

]

X2 =

 1 4 1 3 1 4 5 1 5
1 5 0 4 1 1 0 1 2
4 5 2 5 1 5 5 0 4
2 1 4 3 4 1 1 3 1


X3 =

[
1 3 5 1 4 0 4 5 5 2 3 1
4 1 1 5 1 1 5 1 0 1 4 3
1 4 5 0 1 2 2 5 4 4 1 1

]

A.2 Proof of Lemma 1

Proof Using (1) and (2), we can write

x3
k,i+(j−1)I = x1,k

i,j = x1
i,j+(k−1)J .

The result for (n, n′) = (1, 3) follows directly from (11) by letting k = m. For other values of n
and n′, the arguments are analogous.

11

B Review of ALS

In this section, we will introduce the CANDECOMP/PARAFAC(CP) decomposition model, and
the ALS algorithm. The CP decomposition is a multi-way tensor factorization model. Given a
tensor X ∈ RI×J×K , the R-rank CP decomposition of X is given by three matrices A ∈ RI×R,
B ∈ RJ×R, and C ∈ RK×R such that

X ≈
R∑

r=1

λr · a:,r ◦ b:,r ◦ c:,r. (16)

Note that the columns of A, B, and C are normalized to have unit length. The CP decomposition is
computed by solving

min
X̂

∥∥∥X− X̂
∥∥∥ with X̂ =

R∑
r=1

λr · a:,r ◦ b:,r ◦ c:,r. (17)

The most popular method to solve the above problem is the Alternating Least Squares (ALS) algo-
rithm [2]. The basic idea here is to fix all the matrices except one, and solve a least squares problem.
Fixing B and C and rewriting (17), this amounts to setting

Â← argmin
Â

∥∥∥X1 − Â (C�B)
>
∥∥∥ (18)

The optimal solution of (18) can be rewritten using (15) as

Â = X1
(

(C�B)
>
)†

(19)

= X1 (C�B)
(
C>C ∗B>B

)−1
. (20)

We obtain A by normalizing the columns of Â. The ALS procedure repeats analogously to find
B̂ and Ĉ until a stopping criterion is met. The general CP-ALS algorithm is summarized in Algo-
rithm 2.

Algorithm 2: CP-ALS algorithm

Input: X1, X2, X31
Initialize: A, B, C2
while stopping criterion not met do3

M1 ← X1 (C�B)4

A←M1

(
C>C ∗B>B

)−1
5

Normalize columns of A6

M2 ← X2 (A�C)7

B←M2

(
A>A ∗C>C

)−1
8

Normalize columns of B9

M3 ← X3 (B�A)10

C←M3

(
B>B ∗A>A

)−1
11

Normalize columns of C12

end13

In tensor factorization, occasionally the problem of overfitting occurs. Thus, we add regularization
terms to the objective function. Accordingly, we obtain the following new objective function:

min
X̂

∥∥∥X− X̂
∥∥∥+

1

2
λ
(
‖A‖2 + ‖B‖2 + ‖C‖2

)
with X̂ =

R∑
r=1

λr · a:,r ◦ b:,r ◦ c:,r. (21)

Then, the optimal solution of (21) becomes

Â = X1 (C�B)
(
C>C ∗B>B + λI

)−1
. (22)

12

C Review of GD

In this section, we will introduce the GD algorithm using CANDECOMP/PARAFAC(CP) decom-
position model introduced in Section B. This algorithm uses the same objective function as CP-ALS
except for normalization. Thus, we solve

min
X̂

∑
i,j,k

1

2
(xi,j,k − x̂i,j,k)

2 s.t. X̂ =

R∑
r=1

a:,r ◦ b:,r ◦ c:,r (23)

We can rewrite the equation in (23) as

f =
1

2

∥∥∥X1 −A (C�B)
>
∥∥∥2

. (24)

Next, the gradient of (24) with respect to A can be presented as

∂

∂A
f = −X1 (C�B) + A

(
C>C ∗B>B

)
. (25)

In GD, the gradient of f will be written as

∇f =

 vec
(

∂
∂Af

)
vec

(
∂
∂Bf

)
vec

(
∂
∂Cf

)
 . (26)

Then, we can compute the factor matrices A, B and C with f̂ = f − α ∇f . The general CP-GD
algorithm is summarized in Algorithm 3.

Algorithm 3: CP-OPT algorithm

Input: X1, X2, X31
Initialize: A, B, C2
while stopping criterion not met do3

M1 ← X1 (C�B)4

∇A← −M1 + A
(
C>C ∗B>B

)
5

M2 ← X2 (A�C)6

∇B← −M2 + B
(
A>A ∗C>C

)
7

M3 ← X3 (B�A)8

∇C← −M3 + C
(
B>B ∗A>A

)
9

Calculate Step Size α10
A← A− α∇A11
B← B− α∇B12
C← C− α∇C13

end14

We add regularization terms to the objective function to solve the problem of overfitting. The new
objective function is now

min
X̂

∑
i,j,k

1

2
(xi,j,k − x̂i,j,k)

2 1

2
λ
(
‖A‖2 + ‖B‖2 + ‖C‖2

)
s.t. X̂ =

R∑
r=1

a:,r ◦ b:,r ◦ c:,r (27)

Then, the gradient of (27) with respect to A becomes

∂

∂A
f = −X1 (C�B) + A

(
C>C ∗B>B + λI

)
. (28)

13

D Illustrative Example

We illustrate the differences between our algorithm for computing M := X1 (C�B) vs the algo-
rithms proposed by [7] and [8] on the following example: Consider X ∈ R2×3×3 and let

X1 =

[
1 0 6 0 4 7 2 0 0
0 0 0 3 0 8 0 5 9

]
and X2 =

[
1 0 2 0 3 0
0 4 0 0 0 5
6 7 0 0 8 9

]
.

Moreover, let

B =

[
3 1
1 1
2 3

]
and C =

[
1 2
2 1
1 3

]
.

[7] propose to store the above tensor as

vX =



1
2
3
4
5
6
7
8
9


and SX =



0 0 0
0 0 2
1 0 1
0 1 1
1 1 2
0 2 0
0 2 1
1 2 1
1 2 2


,

where vX denotes the vector of non-zero entries of X, while SX denotes the corresponding vector
of indices. The algorithm proposed in Sections 3.2.4 and 3.2.7 of [7] first computes

m1 =



1
2
3
4
5
6
7
8
9


∗



3
3
3
1
1
2
2
2
2


∗



1
1
2
2
1
1
2
2
1


=



3
6
18
8
5
12
28
32
18


.

The above Hadamard product involves three vectors namely vX, a vector formed by repeating entries
of B:,1 based on SX

:,2, and a vector formed by repeating entries of C:,1 based on SX
:,3. Similarly, we

compute the vector below but by using vX and repeated entries from B:,2 and C:,2 respectively:

m2 =



1
2
3
4
5
6
7
8
9


∗



1
1
1
1
1
3
3
3
3


∗



2
3
1
1
3
2
1
1
3


=



2
6
3
4
15
36
21
24
81


.

Finally, we use

SX
:,1 =



0
0
1
0
1
0
0
1
1



14

to sum the appropriate entries of m1 and m2 to form M:

M =

[
3 + 6 + 8 + 12 + 28 2 + 6 + 4 + 36 + 21

18 + 5 + 32 + 18 3 + 15 + 24 + 81

]
=

[
57 69
73 123

]
.

The algorithm uses 2
∣∣ΩX

∣∣ extra storage and 5
∣∣ΩX

∣∣ flops to compute one column of M.

On the other hand, the algorithm of [8] computes M as follows:

N1 = X1 ∗
(
1I � (c:,0 ⊗ 1J)

>
)

=

[
1 0 6 0 4 7 2 0 0
0 0 0 3 0 8 0 5 9

]
∗
[

1 1 1 2 2 2 1 1 1
1 1 1 2 2 2 1 1 1

]
=

[
1 0 6 0 8 14 2 0 0
0 0 0 6 0 16 0 5 9

]
.

Here 1n denotes a vector of size n with all entries set to one. Similarly, if bin
(
X1
)

denotes an
indicator matrix for the non-zero entries of X1, then

N2 = bin
(
X1
)
∗
(
1I � (1K ⊗ b:,0)

>
)

=

[
1 0 1 0 1 1 1 0 0
0 0 0 1 0 1 0 1 1

]
∗
[

3 1 2 3 1 2 3 1 2
3 1 2 3 1 2 3 1 2

]
=

[
3 0 2 0 1 2 3 0 0
0 0 0 3 0 2 0 1 2

]
.

Finally we compute N3 = N1 ∗N2 via

N3 =

[
3 0 12 0 8 28 6 0 0
0 0 0 18 0 32 0 5 18

]
to obtain

m:,1 = N3 1JK =

[
57
73

]
.

To compute the second column of M we use

N1 = X1 ∗
(
1I � (c:,1 ⊗ 1J)

>
)

=

[
1 0 6 0 4 7 2 0 0
0 0 0 3 0 8 0 5 9

]
∗
[

2 2 2 1 1 1 3 3 3
2 2 2 1 1 1 3 3 3

]
=

[
2 0 12 0 4 7 6 0 0
0 0 0 3 0 8 0 15 27

]
.

N2 = bin
(
X1
)
∗
(
1I � (1K ⊗ b:,1)

>
)

=

[
1 0 1 0 1 1 1 0 0
0 0 0 1 0 1 0 1 1

]
∗
[

1 1 3 1 1 3 1 1 3
1 1 3 1 1 3 1 1 3

]
=

[
1 0 3 0 1 3 1 0 0
0 0 0 1 0 3 0 1 3

]
.

Finally we compute N3 = N1 ∗N2 via

N3 =

[
2 0 36 0 4 21 6 0 0
0 0 0 3 0 24 0 15 81

]
and then compute

m:,1 = N3 1JK =

[
69
123

]
.

15

The algorithm uses max
(
J +

∣∣ΩX
∣∣ ,K +

∣∣ΩX
∣∣) extra storage and 5

∣∣ΩX
∣∣ flops to compute one

column of M.

In contrast, our algorithm computes M as follows:

m:,0 = unvec(2,3)




1 0 6
0 4 7
2 0 0
0 0 0
3 0 8
0 5 9


[

3
1
2

]
> [

1
2
1

]
=

[
15 18 6
0 25 23

][1
2
1

]
=

[
57
73

]

m:,1 = unvec(2,3)




1 0 6
0 4 7
2 0 0
0 0 0
3 0 8
0 5 9


[

1
1
3

]
> [

2
1
3

]
=

[
19 25 2
0 27 32

][2
1
3

]
=

[
69
123

]
.

Our algorithm only requires nnzc(X2) extra storage space and 2
∣∣ΩX

∣∣ flops for computing M.

16

E The ALS and GD algorithms of the DFacTo model

The ALS and GD algorithms of the DFacTo model (Section 3) is summarized in Algorithms 4 and
5. We can solve the problem of overfitting by adding a λI term in C>C ∗B>B, A>A ∗C>C, and
B>B ∗A>A of Algorithms 4 (lines 7, 12, 17) and 5 (lines 7, 11, 15).

Algorithm 4: DFacTo(ALS) algorithm for Tensor Factorization

Input: X1, X2, X31
Initialize: A, B, C2
while stopping criterion not met do3

while r=1, 2,. . . , R do4

n:,r ← unvec(K,I)

((
X2
)>

b:,r

)>
c:,r5

end6

A← N
(
C>C ∗B>B

)−1
7

Normalize columns of A8
while r=1, 2,. . . , R do9

n:,r ← unvec(I,J)

((
X3
)>

c:,r

)>
a:,r10

end11

B← N
(
A>A ∗C>C

)−1
12

Normalize columns of B13
while r=1, 2,. . . , Right do14

n:,r ← unvec(J,K)

((
X1
)>

a:,r

)>
b:,r15

end16

C← N
(
B>B ∗A>A

)−1
17

Normalize columns of C18

end19

Algorithm 5: DFacTo(GD) algorithm for Tensor Factorization

Input: X1, X2, X31
Initialize: A, B, C2
while stopping criterion not met do3

while r=1, 2,. . . , R do4

n:,r ← unvec(K,I)((X
2)>b:,r)> c:,r5

end6

∇A← N + A
(
C>C ∗B>B

)
7

while r=1, 2,. . . , R do8

n:,r ← unvec(I,J)

((
X3
)>

c:,r

)>
a:,r9

end10

∇B← N + B
(
A>A ∗C>C

)
11

while r=1, 2,. . . , Right do12

n:,r ← unvec(J,K)

((
X1
)>

a:,r

)>
b:,r13

end14

∇C← N + C
(
B>B ∗A>A

)
15

α← Linesearch(A,B,C,∇A,∇B,∇C)16
A← A− α∇A17
B← B− α∇B18
C← C− α∇C19

end20

17

F Joint Matrix Completion and Tensor Factorization

Generally, matrix completion is used when predicting how users will rate items based on data of how
these users have previously rated other items. Occasionally, however, the accuracy of prediction
from matrix completion is poor because matrix completion only uses prior information on the user,
item, and rating. Thus, we suggest a joint matrix completion and tensor factorization model. In
this model, we add a word count tensor X with user-item-word dimensions to the previous rating
matrix Y. This model is similar to [14]; but instead of sharing just one dimension (item), we
introduce a model that shares both the user and item dimensions. Also, while [14] applies joint
tensor completion and matrix factorization, we suggest using joint matrix completion and tensor
factorization.

Our joint model can be computed by solving

min
X̂,Ŷ

∑
(i,j)∈ΩY

1

2
(yi,j − ŷi,j)2

+ µ
∑
i,j,k

1

2
(xi,j,k − x̂i,j,k)

2
+ λ

1

2

(
‖A‖2 + ‖B‖2 + ‖C‖2

)
(29)

s.t. X̂ =

R∑
r=1

a:,r ◦ b:,r ◦ c:,r, Ŷ =

R∑
r=1

a:,r ◦ b:,r

We can rewrite the equation in (29) as

f =
1

2

∑
j∈ΩY

i,:

(
yi,j − ai,:b

>
j,:

)2
+

1

2
µ
∑
j

(
x1
i,j − ai,: (C�B)

>
j,:

)2

+
1

2
λai,:a

>
i,:. (30)

Next, the gradient of (30) with respect to ai,: can be presented as

∂

∂ai,:
f = −

[
yi,:B + µ x1

i,: (C�B)
]

+ ai,:

 ∑
j∈ΩY

b>j,:bj,: + µ C>C ∗B>B + λI

 . (31)

The two optimization methods we use to solve the minimization problem in this paper are the Gra-
dient Descent (GD) and the Alternative Least Squares (ALS).

In GD, the gradient of f will be written as

∇f =

 vec
(

∂
∂Af

)
vec

(
∂
∂Bf

)
vec

(
∂
∂Cf

)
 . (32)

And each vec(·) of (32) will be computed by the gradient of f in (31) that corresponds to aj,:, bj,:

and ck,:, respectively because

vec

(
∂

∂A
f

)
=



(
∂

∂a1,:
f
)>(

∂
∂a2,:

f
)>

...(
∂

∂aI,:
f
)>


.

Then, we can compute the factor matrices A, B and C with f̂ = f − α ∇f .

On the other hand, in ALS, setting (31) to zero shows that the optimal solution of (30) is given by

âi,: =
[
yi,:B + µ x1

i,: (C�B)
]  ∑

j∈ΩY

b>j,:bj,: + µ C>C ∗B>B + λI

−1

.

In both cases, we will use DFacTo, which we suggested in Section 3, to avoid the intermediate data
explosion problem of X1(C�B).

18

F.1 Experimental Evaluation

We evaluate the joint tensor factorization and matrix completion model on a subset of datasets from
Table 1. Arguably, our experimental evaluation is very preliminary, but promising. The experimental
setup is as follows: We split each dataset into train, test, and validation. We randomly select 60%
of review, rating pairs and designate them as training data. We then select 20% of the remaining
review, rating pairs, discard the reviews, remove users or items which do not occur in the training
data, and use it for validation. A similar procedure is used to generate the test dataset. Cellartracker
and RateBeer datasets contain ratings which are not in a 0 to 5 scale. For consistency, we normalize
these ratings to be in 0 to 5. Our evaluation metric is the mean square error which is given by∑

(i, j) ∈ ΩY(yi,j − ŷi,j), were yi,j is a test rating and ŷi,j is the rating predicted by our model.

We train our model with µ ∈
{

102, 101, ..., 10−9, 10−10
}

and λ ∈ {100, 10, 1, 0.1, 0.01}, evaluate
its performance on the validation set, and pick the best model based on its mean square error. We
use this model to predict on the test dataset and report average mean square error. In Tables 6 and
7, we show the MSEs from both the matrix completion and our joint model using GD and ALS. For
GD, the method of backtracking line search was used.

Dataset Matrix Completion Joint (MC + TF)
λ Test MSE µ λ Test MSE

Yelp Phoenix 10 3.133650 10−6 0.1 1.481320
Cellartracker 1 1.506590 10−7 1 0.927066
Beeradvocate 1 0.603431 10−7 0.1 0.459174

Ratebeer 0.01 0.390188 10−9 1 0.389653

Table 6: Best Test MSE of single matrix completion and joint matrix completion and tensor factor-
ization model after 500 iterations using Gradient Descent.

Dataset Matrix Completion Joint (MC + TF)
λ Test MSE µ λ Test MSE

Yelp Phoenix 1 2.904320 1 1 1.944050
Cellartracker 1 1.148010 100 0.01 0.363496
Beeradvocate 0.1 0.465695 10 0.1 0.373827

Ratebeer 0.1 0.355989 0.1 1 0.318692

Table 7: Best Test MSE of single matrix completion and joint matrix completion and tensor factor-
ization model after 500 iterations using ALS.

The results show that our joint model produces better MSEs than matrix completion across all
datasets and methods. All in all, our joint model improves the accuracy of prediction when compared
to matrix completion.

19

