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1 Details of Maximizing the Margin

We now turn to the question of maximizing the margin. We show the step-by-step derivation a
smoothed but non-convex optimization problem for maximizing the total margin.

max
W

δT
W (1)

‖W1‖ = · · · = ‖WK‖ = 1

Introducing one additional variable ζk per classifier, problem (1) is equivalent to:

max
W,ζ

K∑
k=1

ζk (2)

∀i, ζz(xi) ≤ yiWz(xi)x
i

ζ1 > 0, . . . , ζK > 0

‖W1‖ = · · · = ‖WK‖ = 1

Considering the unnormalized rows Wk/ζk, we obtain the following equivalent formulation:

max
W

K∑
k=1

1

‖Wk‖
(3)

∀i, 1 ≤ yiWz(xi)x
i (4)

When y = −1, z(xi) satisfying the margin constraint (4) implies that the constraint holds for every
sub-classifier k since yiWkx

i is minimal at k = z(xi). Thus, when y = −1, we can enforce the
constraint for all k yielding the following equivalent problem:

max
W

K∑
k=1

1

‖Wk‖
(5)

∀i : yi = −1,∀k ∈ {1, . . . ,K}, 1 +Wkx
i ≤ 0

∀i : yi = +1, 1−Wz(xi)x
i ≤ 0
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Finally, we can relax the objective into a convex one by minimizing the sum of the inverse squares of
the terms instead of maximizing the sum of the terms. We obtain the following smoothed problem:

min
W

K∑
k=1

‖Wk‖2 (6)

∀i : yi = −1,∀k ∈ {1, . . . ,K}, 1 +Wkx
i ≤ 0 (7)

∀i : yi = +1, 1−Wz(xi)x
i ≤ 0 (8)

The objective (6) is now the familiar convex L2 regularization term ‖W‖2. The negative samples
constraints (7) are convex (linear functions), but the positive terms (8) result in non-convex con-
straints because of the instance-dependent assignment z. As for the Support Vector Machine, we
can introduce n slack variables ξi and a regularization factor C > 0 for the common case of noisy,
non-separable data. Hence, the practical problem becomes:

min
W,ξ
‖W‖2 + C

n∑
i=1

ξi (9)

∀i : yi = −1,∀k ∈ {1, . . . ,K}, 1 +Wkx
i ≤ ξi

∀i : yi = +1, 1−Wz(xi)x
i ≤ ξi

∀i, ξi ≥ 0

Following the same steps, we obtain the following problem for maximizing the worst-case margin.
The only difference is the regularization term in the objective function which becomes maxk ‖Wk‖2
instead of ‖W‖2.

2 Proof of Theorem 1

The Rademacher complexity of FK,B is defined as

Rn(FK,B) = ExEε

[
sup

f∈FK,B

∣∣∣∣∣ 1n∑
i

εif(xi)

∣∣∣∣∣
]

Where the εi are ±1 i.i.d. Bernoulli with probability 1/2. It is also possible to define the Gaussian
Rademacher complexity of FK,B is as:

Gn(FK,B) = ExEg

[
sup

f∈FK,B

∣∣∣∣∣ 1n∑
i

gif(xi)

∣∣∣∣∣
]

where the gis are i.i.d. standard normal variables.

By Lemma 4 in [1], there exists an absolute constant c such that for every FK,B and n we
have Rn(FK,B) ≤ cGn(FK,B). Thus, we can provide a bound on the Gaussian Rademacher
complexity. In our case, this can be directly done by invoking Theorem 14 of [1]. Indeed,
a1, . . . , ak 7→ max(a1, . . . , ak) is a Lipchitz with constant 1, thus FK,B can be viewed as the
composition of the max function with the real valued classes of linear separators Fi that are such
that

Fi = {x 7→ 〈W,x〉|‖W‖ ≤ Bi}

So we have that Gn(FK,B) ≤ 2
∑K
k=1Gn(Fk). The Gaussian Rademacher complexities of each of

these Fks is bounded by Bk/
√
n by a standard argument as follows:
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Gn(Fk) = ExEg

[
sup

‖W‖≤Bk

∣∣∣∣∣ 1n∑
i

gi〈W,xi〉

∣∣∣∣∣
]

= ExEg

[
sup

‖W‖≤Bk

1

n
〈W,

n∑
i=1

xigi〉

]

= ExEg
Bk
n
‖

n∑
i=1

xigi‖

≤ Ex
Bk
n

√√√√Eg‖
n∑
i=1

xigi‖2

= Ex
Bk
n

√√√√ n∑
i=1

‖xi‖2

≤ Bk√
n

Hence, there exists a universal constant A > 0 such that

Rn(FK,B) ≤ A
∑
k

Gn(Fk) = A

∑
k Bk√
n

Finally, we apply Theorem 7 [1] where φ is taken to be the hinge loss, and obtain the desired result.
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