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1 Proof for Theorem 1

Theorem 1. Let I be the identity matrix and p(W) be the spectral radius of the matrix W, respec-
tively. If 0 < z < 1/p(W), then (,(G) = 1/ det(I — zZW).

Proof. By definition, v, and W are related as
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where tr(W*) denotes the trace of the matrix power W*. Suppose that the eigen-decomposition of
W is W = QAQ™}, where the diagonal matrix A = diag(\1, ..., A,). Then we have
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where ); is the i-th eigenvalue of W. Recall that for 0 < 2 < 1, In(1 —2) = > 2, —’”Tf. Since
|zA;| < 1, we have
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=1/ det(I —zA) 4)
=1/det(I — z2W), (5)
which completes the proof. O

2 Proof for Theorem 2

Theorem 2. Given eg and eG Jx; as in Theorem 1, the point extremeness measure €4, of point & ;
satisfies e5, = (I — ZW)( iy i.e., the pomt extremeness measure of point x; is equal to the j-th
diagonal entry of the matrix (I — zW)~!



Proof. By Theorem 1, the structural complexity of the remaining graph, € /., has the determinant
form eg/q; = 1/det(I — 2W;;), where W ; denotes the reduced matrix after removing the j-th
column and j-th row of W. Then we have

. det(I — ZWjj)

T2 T Tdet(I - 2W) ©
By definition of the adjugate matrix adj(I — 2W), we have
adj(I — 2W)j;) = (—1)U) det(I - 2W ;). (7)
From the property of matrix inverse, we can write
(I-2W) ! = mmj(l — ZW). (®)
Combining Eq. (6)(7)(8), we complete the proof. O]

3 Proof for Theorem 3

Theorem 3. Let the singular value decomposition of H be H = UXV', where ¥ =
diag(\1,...,N). If H'H is not singular, then E;jl =1+ 222:1 lfi)}/\%(Ujk)Q, where U =
HVX ! and Ujy, denotes the (i, j)-th entry of U.
Proof. The point extremeness measure is in the form
ea, = (I—2HH") 3. )
In Eq. (9), the left side can be expanded by the Woodbury identity [2]
I-:HH") ' =1+:HI-:H H)'H'. (10)
Substituting H = UXV " in Eq. (10) gives
I-2HH") ' =I+:USV (I-:VvE*VT)"lvzUu’
=I+:USV'V(I-:23)"'v'vzu'

=I+:UX(I-:3?)"'xU’. (11)
Note that 3 is a diagonal matrix. Expanding the right side of the identity above gives us
-1 _ Ty—1
€z, = (I-2HH )(jj) (12)
=1+2(US*(I1-23%)7'U"); (13)
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= 1"'22@([];@ ) (14)
k=1
which completes the proof. O

4 Experiments

The performance of learning data representation on the Caltech dataset [1] is shown in Fig. 1. We
illustrate the recognition rates when the number of labeled samples for training the classifier varies
as L = {5,10, 15, 20, 25, 30} images per class.
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Figure 1: The performance of learning data representation on Caltech101.We vary the number of
labeled training samples per class as L = {5, 10, 15, 20, 25, 30} to yield the recognition rates. The
best representation scheme of each compared method when L = 30 is used for this figure.



