
Supplementary Notes

Biclustering Using Message Passing

Luke O’Connor
Bioinformatics and Integrative Genomics

Harvard University
Cambridge, MA 02138

loconnor@g.harvard.edu

Soheil Feizi
Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
sfeizi@mit.edu

1 Proof of Proposition 1

In the case K = 1 the problem (1) is equivalent to the problem of finding a maximum weight
biclique on the graph G = (U, V, (lij)) with edge weights lij = log

f1(eij)
f0(eij)

. This problem contains
as a special case the problem of finding a maximum size complete clique on a graph (V,E): let
U = V and lii = 1. For i 6= j, let lij = lji = 0 if (i, j) ∈ E and −∞ otherwise. Suppose the
maximal clique on (V,E) isW . Then the biclique (W,W) has weight |W |. For every other biclique
(U ′, V ′), if its weight is not −∞, then U ′ ∩ V ′ must correspond to a complete clique on (V,E); its
weight is |U ′ ∩ V ′|≤ |W |, thus W is a solution to (1) on G, and the problem (1) is NP-hard.

2 Proof of Proposition 2

This proof is essentially a pedantic version of the derivation of equation (2) in the main text. Given
a putative set of biclusters (V1,W1), ..., (VK ,Wk), let c = (cij) be the N ×M matrix with ones
where i, j are in the same bicluster and zeroes elsewhere. If the data is E = (eij), with ones where
edges are observed, then the probability of the data given these biclusters is just the product of the
probabilities of the tuples,

P (E|I) = Πi≤N,j≤M tij

where,

tij =


p eij = cij = 1

q eij = 1, cij = 0

1− p eij = 0, cij = 1

1− q eij = cij = 0

(1)

The maximum likelihood set of biclusters maximize this expression. Equivalently, we maximize the
sum, over all tuples (i, j) placed in a bicluster, of the log-likelihood ratios, log(p/q) if eij = 1 and
log((1− p)/(1− q)) otherwise.

Let the input matrix be (`ij) = (eij), and let the cluster-size penalty coefficient be

δ

2
= −

log(1−p
1−q)

2 log(p(1−q)q(1−p))
. (2)

Let cij be the indicator for row-column pair ij being in cluster k for some k. First,

1

F (c) =
∑
ij

cij(`ij + (
∑
k

ckij − 1) · δ)− δ

2

∑
k

rkN
2
k + r−1k M2

k

=
∑

cij(`ij + (
∑
k

ckij − 1) · δ)− δ[
∑
k

NkMk +
1

2
(rkNk − r−1k Mk)2].

Now, if each rk = Mk/Nk, then the terms δ
2 (rNk − r−1Mk)2 drop out; otherwise, there is an

additional penalty. The additional penalty cannot hurt, since it is zero when c = c′ and nonpositive
otherwise. Notice that if a tuple is assigned to more than one cluster, the term (

∑
k c

k
ij−1) δ2 cancels

the fact that it is counted in two cluster-size penalty functions. By dropping the cluster shape term
we get

F (c) ≥
∑

cij(`ij + (
∑
k

ckij − 1) · δ)− δ
∑
k

NkMk

=
∑
ij

cij(`ij + δ) (3)

∝ |{(i, j) : tuple ij is placed in a bicluster and eij = 1}|· log(
p

q
) (4)

+ |{(i, j) : tuple ij is placed in a bicluster and eij = 0}|· log(
1− p
1− q

)

= log(P (data|c)) + const

with equality when each rk = Nk/Mk. Equality (3) follows from the fact that
∑
kNkMk is the

number of clustered tuples plus the amount of overlap between the clusters, and this overlap term
cancels the term

∑
ij cij(

∑
k c

k
ij − 1). Step (4) follows from the choice of `ij . This completes the

proof of 2.3.

3 Automatic parameter tuning

3.1 Automatically tuning rk

Automatically tuning rk to fit the observed biclusters allows BCMP to find differently-shaped clus-
ters. After each message update, it updates rnew =

√
Mk/Nk ·

√
rold.

This strategy works well in practice. It can err by finding two biclusters with shapes closer to the
original choice of rk instead of a single, differently shaped cluster; to catch such errors, it is helpful
to visualize the biclustering results or to check that no two clusters have mostly the same rows or
columns.

3.2 Automatically tuning δ

The offset parameter δ is tuned by maximizing the unthresholded likelihood function. BCMP is run
for several values of δ, and for each solution, the likelihood is computed. The solution with the
greatest likelihood is kept.

3.3 Automatically detecting the number of clusters

When the true number of clusters is unknown, a penalty for each nonempty cluster can be used to find
fewer thanK clusters. A term−l1 max(0, Nk−1) is added to the ηk function, and−l1 max(0,Mk−
1) is added to the µk function. This penalty can be interpreted as a significance threshold, as clusters
with barely-positive scores might be found even in a dataset with no true clusters; or, it may be
interpreted as a prior on the true number of clusters, which is Geom(exp(−2l1)) as K →∞.

2

Figure 1: A graphical model of the BCMP objective function.

It does not change the computational complexity to use these penalties. When computing nkij(1),
there is no additional computation as the penalty l1 is incurred automatically. When computing
nkij(0), if y is the original message before accounting for l1, the new message is max(0, y − l1).

In order to set this parameter, one strategy is: randomly permute the entries of the input matrix (`ij);
run BCMP on the scrambled data matrix; and choose l1 = 1

2 maxk
∑
i,j c

k
ij`ij .

4 The max-sum algorithm

In the following, we explain how message passing is used to optimize the BCMP objective function
in approximately linear timeO(K(N+logM)(M+logN)). First, we briefly explain the max-sum
algorithm that we use in our optimization. Consider the following optimization:

max
X1,...,Xn

m∑
i=1

fi(x1, . . . , xn) (5)

where each variableXi has alphabetXi. We assign a function node to each function fi and a variable
node to each variable. Messages mXi→fj (x) and mfj→Xi

(x) are vectors with length |Xi| defined
as follows: {

mfj→Xi
(x) = maxX|Xi=x (fj(X1, . . . , Xn) +

∑
k 6=imXk→fj (Xj)),

mXi→fj (x) =
∑
k 6=jmfk→Xi(x).

(6)

When messages converge after several iterations, an optimal value of variable Xi is then computed
as,

x∗i = arg max
x∈Xi

∑
j

mfj→Xi
(x). (7)

If variables are binary (i.e., |Xi|=2), scalar messages can be passed among nodes defined as follows,{
mfj→Xi

, mfj→Xi
(1)−mfj→Xi

(0),

mXi→fj , mXi→fj (1)−mXi→fj (0).
(8)

When the graphical model is a tree, the max-sum algorithm reduces to the Viterbi algorithm, which
is exact. On graphical models with loops, it often obtains an approximately optimal solution in
practice. It is the zero-temperature version of Belief Propagation (BP), also known as the sum-
product algorithm or the cavity method. BP finds marginal probabilities in a graphical model given
the joint probability distribution. To find a marginal probability, all possible configurations of the
other variables must be considered, by summing instead of taking a maximum over the possible
configurations. The fixed points of BP correspond to local minima of the Bethe free energy [1].

The max-sum algorithm was notably used in reference [2] for a clustering algorithm, Affinity Prop-
agation, which inspired the proposed method.

5 Message updates

After solving the optimization of equation (11) in the main text, there are a few details involved in
computing the actual message values. Let n be the value of N1 that maximizes (11), and let y be the
solution to equation (11).

3

(i) For n112(0), because the message sum is over (i, j) 6= (1, 2), m1
12 + t112 is subtracted from si.

This is only significant if row 1 was included in the arg max to (11) (i.e., if s1 ≥ s(N+1−n)); in that
case, it might no longer be optimal to include row i, in which case it may or may not be replaced by
the (n+ 1)st largest row sum. If l1 = 0, the message is

n112(0) = y −min(max(0,m1
12 + t112), s1 − s(N−n)).

s1 must be similarly adjusted for n112(1); however, the arg max is not affected:

n112(1) = y −max(0,m1
12 + t112).

(ii) For the message n112(1), row i must be included whether or not it is optimal in (11), thus it is
possible that one fewer row to be included. If s1 < s(N+1−n), then (i) is not relevant, and

n112(1) = y + s1 −min(
δ

2
(2n+ 1), s(N+1−n))

(This also assumes that l12 ≥ 0).

(iii) For calculating n112(0), if the initial penalty l1 is used (see Supplementary Note 3.3), it might
be optimal to exclude all rows and set every c112 = 0. If y′ is the message value for l1 = 0, then
accounting for l1, the true value is max(0, y′ − l1). For n112(1), the arg max is unaffected, and the
message value is y′ − l1.

6 Expectation-Maximization for the binary and Gaussian models

This section describes how expectation-maximization (EM) was applied to the binary and Gaussian
models used in our simulations (see Section 2.4) .

In the case of a binary model with parameters p and q, the prior on p is Unif(0, 1). If n tuples were
placed in a cluster, andm out of those n had edges, the posterior distribution for p isBeta(1+m, 1+
n−m), and the posterior for q is computed similarly. The posteriors are independent of each other
because the edge weights are assumed to be drawn independently (given the cluster assignments).
There are only two integrals to be computed:

lij =

{∫
[0,1]2

log p
qdP (p)dP (q) eij = 1∫

[0,1]2
log 1−p

1−qdP (p)dP (q) eij = 0
(9)

Here we use P (p) and P (q) to denote the posterior CDF of these parameters. These integrals can
be computed numerically by sampling from the posterior distributions.

In the case of a Gaussian model with two different means and variances, we use a normal-inverse
gamma distribution on the mean and variance. Assume that eij |cij = a is normally distributed with
mean µa and variance σ2

a. Let the prior distribution both within clusters and outside of them be
(µa, σ

2
a) ∼ NIG(µ, λ, α, β), that is,

σ2
a ∼ Γ(α, β), (10)

µa|σ2
a ∼ N(µ, σ2

a/λ).

Let ĉ = (ĉij) be the current estimate of the cluster memberships. Let A , {(i, j) : ĉij = 1} and
B , {(i, j) : ĉij = 0}; let µ̂A, σ̂2

A, µ̂B , σ̂
2
B be the sample means and variances of the edge weights

over the estimates Â, B̂. Then the posterior distributions of the model parameters are

(µ1, σ
2
1)|Â ∼ NIG(

µλ−1 + |A|µ̂A
λ−1 + |Â|

, λ−1 + |Â|, α+
|Â|
2
, β +

1

2
σ̂2
A) (11)

(µ0, σ
2
0)|B̂ ∼ NIG(

µλ−1 + |B|µ̂B
λ−1 + |B̂|

, λ−1 + |B̂|, α+
|B̂|
2
, β +

1

2
σ̂2
B)

4

Let φ be the standard Normal density function. The expression for the new input matrix is:

lij =

∫
R2

log σ−11 φ(
eij − µ1

σ1
)dP (µ1, σ1)−

∫
R2

log σ−10 φ(
eij − µ0

σ0
)dP (µ0, σ0) (12)

This computation can be performed efficiently by drawing samples from the two distributions and
reusing them for each of the NM integrations. Typically, in our simulations, approximately three
iterations of EM were needed for convergence.

7 Maximum Modularity

When a statistical model for the data is not available, a natural heuristic input matrix, replacing (lij),
is the modularity matrix [3] with entries

Mij = eij −
didj
2m

,

where di, dj are the degrees of nodes i and j, and m = 1
2

∑N
i=1 di is the total weight of the graph.

The term didj
2m is interpreted as the expected weight of eij under a null model that accounts for the

degree of each node; it satisfies the condition
∑N
i=1E(eij) = dj for each column j and likewise for

each row i, where E() indicates the expectation. This matrix was originally used for graph parti-
tioning in the case of a binary, non-bipartite graph; however, it can be extended to the overlapping,
weighted and bipartite cases.

In the non-partitioning case, typically most nodes will be assigned to some cluster using the max-
imum modularity method, for two reasons. First, if (U1, V1) is a bicluster of modularity x, then
there will be a “reflected” cluster (U c1 , V

c
1) that also has modularity x even though it might be no

denser, in terms of actual edge weights, than the network mean. Second, because the row and col-
umn sums of M are all zero, there is a high probability that a node will be incorrectly assigned to
any given cluster. If V1 is a collection of columns and |V1|<< M , then E(

∑
j∈V1

Mij) ≈ 0, which
implies that node i will be assigned to the cluster erroneously with probability approaching 1/2.
To avoid finding spurious clusters and erroneously assigning extra nodes to clusters, therefore, we
recommend using a cluster-size penalty that is larger than the offset. This value can be chosen by
drawing a number of random “biclusters”, computing their respective modularities, and choosing a
value such that all but a fraction of them have negative shifted modularity.

8 Gene expression data

We applied BCMP, ISA and LAS to three DREAM5 gene expression datasets: In Silico, E. coli, and
S. cerevisiae [4]. We binarized these datasets, placing ones where the gene expression level was at
least two standard deviations from its mean and zeroes elsewhere. We evaluated the three bicluster-
ing algorithms in terms of the total size and average density of the reported clusters; when reported
clusters overlapped, these regions were not double-counted. We used BCMP to fit the stochastic
block model, using different initial parameter settings for EM (see section 2.4 and supplementary
section 6) and K = 10 (this is the number of clusters reported by LAS by default). ISA was run
with different threshold-parameter settings, keeping the first ten clusters reported. LAS had no pa-
rameters to set. We found that the density of the clusters reported by LAS was diluted by a few
large, low-density clusters. ISA and BCMP had similar results for the In Silico and E. coli datasets,
and BCMP reported denser clusters on the S. cerevisiae datasets (see Supplementary Figure 2).

9 Document classification example

Biclustering has been used for document clustering [5]. Here we illustrate of how BCMP might be
applied to such a problem.

Let D = d1, ..., dN be a collection of documents containing the words W = w1, ..., wM , and let
(D1,W1), ..., (DK ,WK) be a hidden set of topics (each word and document can belong to any

5

0 1 2 3 4 5 6 7 8
x 104

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

cluster size

cl
us

te
r d

en
si

ty

cluster size

cl
us

te
r d

en
si

ty

In Silico Network

LAS
ISA

BCMP - EM

(a)

0 2 4 6 8 10 12 14 16 18
x 10

4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 10
4

E. coli Network

LAS
ISA

BCMP - EM

S. cerevesiae Network

LAS
ISA

BCMP - EM

(b)

(c)

cluster size

cl
us

te
r d

en
si

ty

Figure 2: Total size and average density of biclusters reported by BCMP, ISA and LAS for three
gene expression datasets. a) In Silico. b) E. coli. c) S. cerevesiae.

number of topics). Document di contains nij instances of word wj out of ni =
∑
j nij total words.

Assume that ni is large enough to use a Poisson model: nij ∼ Poisson(λij) where λij = nirj
if document di concerns a topic relating to word wj and λij = nisj otherwise. Assume that K is
given.

The problem is to recover the topics. It can be solved by estimating the parameters rij , sij and
biclustering the bipartite graph (D,W, (nij)).

We can obtain initial estimates for rj and sj using k-means on n1j , ..., nNj . This is effectively a
clustering problem along one axis with two clusters:

max
rj ,sj ,c1j ,...,cNj

P (n1j , ..., nNj |rj , sj , c1j , ..., cNj)

where cij is the indicator variable for document i concerning some topic relating to word j. Words
with no evidence for rj 6= sj at some significance threshold can be discarded. After performing
biclustering, these estimates can be improved using the newly estimated cluster memberships.

After estimating rj and sj , the likelihood ratios are

pij
qij

=
P (nij |λij = nirj)

P (nij |λij = nisj)
=

(nirj)
nije−nirj/nij !

(nisj)nije−nisj/nij !

and the input matrix for BCMP is

`ij = max(0, log
pij
qij

+ δ) = max(0, nij log(
rj
sj

) + ni(sj − rj) + δ). (13)

EM can be used to iteratively update the input matrix and improve the parameter estimates as dis-
cussed in Section 2.4.

6

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

0

200

400

600

800

1000

1200

Dataset size (NM)

R
un

ni
ng

 ti
m

e
(s

)

Figure 3: Running time for BCMP. In Proposition 3, we showed that the complexity of a round
of message updates for BCMP is nearly linear, i.e., O(K(N + logM)(M + logN)). This figure
illustrates the running time of BCMP on a personal computer, with N = M .

10 Pseudocodes for BCMP

The pseudocode is presented as three functions. The first calls the two message-update functions,
computes clusters from messages, and checks for convergence.

The second function computes messages from the µk and ηk function nodes. The steps for com-
puting these messages are explained here briefly; see Section 2.3 and Supplementary Note 5 for a
derivation of the message update rules. An optimization is performed under two constraints: either
tuple (i, j) must be assigned to cluster k (ckij = 1), or it must not be. While the optimization is
over NM variables, only the number of rows or columns (for η and µ respectively) is penalized;
thus, the optimum is achieved by including every tuple (i, j) with positive outgoing message for
some number of rows i (or columns j). When tuple (i, j) is constrained to be in the cluster, node
i must also be in the cluster; however, node i may still be in the cluster even when tuple (i, j) is
constrained not to be. The steps are, first, to compute the sum of the positive incoming messages
for each node i = 1, ..., N and sort them. Second, to find the unconstrained arg max by comparing
the sorted list of message sums with the marginal penalty for including another node in the clus-
ter. Three indices are computed: t0, t1, t2, which are the numbers of nodes included in the cluster
under various constraints. t1 is the index for the unconstrained maximum. When an extra node,
not included in the unconstrained maximum, is constrained to be included, t2 ≤ t1 is the optimal
number of additional nodes to also include. t0 ∈ {t1, t1 + 1} is the optimal number when a node
drops out of the sum (owing to one of the tuples being excluded). The third step is to compute the
constrained arg max for each tuple; one of the constraints gives the unconstrained maximum, and
the other gives an optimization that is solved by including either t0 or t2 nodes from the sorted list
of message sums.

The third function computes messages from the τij function nodes. First, it finds the largest and
second largest messages msgk, and the arg max k1; the second largest message value is needed to
compute the message for k = k1. Then, it computes the message values explicitly.

7

Algorithm 1 Biclustering Using Message Passing
function BCMP((`ij),K, l0, r)

Require: N × M dataset (lij); maximum number of clusters to find K; penalty per nonempty
cluster l1.

(tkij)← 0

(nkij)← random . small random values
(mk

ij)← 0
for rep = 1, ..., repmax do

for i = 1, ..., N do
for j = 1, ...,M do

(t1ij , ..., t
k
ij)← (t1ij , ..., t

k
ij)·λ1+tuple_update(n1ij+m1

ij , ..., n
k
ij+mk

ij)·(1−λ1)
end for

end for
for k = 1, ...,K do

(n1ij , ..., n
k
ij)← (n1ij , ..., n

k
ij) · λ+ pen_update((tkij) + (nkij), l0rk) · (1− λ) . λ is

a damping factor; a good value is λ = 1/2. The input to the penalty message update function is a
NxM or MxN matrix, and the penalty coefficient.

end for
for k = 1, ...,K do

(m1
ij , ...,m

k
ij)← (m1

ij , ...,m
k
ij) · λ+ pen_update((tkij)

T + (mk
ij)

T , l0/rk) · (1− λ)
end for
. Compute biclusters from current messages in order to update parameters and check for

convergence.
(ckij)← (nkij +mk

ij + tkij > 0) . N ×M ×K boolean array
(indij)← (

∑
k c

k
ij > 0) . N ×M boolean array

score←
∑
ij indij(lij − 2l0)

if score > oldscore then
oldscore← score

else
break

end if
end for

return (tkij) + (nkij) + (mk
ij)

end function

8

Algorithm 2 Message update function for η and µ
function PEN_UPDATE((msgij), a, b)

Require: (msgij) theN×M matrix of messages from the variable nodes; a the penalty coefficient;
b the initial penalty per nonempty cluster.

(sums1, ..., sumsN)← (
∑
j max(0,msg1i), ...,

∑
j max(0,msgNi)) . Step one

sort (sums) and store the permutation as σ : 1, ..., N → 1, ..., N
(t1, ..., TN)← a · (1, 3, 5, ..., 2N − 1) . Ti = ai2 − a(i− 1)2 the marginal penalty

. Step two
t1 ← min({n : msgσ(n)−Tn < 0})− 1 . or N if this set is empty
t2 ← min({n : sumsσ(n) − Tn+1 < 0})− 1 . or N if this set is empty
if 0 < t1 < N then

if sumsσ(n) ≥ Tt1 then
t0 ← t1 + 1

else
t0 ← t1

end if
else if t1 = 0 then

for i = 1, ..., N do
newmsgi1, ..., newmsgiM ← b−a+sumsi− (max(0,msg1i), ...,max(0,msgNi))

end for
return (newmsgij)

else
t0 ← t1

end if
sum_to_t0 ←

∑t0
i=1 sumsσ(i)

sum_to_t1 ←
∑t1
i=1 sumsσ(i)

sum_to_t2 ←
∑t2
i=1 sumsσ(i)

unconstrained_max← b+ sum_to_t1 − a · t21
. Step three

for i = 1, ..., t1 do
for j = 1, ...,M do

newmsgσ(i),j ← unconstrained_max − max(0,msgσ(i),j) − max(b +

max(0, sum_to_t1 −max(0,msg(σ(i), j))− a · t21, sum_to_t0 − sumsσ(i) − a · (t0 − 1)2)
end for

end for
unconstrained_max← max(0, unconstrained_max)
for i = t1 + 1, ..., N do

for j = 1, ...,M do
newmsgσ(i),j ← b+ sum_to_t2 + sumsσ(i) −max(0,msgσ(i),j)− a · (t2 + 1)2 −

unconstrained_max
end for

end for
return (newmsg)

end function

9

Algorithm 3 Message update function for τ
function TUPLE_UPDATE((msgk), δ, `ij)

for k = 1, ...,K do
if w1 <= msgk then

k1 ← k
w2 ← w1

w1 ← msgk
else if w2 <= msgk then

w2 = msgk
end if

end for
for k = 1, ...,K do

if k 6= k1 then
newmsgk = `ij −max(0, δ + msgk) − [max(0, `ij) + w1 −max(0, δ + msgk) −

max(0, 2δ + w1)]
else

newmsgk = `ij −max(0, δ + msgk) − [max(0, `ij) + w2 −max(0, δ + msgk) −
max(0, δ + w2)]

end if
end for

return (newmsg)
end function

References

[1] Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. "Constructing free-energy approxi-
mations and generalized belief propagation algorithms." Information Theory, IEEE Transactions
on 51.7 (2005): 2282-2312.

[2] Frey, Brendan J., and Delbert Dueck. "Clustering by passing messages between data points."
Science 315.5814 (2007): 972-976.

[3] Newman, Mark EJ. "Modularity and community structure in networks." Proceedings of the
National Academy of Sciences 103.23 (2006): 8577-8582.

[4] Marbach, Daniel, et al. "Wisdom of crowds for robust gene network inference." Nature methods
9.8 (2012): 796-804.

[5] Bisson, Gilles, and Fawad Hussain. "Chi-sim: A new similarity measure for the co-clustering
task." Machine Learning and Applications, 2008. ICMLA’08. Seventh International Conference
on. IEEE, 2008.

10

