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1 SON
Recall that we are analysing the following convex optimization problem, which we term as SON
X:argxgﬂglxp\\A-X||2F+a2||xi. — X ||2, (1)
i<j

where A is a given data matrix of dimension n X p such that each row is a data point, « is a tunable
parameter, || - || p denotes the Frobenius norm and X;. denotes the ith row of X.

2 Proof of Lemma 1

Lemma 1. If the data matrix A is column centered, then the optimal solution X of problem (1) is
also column centered. Further more, set B = D(A) and Y = D(X), we have
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Similarly, we have
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Then, because A is column centered, we get
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which implies directly that
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Next, we can see that
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So, we get the following identity
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Then, we have

IA =X +a) | Xi = Xl

i<j
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where the equality holds if and only if X is column centered.

Next, we prove that X is column centered by contradiction. Suppose that X is not column centered,

then we can find a columned centered X € R"*? s.t. Y = D(X) = ©(X). Then, we have

JA =X+ a3 1K — X 2
1<J
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which contradicts the optimality of X. When X is column centered, the following identity follows
easily
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Remark: following directly from the proof of Lemma 1, for any column centered matrices G and
H in space R"*?. Set G = ©(G), H = ©(H) we have
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3 Proof of Lemma 2
Lemma 2. Given a column centered data matrix A, set B = D(A) and S = {Z €
R()xP | QZ.; =0, 1 <j <p}. Then, we have
X =arg min [[A—=X[F+a) [IX. —X; 2 )
XeR™ " i<j
n(n—1)
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Proof. SetT = {X € R"*?| X is column centered}. Because A is column centered, we have that
the optimal solution X is also column centered by Lemma 1. So, we get

X =arg min [[A-X|;+a) X - X
XeR"*P i<y

o .
=X =argmin [A = X|[E +a ) [1Xi = X[l

1<j

Set Y = D (X), then again by Lemma 1, we have the following equality
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Indeed, it is this identity that gives us a hint to consider the following problem instead,
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where Y can not take values from the whole space R(G)x? , because we need Y = ©(X*) for some
X* € T. So, we defined some special matrices in Section 4 to indicate that Y = D (X*).

By the definition of €2 and direct checking, we know that

Y =9(X") forsome X* € T« Y €8S.

Next, set Y = ©(X), we show that X is the optimal solution of problem (2) if and only if Y is the
optimal solution of problem (3). Forall Y’ € S, 39X’ € Ts.t. @(X/) =Y, so we have
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so, we have
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Then, 3X € Ts.t. D(X) = Y. VX €T, denote Y =D (X'), we have

A =X |3 + az 1%, = X [l2
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so, we get
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In conclusion, we have showed the following result
X — argmin | A — X|2 X,
arg in | A = X|F +a ) IXi — X2
1<J
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4 Proof of Lemma 3
Lemma 3. Givenc, € R"i.e. ¢, = (c1,co, - ,¢,)T, s.t. 3. ¢; = 0and b € R, |c;| < b. Then
i=1
Ix e R™F st [x[loc < 2band RTx = c,,.
Proof. Set
F = {(x1,x2,'-- ,xn)T € R"|in =0,1<j<mn,|z;| < b} ,
i=1
and T ) )
G= {($17x27 e aI"(”—U) € Rn(nz_l) | 1 S 1 S M7 |IZ| S b} .
2 2 n
Notice that F is convex and define f : R™5 s R" as f(x) = RIx for any x € R Then,

we want to show that for all ¢,, € F, exists x € G such that f (x) = c,,. Equivalently, we want to
show f (G) D F.

Lety = (y1,¥2, - ,yn)T ER" Ifniseven,sety; =yo = - =yz =bandyz i1 = yz 4o =
=Yy = —b. If’nlSOdd,SCIyl =Yy = - :y% :b’y%Jrl :y%+2 = =Yyl =
—b and y, = 0. Then, let P, denote the set of all permutations p of the sequence of integers
{1,2,--- ,n}. After that, let E denote the set of all extreme points of the convex set IF, then it is easy

to see that

n T
E: {(21722?"' 7Zn)T € R | Elp € ]Pn S.t. (Zp(l),Zp(g),"' ?Zp(n)) :y}

In the following, we show that E C f(G). Given any z,, = (21,22, -+ ,2,)? € E we construct a
ueGst RIlu=gz,.



Denote

_ (n—1  n—1 n—1 ,n—2 n—2 nT
u_(ul ,u2 7..')un_17u1 7."7un_27."7u1) .
For 1 <4 < j < n, when n is even set
2 .
) ﬁb DZn—i > Zn—i+tj
i_ 2 .
U; = 7Eb P n—i < Zn—itj
0 D Zn—i = Zn—itj
and when n is odd set
2 .
) n+12b D Zn—i > Zn—itj
T . . . .
U] = 7T_~_lb P Zn— < Zn—i+j

P Zn—i = Zn—itj

By this construction, checking directly that u € G and RZu = Z,. So, we have E C f(G). Next,
since f is an affine function and the image of a convex set under an affine function is convex, we
have f(G) is convex. So, we have F = {convex hull of E} C f(G). O

5 Proof of Theorem 1

Theorem 1. Given a column centered data matrix A of dimension n X p, where each row is ar-
bitrarily picked from either cube C' or cube C? and there are totally n; rows chosen from C* for
1 =1,2, if w12 < di,2, then by choosing the parameter o € R such that w, 2 < %oz < dy,2, we
have the following:

1. SON can correctly determine the cluster membership of A;

2. Rearrange the rows of A such that

Al
1 4 Al
A= (;) and A= | 5| o)
Al
where fori = 1,2 and j = 1,2,--- ,n;, A; = (A§,1aA§,27 e 7A;‘-’p) € C'. Then, the

optimal solution X of problem (1) is given by

« | (1~ sortramy; ) T (D2(A1,A2), Ay eCl
— (1 - 2”971(@2?:1,A2>)H2> M (D2(A1,A?)), if A;. € C?.

Proof. WLOG, we let

where fori =1,2and j =1,2,--- ,ni,A;'.. = (A;‘.,l,

Ajaor A, €C
Step 1: In this step, we derive an equivalent form of problem (1) and give optimality conditions. For
convenience, set B(1?) = D,(A!, A?), B! = D,(A'), B2 =D,(A?),V={yc R(2) | Qy =

0}and S = {Z € R(G)x? | QZ; =0, 1 < j < p}. Due to lemma (2), we can focus on the
following problem

n(n—1)

. . 2 1
Y = argmin > <n||Bi< —- Y3+ a||Yi-||2> . &)
i=1



We use A to denote the optimal dual solution of problem (5) which has the same dimension as Y.
Then, by Proposition 6.4.3 in [1] Page 303, we have the following result, Y and A are an optimal

primal and dual solution pair of (5) if and only if
Y, eV, (AT eVt =12 p (©)
and )
< . N . n
Vo cargmiy (1B -yl +alyl-vAT) =120 (5) @
yeER? \ n 2
Step 2: In this step, we construct A. Since A is constructed by concatenating matrices A' and
AZ? vertically, we also expect X to be concatenated by two matrices vertically. Due to the fact that
Y =9(X), for 1 <1< p,wewriteY and A as the following

A A ) Y}

A= A% JandY,=| Y?
A (1,2) C(1,2)
Al Y

where A?l, Y’l € R(%) fori = 1,2 and _/A\‘(ll’Q), YA'SM) € R™"2_ Next, we use Row({2) to denote
the row space of €2, then V7 is the same as Row(§2).

For notational convenience, given any vector v, we use v|[i, j|,7 < j to denote a new vector com-
posed of the ¢th through jth element of v. By the structure of €2, i.e. there exists a identity submatrix
Iof Q2 s.t. I and  have the same number of rows, we have (A.;)7 € Row(£2) is equivalent to the
following equalities ,i.e. equalities (8) and (9),

Ry, 1 (A.lz [n1: (”21)]) + S (-1 x (ma-1) (Ale’Q)[”Q +1: nﬂw]) =Aj[lin—1], ®

sz_/&?l + W7 A_(ll’z) [na+1:ning] = A.(ZI’Q) [1:ns]. 9)

(77,171)7’7,2 XNng

Then, we set

1
n nin9

A2 _ 2 (

ning
(Z BS&?)) - B&%r”) 1< m < mny. (10)
k=1

By moving the left hand side of (8) to the right, we have (8) is equivalent to

Al [1:ny—1] .
_ T 1 T (1,2) . _
(-L.,-1 R ) (M - (”21)}) ST (1) (A,l g +1: nan]) 0. (1)

hen, since 3~ AlL?) = 0, checking directly that we h ST o AL =
Then, since 21 m. = 0, checking directly that we aveim( ninaxng A ) = 0 and
m=

£ (1,2 A (1,2
(SZInQanA.(z )) [2:n] = ng(mfl)x(mfl) (A_(l )[ng +1: n1n2]> .

Since M (R ) =0, we get M (Rz1 f&ll) = 0 and checking directly that
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(REAY) 2ol = (L RE ) ) = (T RE ) AL

So, we have that (11) is equivalent to

RI Al +ST AP —o. (12)

ning Xni
For (9), move right hand side to the left, we have

RT A% + W Al —o. (13)

no ning Xng



In conclusion, we have showed that (A;)T € Row(f2) is equivalent to A satisfies equa-
tions (12) and (13). After that, checking directly that we have i)ﬁ( A(l1 2)> = 0 and

m (W,{“mXMA(} 2)) = 0. Because of (10), for 1 < m < nj, the mth entry of the vector

1,2)\ .
(SZIanmAS )> is
= (1 2) & (1,2)
n [nl (Z B > o <Z Bk-i’-7z,2(m—1),l>‘| :
k=1

nina Xni

Also, for 1 < m < ng, we have the mth entry of the vector — (WZlannQAFl1’2)> is
ninz (1 2) 77,1—1 (1 2)
k=1 k=0
Forl <i<2and1 < j < n;, since A; (A; 1,A§-’2,--- 7A;'-_’p) € C?, we have \A;k| <

ik + o for 1 < k < p. For 1 <m < nj, according to a direct calculation we get

[ (Eme) - (S
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Sg(ng) (m — 1) (201).
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Similarly, for 1 < m < ng, by a direct computation we get

ning

ny—
1,2) (1,2)
0 ng ZB - ZBjn1+ml ‘

Jj=0

2’%(”1) <n12 (i Ai,l) _A12'n,l>‘
k=1

<2 (m) (”2 — 1) (202).
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In conclusion, we have showed that

A 2 ny—1
IR, Ao < ﬁ(@)( - ) )(2011)
and
A 2 ng — 1
IRZ A% < 2 (ny) 22—V (20,
n n2

So, by Lemma 3, JA, satisfying (12) and JA? satisfying (13) s.t. the following holds
2 (Tll - 1)

1A [loo < E(W)TMOU)’ (14)
and
2 —1
4% < 20 722 D (40, (15)
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Up to now, we have constructed a A of dimension (") x p satisfying equations (12) and (13) s.t.

A}, satisfies (14),for 1 <1 < p,
A? satisfies (15),for 1 < < p,

ning
Ag,ll 2 ( (Z B (1, 2)> - B$,1L32)> , 1 <m < nyns.
n nin9

Step 3: Finally, we construct Y and show that we can determine the cluster membership of A
correctly if the conditions in Theorem (1) holds. Set

Y =Y2=0,1<1<p,

<1 R [CICTE) NS

For each pair of B;. and A;., notice that problem (7) is equivalent to

1
Y, € arg min (nl (%Al —i—BZ:) —yl3 —I—a|y||2> ,i=1,2,--, <n> (16)

yER?

»

v

Then, it is easy to see that the minimizer of (16) is

no n £ 2|n
0 if 2|[%A;. + B2 < a.

Then, according to the A we constructed, for 1 <¢<2,1 <1 < ( ) and 1 < h < nyne, we have
the following

n -~ - n ~
|5AL +Bills Swip <dio < ||§A§11j2) +B?,.

By the construction of AandY together with the choice of «, conditions (12), (13), (16) are satis-
fied. Equivalently, conditions (7) and (6) are satisfied, so A and Y are an optimal primal and dual
solution pair of (5). By the construction of Y, we have

Y,’;.zo,lsisz,lsks(’;’), (17)
o (L, _ no (1,2)
v {2 (1 2 B ”2> (sm (B )) 1< m < nyn, (18)

which means Y = D(X), s.t

Xi.
. 1 X3
X = (XZ) and X' : ,
X,
where X! = (X}, X!, -+, X} ) € C, X). =Xb =+ =X, fori =1,2and X} # X7

for1§k§n1,1<l§n2.
So, we can determine the cluster membership of A correctly when the conditions in Theorem 1

holds. By lemma (1), we know that X is column centered. Since Y = CD(X), by solving the
following two linear equalities,

Xxl_x2 (™ B(1:2) 1
v ( 20 (BU2) ||2> (o (B0)) (19)
X} +n X3 =0, (20)



we get

n2

X‘ _ ni+ng (1 - QHQﬁ(ngLXIsAz))‘h)

m (QQ(AI, AQ)) if A;. € (Cl;
)M (D5(A1,A2)  if Ay € C

ni

_m (. _  _ma
ni+ns 2[[m(D2(AT,A%))[2

6 Proof of Proposition 1

Proposition 1. (Isometry Invariant) Given a data matrix A of dimension n X p such that each row
of A is chosen from some cluster C*,i = 1,2,--- ¢, and f(-) an isometry of RP, we have

X =arg min ||A—X|% +a X;. — X
£, 14— X1+ 0 31X - X,

= f(X) = arg_min (/&) =X} +a 1Xi =X,
1<j

This further implies that if SON successfully determines the cluster membership of A, then it also
successfully determines the cluster membership of f(A).

Proof. Given A, let X be the optimal solution of problem (1), i.e.

X —arg_min A~ X[} +a ) X - X
1<J

Then, X reveals the cluster-membership of A. For any X € R"*?, we have

IF(A) =X +a ) 1K =Xl

i<j
=[IA = T NE +a ) I1F 7 Xe) = F7HX ) e
1<j
> A = X|[F+a) X =X
i<j
=lIF(A) = FONE +a ) 1F(Xi) = f(X )2
i<j

So, we have

f(X) = arg Lin [lf(A) - X[ +a ) 1% =X o
i<j

Since f preserves the distance between vectors, A and f(A) have the same cluster-membership in
the sense that if A;. and A ;. are from the same cluster C*, then f(A;.) and f(A;.) are from the
same cluster f(C¥). Because X is the cluster-membership matrix of A, f(X) is also the cluster-
membership matrix of A, we conclude that f(X) is the cluster-membership matrix of f(A), which
means we can determine the cluster-membership of f(A) correctly. O

7 Proof of Theorem 2

Recall that SON in the feature space can be formulated as

n

X = arg Xgﬁéﬁq (P(A:), d(A:)) — 2(d(As), X;) +(Xi, X))
i=1 @1

oK X)) - 2(X0 X)) + (X X)),

i<j
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Theorem 2. (Representation Theorem) Each row of the optimal solution of Problem (21) can be
written as a linear combination of rows of A, i.e.,

Xi. = Z GUQS(AJ)
J=1

Proof. We define the inner product on R? as (u, v) = u?'v for all u, v € R?. Then, R? is a Hilbert
space. Since Row(A) is a closed linear subspace of R”, according to the Orthogonal Decomposition
theorem, we have

R? = Row(A) @ Row(A)7.

So, for each row X;. of X € R™*P, we can decompose X;. into direct sum of two vectors such that
one is in Row(A) , the other one is in Row(A)T i.e. X;. = u 4+ v such that u € Row(A) and
v € Row(A)T. Then, we can decompose any X € R™*? into sum of two parts U and V such that
X =U+Vand U, € Row(A), V;. € Row(A)T fori=1,2,--- ,n.

We now show that the optimal solution X € Row(A) by contraction. Suppose X ¢ Row(A),
then we decomose X into sum of two parts U and V such that X = U + V, U;. € Row(A),
V,;. € Row(A)T fori=1,2,--- ,n and exists j such that 1 < j <n, V;. #0.

Then, we have

(]
—~
=
g
=
s

I

[\

S
=
i
>

+az\/<ﬂi. +V,., U, +Vi.> — 2<fjl + Ai.,fjj- +Vj-> + < Aj~ +Vj~7fjj- +vj'>

1<j

+az¢<ﬁi.,ﬂi.> ~2(0,.0,) + (0,.0,)
i<j
which contradicts the optimality of X. Then, the lemma follows. O

References

[1] Dimitri P Bertsekas. Convex Optimization Theory. Universities Press. 7

11



