
Conditional Swap Regret and
Conditional Correlated Equilibrium

Mehryar Mohri
Courant Institute and Google

251 Mercer Street
New York, NY 10012
mohri@cims.nyu.edu

Scott Yang
Courant Institute
251 Mercer Street

New York, NY 10012
yangs@cims.nyu.edu

Abstract

We introduce a natural extension of the notion of swap regret, conditional swap
regret, that allows for action modifications conditioned on the player’s action his-
tory. We prove a series of new results for conditional swap regret minimization.
We present algorithms for minimizing conditional swap regret with bounded con-
ditioning history. We further extend these results to the case where conditional
swaps are considered only for a subset of actions. We also define a new notion
of equilibrium, conditional correlated equilibrium, that is tightly connected to the
notion of conditional swap regret: when all players follow conditional swap regret
minimization strategies, then the empirical distribution approaches this equilib-
rium. Finally, we extend our results to the multi-armed bandit scenario.

1 Introduction

On-line learning has received much attention in recent years. In contrast to the standard batch
framework, the online learning scenario requires no distributional assumption. It can be described
in terms of sequential prediction with expert advice [13] or formulated as a repeated two-player
game between a player (the algorithm) and an opponent with an unknown strategy [7]: at each time
step, the algorithm probabilistically selects an action, the opponent chooses the losses assigned to
each action, and the algorithm incurs the loss corresponding to the action it selected.

The standard measure of the quality of an online algorithm is its regret, which is the difference
between the cumulative loss it incurs after some number of rounds and that of an alternative policy.
The cumulative loss can be compared to that of the single best action in retrospect [13] (external
regret), to the loss incurred by changing every occurrence of a specific action to another [9] (internal
regret), or, more generally, to the loss of action sequences obtained by mapping each action to some
other action [4] (swap regret). Swap regret, in particular, accounts for situations where the algorithm
could have reduced its loss by swapping every instance of one action with another (e.g. every time
the player bought Microsoft, he should have bought IBM).

There are many algorithms for minimizing external regret [7], such as, for example, the randomized
weighted-majority algorithm of [13]. It was also shown in [4] and [15] that there exist algorithms for
minimizing internal and swap regret. These regret minimization techniques have been shown to be
useful for approximating game-theoretic equilibria: external regret algorithms for Nash equilibria
and swap regret algorithms for correlated equilibria [14].

By definition, swap regret compares a player’s action sequence against all possible modifications at
each round, independently of the previous time steps. In this paper, we introduce a natural extension
of swap regret, conditional swap regret, that allows for action modifications conditioned on the
player’s action history. Our definition depends on the number of past time steps we condition upon.

1

As a motivating example, let us limit this history to just the previous one time step, and suppose we
design an online algorithm for the purpose of investing, where one of our actions is to buy bonds
and another to buy stocks. Since bond and stock prices are known to be negatively correlated, we
should always be wary of buying one immediately after the other – unless our objective was to pay
for transaction costs without actually modifying our portfolio! However, this does not mean that we
should avoid purchasing one or both of the two assets completely, which would be the only available
alternative in the swap regret scenario. The conditional swap class we introduce provides precisely
a way to account for such correlations between actions. We start by introducing the learning set-up
and the key notions relevant to our analysis (Section 2).

2 Learning set-up and model

We consider the standard online learning set-up with a set of actions N = {1, . . . , N}. At each
round t ∈ {1, . . . , T}, T ≥ 1, the player selects an action xt ∈ N according to a distribution pt

over N , in response to which the adversary chooses a function f t : N t → [0, 1] and causes the
player to incur a loss f t(xt, xt−1, . . . , x1). The objective of the player is to choose a sequence of
actions (x1, . . . , xT) that minimizes his cumulative loss

∑T
t=1 f t(xt, xt−1, . . . , x1).

A standard metric used to measure the performance of an online algorithm A over T rounds is its
(expected) external regret, which measures the player’s expected performance against the best fixed
action in hindsight:

Reg
Ext

(A, T) =
T∑

t=1

E
(xt,..,x1)∼
(pt,...,p1)

[f t(xt, .., x1)]−min
j∈N

T∑
t=1

f t(j, j, ..., j).

There are several common modifications to the above online learning scenario: (1) we may com-
pare regret against stronger competitor classes: RegC(A, T) =

∑T
t=1 Ept,...,p1 f t(xt, .., x1) −

minϕ∈C
∑T

t=1 Ept,...,p1 [f t(ϕ(xt), ϕ(xt−1), ..., ϕ(x1))] for some function class C ⊆ NN ; (2)
the player may have access to only partial information about the loss, i.e. only knowledge
of f t(xt, .., x1) as opposed to f t(a, xt−1, . . . , x1)∀a ∈ N (also known as the bandit sce-
nario); (3) the loss function may have bounded memory: f t(xt, ..., xt−k, xt−k−1, ..., x1) =
f t(xt, ..., xt−k, yt−k−1, ..., y1), ∀xj , yj ∈ N .

The scenario where C = NN in (1) is called the swap regret case, and the case where k = 0 in (3) is
referred to as the oblivious adversary. (Sublinear) regret minimization is possible for loss functions
against any competitor class of the form described in (1), with only partial information, and with
at least some level of bounded memory. See [4] and [1] for a reference on (1), [2] and [5] for (2),
and [1] for (3). [6] also provides a detailed summary of the best known regret bounds in all of these
scenarios and more.

The introduction of adversaries with bounded memory naturally leads to an interesting question:
what if we also try to increase the power of the competitor class in this way?

While swap regret is a natural competitor class and has many useful game theoretic consequences
(see [14]), one important missing ingredient is that the competitor class of functions does not have
memory. In fact, in most if not all online learning scenarios and regret minimization algorithms
considered so far, the point of comparison has been against modification of the player’s actions
at each point of time independently of the previous actions. But, as we discussed above in the
financial markets example, there exist cases where a player should be measured against alternatives
that depend on the past and the player should take into account the correlations between actions.

Specifically, we consider competitor functions of the form Φt : N t → N t. Let Call = {Φt : N t →
N t}∞t=1 denote the class of all such functions. This leads us to the expression:

∑T
t=1 Ep1,...,pt [f t]−

minΦt∈Call

∑T
t=1 Ep1,...,pt [f t ◦ Φt]. Call is clearly a substantially richer class of competitor func-

tions than traditional swap regret. In fact, it is the most comprehensive class, since we can always
reach

∑T
t=1 Ep1,...,pt [f t] −

∑T
t=1 min(x1,..,xt) f t(x1, .., xt) by choosing Φt to map all points to

argmin(xt,..,x1) f t(xt, ..., x1). Not surprisingly, however, it is not possible to obtain a sublinear
regret bound against this general class.

2

0

1:T(1)
2:T(2)
3:T(3) 0 11:1

2

2:2

3

3:3

1:T(1,1)

2:T(2,1)

3:T(3,1)
end

1:T(1,2)

2:T(2,2)
3:T(3,2)

1:T(1,3)

2:T(2,3)

3:T(3,3)

(a) (b)

Figure 1: (a) unigram conditional swap class interpreted as a finite-state transducer. This is the same
as the usual swap class and has only the trivial state; (b) bigram conditional swap class interpreted as
a finite-state transducer. The action at time t−1 defines the current state and influences the potential
swap at time t.

Theorem 1. No algorithm can achieve sublinear regret against the class Call, regardless of the loss
function’s memory.

This result is well-known in the on-line learning community, but, for completeness, we include a
proof in Appendix 9. Theorem 1 suggests examining more reasonable subclasses of Call. To simplify
the notation and proofs that follow in the paper, we will henceforth restrict ourselves to the scenario
of an oblivious adversary, as in the original study of swap regret [4]. However, an application of the
batching technique of [1] should produce analogous results in the non-oblivious case for all of the
theorems that we provide.

Now consider the collection of competitor functions Ck = {ϕ : N k → N}. Then, a player
who has played actions {as}t−1

s=1 in the past should have his performance compared against
ϕ(at, at−1, at−2, . . . , at−(k−1)) at time t, where ϕ ∈ Ck. We call this class Ck of functions the
k-gram conditional swap regret class, which also leads us to the regret definition:

Reg
Ck

(A, T) =
T∑

t=1

E
xt∼pt

[f t(xt)]− min
ϕ∈Ck

T∑
t=1

E
xt∼pt

[f t(ϕ(xt, at−1, at−2, . . . , at−(k−1)))].

Note that this is a direct extension of swap regret to the scenario where we allow for swaps condi-
tioned on the history of the previous (k − 1) actions. For k = 1, this precisely coincides with swap
regret.

One important remark about the k-gram conditional swap regret is that it is a random quantity that
depends on the particular sequence of actions played. A natural deterministic alternative would be
of the form:

T∑
t=1

E
xt∼pt

[f t(xt)]− min
ϕ∈Ck

T∑
t=1

E
(xt,...,x1)∼(pt,...,p1)

[f t(ϕ(xt, xt−1, xt−2, . . . , xt−(k−1)))].

However, by taking the expectation of RegCk
(A, T) with respect to aT−1, aT2 , . . . , a1 and applying

Jensen’s inequality, we obtain

Reg
Ck

(A, T)≥
T∑

t=1

E
xt∼pt

[f t(xt)]−min
ϕ∈Ck

T∑
t=1

E
(xt,...,x1)∼(pt,...,p1)

[f t(ϕ(xt, xt−1, xt−2, . . . , xt−(k−1)))],

and so no generality is lost by considering the randomized sequence of actions in our regret term.

Another interpretation of the bigram conditional swap class is in the context of finite-state transduc-
ers. Taking a player’s sequence of actions (x1, ..., xT), we may view each competitor function in
the conditional swap class as an application of a finite-state transducer with N states, as illustrated
by Figure 1. Each state encodes the history of actions (xt−1, . . . , xt−(k−1)) and admits N outgoing
transitions representing the next action along with its possible modification. In this framework, the
original swap regret class is simply a transducer with a single state.

3

3 Full Information Scenario

Here, we prove that it is in fact possible to minimize k-gram conditional swap regret against an
oblivious adversary, starting with the easier to interpret bigram scenario. Our proof constructs a
meta-algorithm using external regret algorithms as subroutines, as in [4]. The key is to attribute
a fraction of the loss to each external regret algorithm, so that these losses sum up to our actual
realized loss and also press the subroutines to minimize regret against each of the conditional swaps.

Theorem 2. There exists an online algorithm A with bigram swap regret bounded as follows:
RegC2

(A, T) ≤ O
(
N
√

T log N
)
.

Proof. Since the distribution pt at round t is finite-dimensional, we can represent it as a vector
pt = (pt

1, ..., p
t
N). Similarly, since oblivious adversaries take only N arguments, we can write f t

as the loss vector f t = (f t
1, ..., f

t
N). Let {at}T

t=1 be a sequence of random variables denoting the
player’s actions at each time t, and let δt

at
denote the (random) Dirac delta distribution concentrated

at at and applied to variable xt. Then, we can rewrite the bigram swap regret as follows:

Reg
C2

(A, T) =
T∑

t=1

E
pt

[f t(xt)]− min
ϕ∈C2

T∑
t=1

E
pt,δt−1

at−1

[f t(ϕ(xt, xt−1)]

=
T∑

t=1

N∑
i=1

pt
if

t
i − min

ϕ∈C2

T∑
t=1

N∑
i,j=1

pt
iδ

t−1
{at−1=j}f

t
ϕ(i,j)

Our algorithm for achieving sublinear regret is defined as follows:

1. At t = 1, initialize N2 external regret minimizing algorithms Ai,k, (i, k) ∈ N 2.
We can view these in the form of N matrices in RN×N , {Qt,k}N

k=1, where for each
k ∈ {1, . . . , N}, Qt,k

i is a row vector consisting of the distribution weights generated
by algorithm Ai,k at time t based on losses received at times 1, . . . , t− 1.

2. At each time t, let at−1 denote the random action played at time t− 1 and let δt−1
at−1

denote
the (random) Dirac delta distribution for this action. Define the N × N matrix Qt =∑N

k=1 δt−1
{at−1=k}Q

t,k. Qt is a Markov chain (i.e., its rows sum up to one), so it admits a
stationary distribution pt which we we will use as our distribution for time t.

3. When we draw from pt, we play a random action at and receive loss f t. Attribute the
portion of loss pt

iδ
t−1
{at−1=k}f

t to algorithm Ai,k, and generate distributions Qt,k
i . Notice

that
∑N

i,k=1 pt
iδ

t−1
{at−1=k}f

t = f t, so that the actual realized loss is allocated completely.

Recall that an optimal external regret minimizing algorithm A (e.g. randomized weighted majority)

admits a regret bound of the form Ri,k = Ri,k(Li,k
min, T, N) = O

(√
Li,k

min log(N)
)

, where Li,k
min =

minN
j=1

∑T
t=1 f t,i,k

j for the sequence of loss vectors {f t,i,k}T
t=1 incurred by the algorithm. Since

pt = ptQt is a stationary distribution, we can write:

T∑
t=1

pt · f t =
T∑

t=1

N∑
j=1

pt
jf

t
j =

T∑
t=1

N∑
j=1

N∑
i=1

pt
iQ

t
i,jf

t
j =

T∑
t=1

N∑
j=1

N∑
i=1

pt
i

N∑
k=1

δt−1
{it−1=k}Q

t,k
i,j f t

j .

4

Rearranging leads to
T∑

t=1

pt · f t =
N∑

i,k=1

T∑
t=1

N∑
j=1

pt
iδ

t−1
{it−1=k}Q

t,k
i,j f t

j

≤
N∑

i,k=1

((
T∑

t=1

pt
iδ

t−1
{it−1=k}f

t
ϕ(i,k)

)
+ Ri,k(Lmin, T, N)

)
(for arbitrary ϕ : N 2 → N)

=
N∑

i,k=1

(
T∑

t=1

pt
iδ

t−1
{it−1=k}f

t
ϕ(i,k)

)
+

N∑
i,k=1

Ri,k(Lmin, T, N).

Since ϕ is arbitrary, we obtain

Reg
C2

(A, T) =
T∑

t=1

pt · f t − min
ϕ∈C2

T∑
t=1

N∑
i,k=1

pt
iδ

t−1
{it−1=k}f

t
ϕ(i,k) ≤

N∑
i,k=1

Ri,k(Lmin, T, N).

Using the fact that Ri,k = O
(√

Li,k
min log(N)

)
and that we scaled the losses to algorithm Ai,k by

pt
iδ

t−1
{it−1=k}, the following inequality holds:

∑N
k=1

∑N
j=1 Lk,j

min ≤ T . By Jensen’s inequality, this
implies

1
N2

N∑
k=1

N∑
j=1

√
Lk,j

min ≤

√√√√ 1
N2

N∑
k=1

N∑
j=1

Lk,j
min ≤

√
T

N
,

or, equivalently,
∑N

k=1

∑N
j=1

√
Lk,j

min ≤ N
√

T . Combining this with our regret bound yields

Reg
C2

(A, T) ≤
N∑

i,k=1

Ri,k(Lmin, T, N) =
N∑

i,k=1

O
(√

Li,k
min log N

)
≤ O

(
N
√

T log N
)

,

which concludes the proof.

Remark 1. The computational complexity of a standard external regret minimization algorithm such
as randomized weighted majority per round is in O(N) (update the distribution on each of the N
actions multiplicatively and then renormalize), which implies that updating the N2 subroutines will
cost O(N3) per round. Allocating losses to these subroutines and combining the distributions that
they return will cost an additional O(N3) time. Finding the stationary distribution of a stochastic
matrix can be done via matrix inversion in O(N3) time. Thus, the total computational complexity
of achieving O(N

√
T log(N)) regret is only O(N3T). We remark that in practice, one often uses

iterative methods to compute dominant eigenvalues (see [16] for a standard reference and [11] for
recent improvements). [10] has also studied techniques to avoid computing the exact stationary
distribution at every iteration step for similar types of problems.

The meta-algorithm above can be interpreted in three equivalent ways: (1) the player draws an
action xt from distribution pt at time t; (2) the player uses distribution pt to choose among the
N subsets of algorithms Qt

1, ..., Q
t
N , picking one subset Qt

j ; next, after drawing j from pt, the
player uses δt−1

{at−1=k} to randomly choose among the algorithms Qt,1
j , ..., Qt,N

j , picking algorithm

Q
t,at−1
j ; after locating this algorithm, the player uses the distribution from algorithm Q

t,at−1
j to draw

an action; (3) the player chooses algorithm Qt,k
j with probability pt

jδ
t−1
{at−1=k} and draws an action

from its distribution.

The following more general bound can be given for an arbitrary k-gram swap scenario.
Theorem 3. There exists an online algorithm A with k-gram swap regret bounded as follows:
RegCk

(A, T) ≤ O
(√

NkT log N
)
.

The algorithm used to derive this result is a straightforward extension of the algorithm provided in
the bigram scenario, and the proof is given in Appendix 11.
Remark 2. The computational complexity of achieving the above regret bound is O(Nk+1T).

5

0

b1:1

2:2

3
3:3

3:T(3,b)
2:T(2,b)
1:T(1,b)

end

3:T(3,3)

1:T(1,3)

2:T(2,3)

Figure 2: bigram conditional swap class restricted to a finite number of active states. When the
action at time t− 1 is 1 or 2, the transducer is in the same state, and the swap function is the same.

4 State-Dependent Bounds

In some situations, it may not be relevant to consider conditional swaps for every possible action,
either because of the specific problem at hand or simply for the sake of computational efficiency.
Thus, for any S ⊆ N 2, we define the following competitor class of functions:

C2,S = {ϕ : N 2 → N|ϕ(i, k) = ϕ̃(i) for (i, k) ∈ S where ϕ̃ : N → N}.

See Figure 2 for a transducer interpretation of this scenario.

We will now show that the algorithm above can be easily modified to derive a tighter bound that
is dependent on the number of states in our competitor class. We will focus on the bigram case,
although a similar result can be shown for the general k-gram conditional swap regret.
Theorem 4. There exists an online algorithm A such that RegC2,S

(A, T) ≤
O(
√

T (|Sc|+ N) log(N)).

The proof of this result is given in Appendix 10. Note that when S = ∅, we are in the scenario where
all the previous states matter, and our bound coincides with that of the previous section.
Remark 3. The computational complexity of achieving the above regret bound is O((N(|π1(S)|+
|Sc|) + N3)T), where π1 is projection onto the first component. This follows from the fact that
we allocate the same loss to all {Ai,k}k:(i,k)∈S ∀i ∈ π1(S), so we effectively only have to manage
|π1(S)|+ |Sc| subroutines.

5 Conditional Correlated Equilibrium and ε-Dominated Actions

It is well-known that regret minimization in on-line learning is related to game-theoretic equilibria
[14]. Specifically, when both players in a two-player zero-sum game follow external regret mini-
mizing strategies, then the product of their individual empirical distributions converges to a Nash
equilibrium. Moreover, if all players in a general K-player game follow swap regret minimizing
strategies, then their empirical joint distribution converges to a correlated equilibrium [7].

We will show in this section that when all players follow conditional swap regret minimization
strategies, then the empirical joint distribution will converge to a new stricter type of correlated
equilibrium.

Definition 1. Let Nk = {1, ..., Nk}, for k ∈ {1, ...,K} and G = (S = ×K
k=1Nk, {l(k) : S →

[0, 1]}K
k=1) denote a K-player game. Let s = (s1, ..., sK) ∈ S denote the strategies of all players in

one instance of the game, and let s(−k) denote the (K−1)-vector of strategies played by all players
aside from player k. A joint distribution P on two rounds of this game is a conditional correlated
equilibrium if for any player k, actions j, j′ ∈ Nk, and map ϕk : N 2

k → Nk, we have∑
(s,r)∈S2 : sk=j,rk=j′

P (s, r)
(
l(k)(sk, s(−k))− l(k)(ϕk(sk, rk), s(−k))

)
≤ 0.

The standard interpretation of correlated equilibrium, which was first introduced by Aumann, is a
scenario where an external authority assigns mixed strategies to each player in such a way that no
player has an incentive to deviate from the recommendation, provided that no other player deviates

6

from his [3]. In the context of repeated games, a conditional correlated equilibrium is a situation
where an external authority assigns mixed strategies to each player in such a way that no player
has an incentive to deviate from the recommendation in the second round, even after factoring in
information from the previous round of the game, provided that no other player deviates from his.

It is important to note that the concept of conditional correlated equilibrium presented here is differ-
ent from the notions of extensive form correlated equilibrium and repeated game correlated equilib-
rium that have been studied in the game theory and economics literature [8, 12].

Notice that when the values taken for ϕk are indepndent of its second argument, we retrieve the
familiar notion of correlated equilibrium.

Theorem 5. Suppose that all players in a K-player repeated game follow bigram conditional swap
regret minimizing strategies. Then, the joint empirical distribution of all players converges to a
conditional correlated equilibrium.

Proof. Let It ∈ S be a random vector denoting the actions played by all K players in the game
at round t. The empirical joint distribution of every two subsequent rounds of a K-player game
played repeatedly for T total rounds has the form P̂T = 1

T

∑T
t=1

∑
(s,r)∈S2 δ{It=s,It−1=r}, where

I = (I1, .., IK) and Ik ∼ p(k) denotes the action played by player k using the mixed strategy p(k).

Let qt,(k) denote δt−1
{it−1=k} ⊗ pt−1,(k−1). Then, the conditional swap regret of each player k,

reg(k, T), can be bounded as follows since he is playing with a conditional swap regret minimizing
strategy:

reg(k, T) =
1
T

T∑
t=1

E
st

k∼pt,(k)

[
l(k)(sk, s(−k))

]
−min

ϕ

1
T

T∑
t=1

E
(st

k,st−1
k)

∼(pt,(k),qt,(k))

[
l(k)(ϕ(st

k, st−1
k), st

(−k))
]

≤ O
(

N

√
log(N)

T

)
.

Define the instantaneous conditional swap regret vector as

r̂
(k)
t,j0,j1

= δ{It
(k)=j0,It−1

(k) =j1}

(
l(k)
(
It
)
− l(k)

(
ϕk(j0, j1), It

(−k)

))
,

and the expected instantaneous conditional swap regret vector as

r
(k)
t,j0,j1

= P(st
k = j0)δ{It−1

(k) =j1}

(
l(k)
(
j0, I

t
(−k)

)
− l(k)

(
ϕk(j0, j1), It

(−k)

))
.

Consider the filtration Gt = {information of opponents at time t and of the player’s actions up to
time t − 1}. Then, we see that E

[
r̂
(k)
t,j0,j1

|Gt

]
= r

(k)
t,j0,j1

. Thus, {Rt = r
(k)
t,j0,j1

− r̂
(k)
t,j0,j1

}∞t=1 is a
sequence of bounded martingale differences, and by the Hoeffding-Azuma inequality, we can write
for any α > 0, that P[|

∑T
t=1 Rt| > α] ≤ 2 exp(−Cα2/T) for some constant C > 0.

Now define the sets AT :=
{∣∣∣ 1

T

∑T
t=1 Rt

∣∣∣ >√C
T log

(
2

δT

)}
. By our concentration bound, we

have P (AT) ≤ δT . Setting δT = exp(−
√

T) and applying the Borel-Cantelli lemma, we obtain
that lim supT→∞ | 1T

∑T
t=1 Rt| = 0 a.s..

Finally, since each player followed a conditional swap regret minimizing strategy, we can write
lim supT→∞

1
T

∑T
t=1 r̂

(k)
t,j0,j1

≤ 0. Now, if the empirical distribution did not converge to a con-
ditional correlated equilibrium, then by Prokhorov’s theorem, there exists a subsequence {P̂Tj}j

satisfying the conditional correlated equilibrium inequality but converging to some limit P ∗ that is
not a conditional correlated equilibrium. This cannot be true because the inequality is closed under
weak limits.

Convergence to equilibria over the course of repeated game-playing also naturally implies the
scarcity of “very suboptimal” strategies.

7

Definition 2. An action pair (sk, rk) ∈ N 2
k played by player k is conditionally ε-dominated if

there exists a map ϕk : N 2
k → Nk such that

l(k)(sk, s(−k))− l(k)(ϕk(sk, rk), s(−k)) ≥ ε.

Theorem 6. Suppose player k follows a conditional swap regret minimizing strategy that produces
a regret R over T instances of the repeated game. Then, on average, an action pair of player k is
conditionally ε-dominated at most R

εT fraction of the time.

The proof of this result is provided in Appendix 12.

6 Bandit Scenario

As discussed earlier, the bandit scenario differs from the full-information scenario in that the player
only receives information about the loss of his action f t(xt) at each time and not the entire loss
function f t. One standard external regret minimizing algorithm is the Exp3 algorithm introduced
by [2], and it is the base learner off of which we will build a conditional swap regret minimizing
algorithm.

To derive a sublinear conditional swap regret bound, we require an external regret bound on Exp3:
T∑

t=1

E
pt

[f t(xt)]− min
a∈N

T∑
t=1

f t(a) ≤ 2
√

LminN log(N),

which can be found in Theorem 3.1 of [5]. Using this estimate, we can derive the following result.

Theorem 7. There exists an algorithm A such that RegC2,bandit(A, T) ≤ O
(√

N3 log(N)T
)
.

The proof is given in Appendix 13 and is very similar to the proof for the full information setting.

It can also easily be extended in the analogous way to provide a regret bound for the k-gram regret
in the bandit scenario.
Theorem 8. There exists an algorithm A such that RegCk,bandit(A, T) ≤ O

(√
Nk+1 log(N)T

)
.

See Appendix 14 for an outline of the algorithm.

7 Conclusion

We analyzed the extent to which on-line learning scenarios are learnable. In contrast to some of
the more recent work that has focused on increasing the power of the adversary (see e.g. [1]), we
increased the power of the competitor class instead by allowing history-dependent action swaps and
thereby extending the notion of swap regret. We proved that this stronger class of competitors can
still be beaten in the sense of sublinear regret as long as the memory of the competitor is bounded.
We also provided a state-dependent bound that gives a more favorable guarantee when only some
parts of the history are considered. In the bigram setting, we introduced the notion of conditional
correlated equilibrium in the context of repeated K-player games, and showed how it can be seen
as a generalization of the traditional correlated equilibrium. We proved that if all players follow
bigram conditional swap regret minimizing strategies, then the empirical joint distribution converges
to a conditional correlated equilibrium and that no player can play very suboptimal strategies too
often. Finally, we showed that sublinear conditional swap regret can also be achieved in the partial
information bandit setting.

8 Acknowledgements

We thank the reviewers for their comments, many of which were very insightful. We are particularly
grateful to the reviewer who found an issue in our discussion on conditional correlated equilibrium
and proposed a helpful resolution. This work was partly funded by the NSF award IIS-1117591. The
material is also based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE 1342536.

8

References
[1] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive

adversary: from regret to policy regret. In ICML, 2012.
[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic

multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002.
[3] Robert J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathe-

matical Economics, 1(1):67–96, March 1974.
[4] Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine Learn-

ing Research, 8:1307–1324, 2007.
[5] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic

multi-armed bandit problems. CoRR, abs/1204.5721, 2012.
[6] Nicolò Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and

other adaptive adversaries. In NIPS, pages 1160–1168, 2013.
[7] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge Uni-

versity Press, New York, NY, USA, 2006.
[8] Francoise Forges. An approach to communication equilibria. Econometrica, 54(6):pp. 1375–

1385, 1986.
[9] Dean P. Foster and Rakesh V. Vohra. Calibrated learning and correlated equilibrium. Games

and Economic Behavior, 21(12):40 – 55, 1997.
[10] Amy Greenwald, Zheng Li, and Warren Schudy. More efficient internal-regret-minimizing

algorithms. In COLT, pages 239–250. Omnipress, 2008.
[11] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288,
2011.

[12] Ehud Lehrer. Correlated equilibria in two-player repeated games with nonobservable actions.
Mathematics of Operations Research, 17(1):pp. 175–199, 1992.

[13] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf. Comput.,
108(2):212–261, 1994.

[14] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007.

[15] Gilles Stoltz and Gábor Lugosi. Learning correlated equilibria in games with compact sets of
strategies. Games and Economic Behavior, 59(1):187–208, 2007.

[16] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM: Society for Industrial
and Applied Mathematics, 1997.

9

Appendix

9 Proof of Theorem 1

Theorem 1. No algorithm can achieve sublinear regret against the class Call, regardless of the loss
function’s memory.

Proof. If sublinear regret is impossible in the oblivious case, then it is impossible for any level of
memory. Now, for any t, let j∗t ∈ argminj pt

j and define for the adversary the following sequence
of loss functions:

f t(xt) =
{

1 for xt 6= j∗t
0 for xt = j∗t .

Then, the following holds:
T∑

t=1

E
p1,...,pt

[f t]−
T∑

t=1

min
(x1,..,xt)

f t(x1, .., xt)

=
T∑

t=1

E
pt

[f t]−
T∑

t=1

min
xt

f t(xt)

=
T∑

t=1

E
pt

[f t] =
T∑

t=1

1−min
j

pj ≥
T∑

t=1

1− 1/N = T (1− 1/N) = Ω(T),

which concludes the proof.

10 Proof of Theorem 4

Theorem 4. There exists an online algorithm A such that RegC2,S
(A, T) ≤

O(
√

T (|Sc|+ N) log(N)).

Proof. The cumulative loss can be written as follows in terms of S:
T∑

t=1

pt · f t =
N∑

i,k=1

T∑
t=1

N∑
j=1

pt
iδ

t−1
{at−1=k}Q

t,k
i,j f t

j =
T∑

t=1

 ∑
(i,k)∈S

+
∑

(i,k)/∈S

 N∑
j=1

pt
iδ

t−1
{at−1=k}Q

t,k
i,j f t

j .

Our algorithm A is the same as the one in the bigram case with the one caveat that all subroutines
Ai,k must be derived from the same external regret minimizing algorithm. Then, as in the previous
section, we can derive the bound

T∑
t=1

∑
(i,k)/∈S

N∑
j=1

pt
iδ

t−1
{at−1=k}Q

t,k
i,j f t

j ≤
∑

(i,k)/∈S

(
T∑

t=1

pt
iδ

t−1
{at−1=k}f

t
ϕ(i,k) + Ri,k(Lmin, T, N)

)
.

For the action pairs (i, k) ∈ S, we can impose Qt,k
i,j = Qt,0

i,j for all k, by associating to all algorithms
Ai,k the same loss

∑
k : (i,k)∈S f t

jp
t
iδ

t−1
{at−1=k} and using the fact that all Ai,k are based off of the

same subroutine.

With this choice of loss allocation, we can write
T∑

t=1

∑
(i,k)∈S

N∑
j=1

pt
iδ

t−1
{at−1=k}Q

t,k
i,j f t

j

=
T∑

t=1

∑
i : ∃k,(i,k)∈S

N∑
j=1

(∑
k : (i,k)∈S

pt
iδ

t−1
{at−1=k}f

t
j

)
Qt,0

i,j

≤
∑

i : ∃k,(i,k)∈S

 T∑
t=1

(∑
k : (i,k)∈S

pt
iδ

t−1
{at−1=k}f

t
ϕ̃(i)

)
+ Ri(Lmin, T, N)

 .

10

Combining the two terms yields

T∑
t=1

pt · f t ≤
T∑

t=1

N∑
i,k=1

pt
iδ

t−1
{at−1=k}f

t
ϕ(i,k) +

∑
(i,k)/∈S

Ri,k(Lmin, T, N) +
∑

i : ∃k,(i,k)∈S

Ri(Lmin,T,N).

Next, using the fact that we allocated the original loss over the sub-algorithms, we can
apply the standard bounds on external regret algorithms to obtain RegC2,S ,Obliv(A, T) ≤
O(
√

T (|Sc|+ N) log(N)).

11 Proof of Theorem 3

Theorem 3. There exists an online algorithm A with k-gram swap regret bounded as follows:
RegCk

(A, T) ≤ O
(√

NkT log N
)
.

Proof. The result follows from a natural extension of the algorithm used in Theorem 2.

1. At t = 1, initialize Nk external regret minimizing algorithms in-
dexed as {Aj0,..,jk−1}N

j0,..,jk−1=1. This defines Nk−1 matrices in RN×N ,

{Qt,j1,...,jk−1}N
j1,...,jk−1=1, where, for each fixed j0, . . . , jk−1, Q

t,j1,...,jk−1
j0

is a row
vector corresponding to the distribution generated by algorithm Aj0,..,jk−1 at time t based
on the losses it received at times1, . . . , t− 1.

2. At each time t, let {as}t−1
s=1 denote the sequence of random actions played at times

1, 2, . . . , t − 1 and let {δs
as
}t−1

s=1 denote a sequence of (random) Dirac delta distributions
corresponding to these actions. Define the N ×N matrix

Qt =
N∑

j1,j2,...,jk−1=1

δt−1
{at−1=j1}δ

t−2
{at−2=j2} . . . δ

t−(k−1)
{at−(k−1)=jk−1}Q

t,j1,...,jk−1 .

Qt is a Markov chain (i.e. its rows sum up to one), so it admits a stationary distribution pt

which we we will use as our distribution for time t.

3. When we draw from pt, we play a random action at and receive loss f t. Attribute the
portion of loss

(
pt

j0
δt−1
{at−1=j1} . . . δ

t−(k−1)
{at−(k−1)=jk−1}f

t
)

loss to algorithm Aj0,..,jk−1 , and

generate distributions Q
t,j1,...,jk−1
j0

.

Using this distribution and proceeding otherwise as in the proof of Theorem 2 to bound the cumula-
tive loss leads to the desired inequality.

12 Proof of Theorem 6

Theorem 6. Suppose player k follows a conditional swap regret minimizing strategy that produces
a regret R over T instances of the repeated game. Then, on average, an action pair of player k is
conditionally ε-dominated at most R

εT fraction of the time.

Proof. Let

Dε = {(s, r) ∈ N 2
k | ∃ϕk : N 2

k → Nk s.t. l(k)(sk, s(−k))− l(k)(ϕk(sk, rk), s(−k)) ≥ ε}

11

denote the set of action pairs that are conditionally ε-dominated. Then P̂T (Dε) =
1
T

∑T
t=1

∑
(s,r)∈Dε

δ{st
k=s,st−1

k =r} is the total empirical mass of Dε, and we have

εT P̂T (Dε) = ε

T∑
t=1

∑
(s,r)∈Dε

δ{st
k=s,st−1

k =r}

≤
T∑

t=1

∑
(s,r)∈Dε

E[l(k)(st
k, st

(−k))− l(k)(ϕk(st
k, st−1

k), st
(−k))]

≤ max
ϕ

T∑
t=1

∑
(s,r)∈Dε

E[l(k)(st
k, st

(−k))− l(k)(ϕ(st
k, st−1

k), st
(−k))]

= reg(k, T),

and the conditional swap regret of player k, reg(k, T), satisfies reg(k, T) ≥ εT P̂T (Dε). Further-
more, since player k is following a conditional swap regret minimizing strategy, we must have
reg(k, T) ≤ R. This implies that R ≥ εT P̂T (Dε).

13 Proof of Theorem 7

Theorem 7. There exists an algorithm A such that RegC2,bandit(A, T) ≤ O
(√

N3 log(N)T
)
.

Proof. As in the full information scenario, we will construct our distribution pt as follows:

1. At t = 1, initialize N2 external regret minimizing algorithms Ai,k, (i, k) ∈ N 2. We
can view these in the form of N matrices in RN×N , {Qt,k}N

k=1, where for each k ∈
{1, . . . , N}, Qt,k

i is a row vector consisting of the distribution generated by algorithm Ai,k

at time t based on losses received at times 1, . . . , t− 1.

2. At each time t, let at−1 denote the random action played at time t− 1 and let δt−1
at−1

denote
the (random) Dirac delta distribution for this action. Define the N × N matrix Qt =∑N

k=1 δt−1
{at−1=k}Q

t,k. Qt is a Markov chain (i.e., its rows sum up to one), so it admits a
stationary distribution pt which we we will use as our distribution for time t.

3. When we draw from pt, we play a random action at and receive loss f t
at

. Attribute the
portion of loss pt

iδ
t−1
{at−1=k}f

t
at

loss to algorithm Ai,k, and generate distributions Qt,k
i from

the algorithms.

This algorithm allows us to compute

T∑
t=1

E
xt∼pt

[ltxt
] =

T∑
t=1

N∑
i=1

pt
il

t
i =

T∑
t=1

N∑
i,k,l=1

pt
kδt−1
{at−1=l}Q

t,l
k,il

t
i

=
N∑

k,l=1

T∑
t=1

N∑
i=1

(
pt

kδt−1
{at−1=l}l

t
i

)
Qt,l

k,i =
N∑

k,l=1

T∑
t=1

E
ak,l

t ∼Qt,l
k

[
pt

kδt−1
{at−1=l}l

t
ak,l

t

]

≤
N∑

k,l=1

T∑
t=1

[(
T∑

t=1

pt
kδt−1
{at−1=l}l

t
ϕ(k,l)

)
+ 2
√

Lk,l
minN log(N)

]

=
T∑

t=1

E
(jt,jt−1)∼(pt,δt−1

it−1
)

[
ltϕ(jt,jt−1)

]
+ 2N2

√
Lk,l

minN log(N),

12

where the inequality comes from estimate (3.3) provided by Theorem 3.1 in [5]. By applying the
same convexity argument as in Theorem 2, we can refine the bound to get

T∑
t=1

E
pt

[ltit
]−

T∑
t=1

E
(jt,jt−1)∼(pt,δt−1

it−1
)
[ltϕ(jt,jt−1)

] ≤ 2
√

N2LminN log(N)

≤ 2
√

N3T log(N)

as desired.

14 Proof of Theorem 8

Theorem 8. There exists an algorithm A such that RegC2,bandit(A, T) ≤ O
(√

Nk+1 log(N)T
)
.

Proof. As in the full information case, the result follows from a natural extension of the algorithm
used in Theorem 7 and is analogous to the algorithm used in THeorem 3.

1. At t = 1, initialize Nk external regret minimizing algorithms in-
dexed as {Aj0,..,jk−1}N

j0,..,jk−1=1. This defines Nk−1 matrices in RN×N ,

{Qt,j1,...,jk−1}N
j1,...,jk−1=1, where for each fixed j0, . . . , jk−1, Q

t,j1,...,jk−1
j0

is a row
vector corresponding to the distribution generated by algorithm Aj0,..,jk−1 at time t based
on the losses it received at times1, . . . , t− 1.

2. At each time t, let {as}t−1
s=1 denote the sequence of random actions played at times

1, 2, . . . , t − 1 and let {δs
as
}t−1

s=1 denote a sequence of (random) Dirac delta distributions
corresponding to these actions. Define the N ×N matrix

Qt =
N∑

j1,j2,...,jk−1=1

δt−1
{at−1=j1}δ

t−2
{at−2=j2} . . . δ

t−(k−1)
{at−(k−1)=jk−1}Q

t,j1,...,jk−1 .

Qt is a Markov chain (i.e. its rows sum up to one), so it admits a stationary distribution pt

which we we will use as our distribution for time t.

3. When we draw from pt, we play a random action at and receive loss f t
at

. Attribute the

portion of loss
(
pt

j0
δt−1
{at−1=j1} . . . δ

t−(k−1)
{at−(k−1)=jk−1}f

t
at

)
loss to algorithm Aj0,..,jk−1 , and

generate distributions Q
t,j1,...,jk−1
j0

.

Using this distribution and proceeding otherwise as in the proof of Theorem 7 to bound the cumula-
tive loss leads to the desired inequality.

13

	Introduction
	Learning set-up and model
	Full Information Scenario
	State-Dependent Bounds
	Conditional Correlated Equilibrium and -Dominated Actions
	Bandit Scenario
	Conclusion
	Acknowledgements
	Proof of Theorem 1
	Proof of Theorem 4
	Proof of Theorem 3
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8

