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1 Introduction

In this tutorial we will explain the inference procedures developed for the sparse Gaussian process (GP)
regression and Gaussian process latent variable model (GPLVM). Due to page limit the derivation given
in Titsias (2009) and Titsias & Lawrence (2010) is brief, hence getting a full picture of it requires
collecting results from several different sources and a substantial amount of algebra to fill-in the gaps.
Our main goal is thus to collect all the results and full derivations into one place to help speed up
understanding of this work. In doing so we present a re-parametrisation of the inference that allows
it to be carried out in a distributed environment and be scale to huge datasets not commonly handled
in the GP community. A secondary goal for this document is, therefore, to accompany our paper and
open-source implementation of the parallel inference scheme for the models. We hope that this document
will bridge the gap between the equations as implemented in code and those published in the original
papers, in order to make it easier to extend existing work. We will assume prior knowledge of Gaussian
processes and variational inference, but we also include references for further reading where appropriate.

The paper is organised as follows. In §2 we give a brief review of the sparse GP regression model
and the GPLVM. We present the entire derivation of the lower bound of the log marginal likelihood
in §3 and §4. In §5 we give some experimental results that extend on the results in the accompanying
paper. The derivation of the partial derivatives used in the optimisation is presented in appendix §B
with explanations of the techniques used in deriving these. Our implementation of the parallel inference
scheme is documented and contains references to the equations in this document for easy adaptation.
Since our goal was to create a parallel inference scheme, we do follow a slightly different derivation
than that presented in Titsias & Lawrence (2010). We present a re-parametrisation of the models that
conditionally decouples the data which allows for the parallel inference. However, the resulting bound is
identical to the bound presented in Titsias & Lawrence (2010).

In the appendices we present the derivations of the partial derivatives with respect to the RBF
automatic relevance determination (ARD) kernel, and describe the optimisation of the kernel hyper-
parameters, locations of the inducing points, and the latent inputs (also referred to as embeddings) –
description of which is often overlooked in the literature (this occupies the majority of the paper and
intended to be of great help to anyone extending the code for their own use).

2 The Gaussian Process Latent Variable Model and Sparse GP
Regression – a Quick Review

Here we will quickly review Sparse Gaussian Process Regression and the Gaussian Process Latent Variable
Model (GPLVM). We will introduce the structure of the models, the overall procedures required for
inference, and the approximations developed to make inference efficient in these models.
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2.1 Sparse Gaussian Process Regression

2.1.1 Gaussian Process Regression

In regression we wish to learn about some function g(x), given a training dataset consisting of n inputs
{X1, . . . , Xn} and their corresponding outputs {F1, . . . , Fn}. The function is assumed to be d dimensional
while the inputs are q dimensional. This data is often written in matrix form for convenience:

X ∈ Rn×q (2.1)

F ∈ Rn×d (2.2)

Fi = g(Xi) (2.3)

Here we will adopt the convention that captials denote matrices of data, while subscripted vectors of
the same letter will denote a row, i.e. a single data point. For example, Fi denotes the function value of
the i’th data point, while F denotes the matrix of all given function values. Additionally, functions over
matrices will return a matrix of the function evaluated on each row vector.

In regression we often place a Gaussian process prior over the space of functions. This implies a
joint Gaussian distribution over all the function values1, with a covariance matrix known as the “kernel”
matrix2. For multivariate functions, each dimension will be modelled by a separate GP.

gd ∼ GP(µ(x), k(x,x′)) (2.4)

Kij = k(xi,xj) (2.5)

p(F |X) = N (F ;µ(X),K) (2.6)

=
exp

(
− 1

2Tr
[
(F − µ(X))TK−1(F − µ(X))

])
(2π)nd/2|K|d/2

(2.7)

It may be the case that we can only obtain noisy evaluations of the function. In this case we introduce
a new variable Y containing the noisy observations, making the function values F latent. We assume
that the noise on each observation is i.i.d Gaussian, with noise precision β,

p(Y |F ) =
exp

(
−β2 Tr

[
(Y − F )T (Y − F )

])
(2πβ−1)nd/2

. (2.8)

We will assume reasonable familiarity with GPs and the expressions for their predictive distributions
and marginal likelihoods for the rest of the tutorial (Rasmussen & Williams, 2006).

2.1.2 Sparse GP Regression

Evaluating p(Y |X) directly3 is an expensive operation that involves the inversion of the n by n matrix
K – thus requiring O(n3) time complexity. In order to reduce the computational complexity, Snelson &
Ghahramani (2006) suggested the use of a collection of m “inducing points” – a set of points lying in the
same input space with corresponding values in the output space. These inducing points aim to summarise
the characteristics of the function using less points than the training data. Intuitively, the collection of
all training points may contain lots of redundancy, as many points may be given in uninteresting regions.

Consider the following example: the underlying function we are trying to model is a simple linear
function with a “kink” near the origin. Only few points are needed to adequately capture the behaviour
in flat regions, hence a large number of such points will not improve the posterior much, while still greatly
increasing the computational requirements. The use of many points near the kink and only a handful on
the flat regions seems more reasonable. By using a finite number of points to describe the function and
optimising over their values or locations we can get a more succinct description of the function.

We now define some additional notation that will be used throughout the paper. We let Z denote the
locations of the inducing points, an m by q matrix when we have m inducing points. We let u denote
the inferred values of the points, an m by d matrix. We further define Kmm to be the covariance matrix

1We follow the definition of matrix normal distribution (Arnold, 1981).
2For a full treatment of Gaussian Processes, see Rasmussen & Williams (2006).
3Or any other distribution of interest, such as the posterior p(F |Y,X) or any predictive distribution.
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over the m inducing points locations Z, and denote by k∗m the covariance matrix between point X∗ and
the points Z. Similarly we denote Knm the covariance matrix between the input points X of dimension
n and the inducing points of dimension m. Prediction now corresponds to taking the GP posterior using
only the inducing points instead of the whole training set, which requires only O(m3) time complexity.

p(F ∗|X∗, Y,X) ≈
∫
N
(
F ∗; k∗mK

−1
mmu, k∗∗ − k∗mK−1mmkm∗

)
p(u|Z, Y,X)du (2.9)

where k(·, ·) is a covariance function.
Learning the conditional Gaussian distribution over the values of the inducing points requires a

simplifying approximation to be made on p(F |X,u, Z), i.e. how the training data relates to the inducing
points. One example is assuming the deterministic relationship F = KnmK

−1
mmu, giving a computational

complexity of O(nm2)4. Quiñonero-Candela & Rasmussen (2005) view this procedure as changing the
prior to make inference more tractable, with Z as hyperparameters which can be tuned by maximising
the marginal likelihood. On the other hand, Titsias (2009) takes the view of this being a variational
approximation, with Z as variational parameters. This gives the marginal likelihood above an alternative
interpretation as a lower bound on the exact marginal likelihood. Again, the Z values can be optimised
over to tighten the lower bound. The detailed derivation will be discussed in §3.

2.2 Gaussian Process Latent Variable Models

We can also consider the unsupervised equivalent of GPs: the Gaussian Process Latent Variable Model
(GPLVM). This model can be used for non-linear dimensionality reduction (Lawrence, 2005). The model
setup is the same as the regression case, only that X is unobserved. We assume a prior over the latent
X and attempt to infer both the mapping from X to Y and the distribution over X at the same time.

Xi ∼ N (Xi; 0, Iq) (2.10)

F (Xi) ∼ GP(0, k(X,X)) (2.11)

Yi ∼ N (Yi;Fi, β
−1Id) (2.12)

When the GPLVM model was first introduced it was suggested to optimise over X and perform MAP
inference. More recently and relevant to this tutorial, a Variational Bayes approximation was developed
by Titsias & Lawrence (2010), using much of the same techniques as for Variational Sparse GPs. In fact,
sparse GPs can be seen as a special case of the GPLVM where the inputs are given zero variance.

The main derivation revolves around finding a variational lower bound to:

p(Y ) =

∫
p(Y |F )p(F |X)p(X)d(F,X) (2.13)

(2.14)

Which then leads to a Gaussian approximation to the posterior q(X) ≈ p(X|Y ). All this is explained in
detail in §4.

3 Sparse GPs and the Conditional Independence of the Data

In sparse GPs we use a GP over the inducing points (here denoted u) at some locations (here denoted Z)
in the input space to approximate the full GP posterior. This can be done by variational approximation
where we try to minimise the Kullback–Leibler divergence between the approximating distribution (in
our case, the GP over the inducing points – i.e. the locations and values of the inducing points as
well as the GP hyper-parameters) and the true distribution we are interested in. This is equivalent to
lower bounding the log-marginal likelihood of the true distribution and maximising the lower bound
with respect to the variational parameters. In this section we will find the lower bound for the sparse
GP using the tools used in (Titsias, 2009). However, with the aim of parallelising computation, we will
exploit the conditional independence of the data given the inducing points, and re-parametrise the bound
to factorise the marginal likelihood into independent terms.

4A thorough review of the different approaches is given in Quiñonero-Candela & Rasmussen (2005).
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3.1 Introducing the Variational Distribution

We start with the general expression for the log marginal likelihood of the model, after introducing the
inducing points, with the distributions factorised using the chain rule:

log p(Y |X) = log

∫
p(Y |F )p(F |X,u)p(u)d(u, F ) (3.1)

We then introduce a free-form variational distribution q(u) over the inducing points by multiplying the

value inside the integral with
q(u)

q(u)
. Using Jensen’s inequality (Bishop, 2006, p. 56), we move the log,

which is a concave function, into the integral, while keeping p(F |X,u)q(u) outside. After re-arranging
the terms to group together all terms containing F , we get the following lower bound:

log p(Y |X) ≥
∫
p(F |X,u)q(u) log

p(Y |F )p(u)

q(u)
d(u, F ) (3.2)

=

∫
q(u)

(∫
p(F |X,u) log p(Y |F )d(F ) + log

p(u)

q(u)

)
d(u) (3.3)

It should be noted that all distributions that involve u depend on Z as well, which we have omitted
in our notation for brevity. In the interpretation used here, Z is not a model parameter, but instead a
variational parameter. If Z coincides with X, the optimal distribution for q(u) would be the true function

posterior p(F |Y ) = p(Y |F )p(F |X)
P (Y |X) , which would make the bound tight. When m ≤ n, the inducing point

locations will have to be optimised to make the approximation as good as possible.
As a consequence of introducing the variational approximation q(u) ≈ p(F |Y ), the function values

are decoupled from each other given the inducing points. If we decompose Y into the individual data
points (Y1;Y2; ...;Yn) with Yi ∈ R1×d and similarly for F , we can write the lower bound as a sum over
the data points, since the Yi are independent of Fj for j 6= i:∫
p(F |X,u) log p(Y |F )d(F ) =

∫
p(F |X,u)

n∑
i=1

log p(Yi|Fi)d(F ) (3.4)

=

n∑
i=1

∫
p(F1, .., Fn|X,u) log p(Yi|Fi)d(F1, ..., Fn) (3.5)

=

n∑
i=1

∫
log p(Yi|Fi)

(∫
p(F1, .., Fn|X,u)d(F1, ..., Fi−1, Fi+1, ..., Fn)

)
d(Fi)

(3.6)

=

n∑
i=1

∫
p(Fi|X,u) log p(Yi|Fi)d(Fi) (3.7)

=

n∑
i=1

∫
p(Fi|X1, ..., Xn,u) log p(Yi|Fi)d(Fi) (3.8)

=

n∑
i=1

∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi) (3.9)

where in the transition from line 3 to line 4 we integrate p(F1, .., Fn|X,u) over F1, ..., Fi−1, Fi+1, ..., Fn
obtaining p(Fi|X,u).

Simplifying each term of the sum by expanding p(Yi|Fi) as:

p(Yi|Fi) = N (Yi;Fi, β
−1I) = (2πβ−1)−d/2 exp(−β

2
Tr((Yi − Fi)T (Yi − Fi))) (3.10)

= (2πβ−1)−d/2 exp(−β
2

(Yi − Fi)(Yi − Fi)T ) (3.11)

We obtain:∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi) =

∫
p(Fi|Xi,u)(−d

2
log(2πβ−1)− β

2
(YiY

T
i − 2FiY

T
i + FiF

T
i ))d(Fi)

(3.12)
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= −d
2

log(2πβ−1)− β

2
(YiY

T
i − 2 〈Fi〉p(Fi|Xi,u)

Y Ti +
〈
FiF

T
i

〉
p(Fi|Xi,u)

))

(3.13)

where we use triangular brackets 〈F 〉q(F ) to denote the expectation of F with respect to the distribution

q(F ).
Now, denoting the covariance matrix between data-point i and the inducing points locations Z as

Kim, we get5:

〈Fi〉p(Fi|Xi,u)
= KimK

−1
mmu (3.14)

and by noting that
〈
(X − 〈X〉)(X − 〈X〉)T

〉
=
〈
XXT − 2 〈X〉XT + 〈X〉 〈X〉T

〉
=
〈
XXT

〉
− 〈X〉 〈X〉T ,

〈
FiF

T
i

〉
p(Fi|Xi,u)

=
〈
(Fi − 〈Fi〉)(Fi − 〈Fi〉)T

〉
p(Fi|Xi,u)

+ 〈Fi〉p(Fi|Xi,u)
〈Fi〉Tp(Fi|Xi,u)

(3.15)

=

〈∑
d

(Fid − 〈Fid〉)2
〉
p(Fi|Xi,u)

+ 〈Fi〉p(Fi|Xi,u)
〈Fi〉Tp(Fi|Xi,u)

(3.16)

= d · cov(Fi) + 〈Fi〉p(Fi|Xi,u)
〈Fi〉Tp(Fi|Xi,u)

(3.17)

where (Bishop, 2006, p. 87)

cov(Fi) = k(Xi, Xi)−KimK
−1
mmKmi (3.18)

These follow the normal rules of conditional Gaussian distributions explained in detail in Bishop (2006,
pp. 85-87).

Therefore, combining equations 3.12, 3.14 and 3.15, we obtain:∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi) = −d

2
log(2πβ−1)− β

2

(
YiY

T
i − 2Yiu

TK−1mmKmi (3.19)

+KimK
−1
mmuuTK−1mmKmi + d · k(Xi, Xi)− d ·KimK

−1
mmKmi

)
(3.20)

3.2 Deriving the Optimal Form of q(u)

Next, we would like to analytically find optimal u to use in this equation. Define the lower bound as F :

log p(Y |X) ≥
∫
q(u)

( n∑
i=1

∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi) + log

p(u)

q(u)

)
d(u) := F (3.21)

Then, using calculus of variations and Lagrange multipliers (see Bishop (2006, pp. 703-710) for a
quick review) we can find the optimal function q:

d(F + λ(
∫
q(u)du− 1))

dq(u)
=

( n∑
i=1

∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi) + log

p(u)

q(u)

)
− 1 + λ = 0 (3.22)

where we differentiated with respect to the integral to get the first term, we obtained the second term
(−1) from the derivative with respect to q of the terms inside the integral, and the last term is contributed
by the Lagrange multiplier.

Therefore, using properties of the trace operator (see Bishop (2006, p. 696) for example) and by
isolating q on the left hand side of the equation, we obtain by plugging eq. 3.19 into the expression
above:

q(u) = eλ−1e
∑n

i=1

∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi)p(u) (3.23)

5Based on conditional Gaussian identities (Bishop, 2006, p. 87)
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= exp

{
Tr

(
uT
(
−β

2

n∑
i=1

K−1mmKmiKimK
−1
mm −

1

2
K−1mm

)
u + uT

(
β

n∑
i=1

K−1mmKmiYi

)
+ ...

)}
(3.24)

where we used “...” to denote terms which are used for the normalisation of the distribution but not for
the quadratic part, i.e. do not depend on u.

Next, we will need to make use of the following identity:

(C + CDC)−1 = ((I + CD)C)−1 = C−1(I + CD)−1 = C−1(C(C−1 +D))−1 = C−1(C−1 +D)−1C−1

Since the distribution belongs to the exponential family, we get that it must be a Gaussian distribution
with parameters:

Σ−1 = K−1mm +K−1mm

(
β

n∑
i=1

KmiKim

)
K−1mm (3.25)

and from from the identity above we get (using C = K−1mm and D = β
∑n
i=1KmiKim)

Σ = Kmm

( :=A︷ ︸︸ ︷
Kmm + β

n∑
i=1

KmiKim

)−1
Kmm (3.26)

and

µ = βKmmA
−1

n∑
i=1

KmiYi︸ ︷︷ ︸
:=B

(3.27)

with q(u) = N (u;µ,Σ). Notice the definition of A and B that will be used in the following derivations.

3.3 Forming the Evidence Lower Bound

Now, by definition of the prior,

log p(u) = log 2π−nd/2 − d

2
log |Kmm| −

1

2
Tr(uTK−1mmu) (3.28)

To plug this into F , we evaluate log q(u) as well using equations 3.26 and 3.27

log q(u) = N (u;µ,Σ) = (3.29)

log 2π−nd/2 − d

2
log |KmmA

−1Kmm| (3.30)

+ Tr

(
−1

2
uT (K−1mm +K−1mm

(
β

n∑
i=1

KmiKim

)
K−1mm)u (3.31)

+ uT (K−1mmAK
−1
mm)(βKmmA

−1B) (3.32)

− 1

2
β2(BTA−1Kmm)(K−1mmAK

−1
mm)(KmmA

−1B)

)
(3.33)

= log 2π−nd/2 − d

2
log |KmmA

−1Kmm| (3.34)

− 1

2
Tr(uT (βK−1mm

(
β

n∑
i=1

KmiKim

)
K−1mm)u)− 1

2
Tr(uTK−1mmu) + βTr(uTK−1mmB) (3.35)

− 1

2
β2Tr(BTA−1B) (3.36)

where we used the symmetry of the covariance matrices in the second transition.
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Finally, by collecting equations 3.29, 3.28, and 3.19 into 3.21, u eliminates (following trace properties
again), and we obtain

log p(Y |X) ≥ d

2
log |Kmm| −

d

2
log

∣∣∣∣Kmm + β

n∑
i=1

KmiKim

∣∣∣∣− nd

2
log 2πβ−1 (3.37)

− β

2

n∑
i=1

(
YiY

T
i + d · k(Xi, Xi)− d · Tr(K−1mmKmiKim)

)
(3.38)

+
β2

2
Tr

(( n∑
i=1

KmiYi

)T(
Kmm + β

n∑
i=1

KmiKim

)−1( n∑
i=1

KmiYi

))
(3.39)

Factorising the log marginal likelihood over the data points. Notice that this is exactly the same bound
derived in Titsias (2009), only factored over the input data.

3.4 Parallel Inference in Sparse GPs

A nice application of the re-parametrisation brought above is the distribution of the inference into inde-
pendent nodes. In a parallel implementation of the inference, each node i in the parallel implementation
has to calculate Y Ti Kim, KmiKim, k(Xi, Xi), and YiY

T
i . These take O(m2 + d2 +md) time complexity,

since all the operations involved in the collection of the partial sums are matrix products of matrices of
dimensions m by 1 with 1 by d and 1 by m, and d by 1 with 1 by d, as well as m by m with m by 1 matrix
products. Then, we accumulate the results (asynchronously), and perform once O(m3) calculations to
evaluate the log marginal likelihood. This is repeated at each step of the optimisation over the kernel
hyper-parameters and the locations of the inducing points. To optimise the hyper-parameters, we need
to differentiate the log evidence with respect to the kernel hyper-parameters (σ and α for an RBF kernel),
the observation noise (β), and the locations of the inducing points (Z).

We send to all nodes the global parameters Z, k (kernel hyper-parameters), and β for them to calculate
the partial terms Y Ti Kim, KmiKim, k(Xi, Xi), and YiY

T
i and return to the master node (m × m × q

matrices – constant space complexity for fixed m). The master node sums the log evidence using the
sum of the partial terms, and then performs optimisation over the global parameters Z, k and β. So, we
have one MapReduce step6 transferring information between the master node and slave nodes to follow:

1. The master sends Z, k and β to the nodes

2. The nodes calculate partial F , ∂F (m×m× q matrices) and return to the master

3. The master optimises Z, k, and β.

4 GPLVMs and the Conditional Independence of the Data

Using the factorisation developed in the previous section we can easily derive a similar lower bound for
the GPLVM. This is done by integrating the factorised sparse GP over X and introducing an additional
free-form variational distribution q(X) over X – which maintains the mean µi and covariance Si for each
latent variable Xi.

Indeed, following the same initial development we can integrate the evidence over X and use Jensen’s
inequality to get

log p(Y ) = log

∫
q(X)

p(Y |X)p(X)

q(X)
d(X) (4.1)

≥
∫
q(X)

(
log p(Y |X) + log

p(X)

q(X)

)
d(X) (4.2)

Using eq. 3.21 we can bound log p(Y |X) from below to get

≥
∫
q(X)

(∫
q(u)

( n∑
i=1

∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi) + log

p(u)

q(u)

)
d(u) + log

p(X)

q(X)

)
d(X) (4.3)

6For more information on distributed architectures see (Dean & Ghemawat, 2008)
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and after re-arranging the terms,

=

∫
q(u)

(∫
q(X)

( n∑
i=1

∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi) +

n∑
i=1

log
p(Xi)

q(Xi)

)
d(X) + log

p(u)

q(u)

)
d(u) (4.4)

=

∫
q(u)

(∫
q(X)

( n∑
i=1

∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi)

)
d(X) + log

p(u)

q(u)

)
d(u) (4.5)

−
n∑
i=1

∫
q(Xi) log

q(Xi)

p(Xi)
d(Xi) (4.6)

where
∫
q(Xi) log q(Xi)

p(Xi)
d(Xi) is just the KL-divergence between q and p:

=

∫
q(u)

( n∑
i=1

∫
q(X)

(∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi)

)
d(X) + log

p(u)

q(u)

)
d(u)−

n∑
i=1

KL(q(Xi)||p(Xi))

(4.7)

which evaluates to (marginalising over Xj for j 6= i)

=

∫
q(u)

( n∑
i=1

∫
q(Xi)

(∫
p(Fi|Xi,u) log p(Yi|Fi)d(Fi)

)
d(Xi) + log

p(u)

q(u)

)
d(u)−

n∑
i=1

KL(q(Xi)||p(Xi))

(4.8)

:= F (4.9)

Following the derivations of the previous section, we find optimal q(u) with respect to

n∑
i=1

∫
q(Xi)p(Fi|Xi,u) log p(Yi|Fi)d(Xi, Fi) (4.10)

=

n∑
i=1

∫
q(Xi)p(Fi|Xi,u)(−d

2
log(2πβ−1)− β

2
(YiY

T
i − 2FiY

T
i + FiF

T
i ))d(Xi, Fi) (4.11)

(4.12)

=

n∑
i=1

(
−d

2
log(2πβ−1)− β

2
(YiY

T
i − 2 〈Fi〉p(Fi|Xi,u)q(Xi)

Y Ti +
〈
FiF

T
i

〉
p(Fi|Xi,u)q(Xi)

))

)
(4.13)

Where now the optimal distribution is defined in terms of the expectation of the covariance matrices
with respect to X,

〈Fi〉p(Fi|Xi,u)q(Xi)
=
〈
KXi
im

〉
q(Xi)

K−1mmu (4.14)

and 〈
FiF

T
i

〉
p(Fi|Xi,u)q(Xi)

= d · cov(Fi) + 〈Fi〉p(Fi|Xi,u)q(Xi)
〈Fi〉Tp(Fi|Xi,u)q(Xi)

(4.15)

where

cov(Fi) =
〈
KXi
ii

〉
q(Xi)

−
〈
KXi
im

〉
q(Xi)

K−1mm

〈
KXi
mi

〉
q(Xi)

. (4.16)

This optimal q(u) is given by

Σ = Kmm

( :=A︷ ︸︸ ︷
Kmm + β

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)−1
Kmm (4.17)
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and

µ = βKmmA
−1

n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi︸ ︷︷ ︸
:=B

(4.18)

with q(u) = N (u;µ,Σ).
This evaluates to the following lower bound on the log marginal likelihood

log p(Y ) ≥ d

2
log |Kmm| −

d

2
log

∣∣∣∣Kmm + β

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

∣∣∣∣− nd

2
log 2πβ−1 (4.19)

− β

2

n∑
i=1

(
YiY

T
i + d

〈
KXi
ii

〉
q(Xi)

− dTr

(
K−1mm

〈
KXi
miK

Xi
im

〉
q(Xi)

))
(4.20)

+
β2

2
Tr

(( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T(
Kmm + β

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)−1
·
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

))
(4.21)

−
n∑
i=1

KL(q(Xi)||p(Xi)) (4.22)

4.1 Parallel Inference in GPLVMs

Similarly, a parallel inference algorithm can be derived based on this factorisation. First, we send to all
nodes the global parameters Z, k (the kernel hyper-parameters), and β for them to calculate the partial

terms
〈
KXi
mi

〉
q(Xi)

Yi,
〈
KXi
miK

Xi
im

〉
q(Xi)

,
〈
KXi
ii

〉
q(Xi)

, and YiY
T
i and return to the master node (m×m×q

matrices – constant for fixed m). The master node then sends the accumulated partial terms back to the
nodes and performs global optimisation over Z and k and β. At the same time the nodes perform local
optimisation on µ and S, the embedding posterior parameters, which can be carried out by parallelising
scaled conjugate gradient (SCG) or using local gradient descent. So, we have two “MapReduce” steps
for the master node ↔ slave nodes to follow:

1. Z, k, β →

2. ← partial F , ∂F (m×m× q matrices)

3. whole F , ∂F →

4. optimise Z, k, β ↔ optimise µi and Si

In the appendices we cover the derivations of the partial derivatives with respect to the global variables
as well as the local ones.

5 Discussion and Experimental Results

The derivation of the partial derivatives is only the first step in the implementation of the inference. The
actual development of new models based on the models presented above requires some know-how (such
as embeddings initialisation) and other intricates. This will be discussed here in future revisions of the
tutorial.

Next we give some experimental results that extend on the results in the accompanying paper.

5.1 Comparison to GPy

We compare our latent space to GPy, which we use as a reference implementation. Just like in the
original paper (Titsias & Lawrence, 2010), we used the oil-flow dataset. Both algorithms were run until
no significant improvement in the marginal likelihood was found.
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The two latent spaces are shown in figure 1. The latent spaces are qualitatively similar, but differ
due to a slightly different implementation of the optimiser. Like the results in Titsias & Lawrence (2010)
all but one of the ARD parameters decrease to zero, giving an effectively 1D latent space.
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Figure 1: Latent space produced by the parallel inference (left) and GPy (right) using the oilflow dataset
(Titsias & Lawrence, 2010).

5.2 Robustness to Node Failure

One desirable characteristic of a parallel inference scheme is robustness to failure of nodes. One way of
dealing with this would be to load the data to a different node and restart the calculation. However,
since the speed of one iteration is limited by the slowest calculation on one of the nodes, this could
slow down the algorithm by the time it takes to load the intermediate data onto the new node. An
alternative strategy would be to drop the partial term from the calculation and use a slightly noisy
gradient calculation in the optimisation for one iteration. Here we investigate the robustness of our
inference to this procedure.
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Figure 2: Node failure test, for node failure frequencies of 0%, 1% and 2% per iteration. Shown is the
average log marginal likelihood as a function of the iteration for 500 iterations.

We ran our parallel inference on the oil-flow dataset using the same setting as above for 500 iterations
accumulating the log marginal likelihood as a function of the iteration. We used 10 nodes and simulated
failure frequencies of 0%, 1% and 2% per iteration. The experiment was repeated 10 times and the log
marginal likelihood averaged. Even a failure rate of 1% per iteration for 500 iterations translates to a
high number of 1 out the 10 nodes failing on average every 10 iterations.

As we observe in figure 2 a node failure frequency of 1% hurts total performance by decreasing
the log marginal likelihood from -1500 to -5000 on average. It seems that a higher failure frequency
leads to convergence to worse local optima or a failure of the optimiser, possibly because of the finite
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differences approximation to the function curvature used by SCG, which might suffer from noisy gradient
estimations. It is also interesting to note that the embeddings discovered are less pronounced than the
ones shown in figure 1 but still have only one major latent dimension. For 0% failure rate the ARD
parameters are 0.02 for all but one dimension (0.15), for 1% failure rate the ARD parameters are 0.10
for all but one dimension (0.17), and for 2% failure rate the ARD parameters are 0.29 for all but one
dimension (0.34).
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A Selection of kernel

For all tasks in this paper we use the RBF Automatic Relevance Determination (ARD) kernel. This
kernel is given by the following formula:

k(x, x′) = σ2
f exp

(
−1

2

Q∑
q=1

αq(xq − x′q)2
)
. (A.1)

For this choice of kernel, we can evaluate the analytic solutions to the statistics
〈
KXi
ii

〉
q(Xi)

,
〈
KXi
mi

〉
q(Xi)

,

and
〈
KXi
miK

Xi
im

〉
q(Xi)

easily.

First of all, we have 〈
KXi
ii

〉
q(Xi)

= σ2
f . (A.2)

Next, for
〈
KXi
mi

〉
q(Xi)

we have

(〈
KXi
mi

〉
q(Xi)

)
j

=

∫
σ2
f exp

(
−1

2
(Xi − Zj)Tα(Xi − Zj)

)
1

|S|1/2(2π)Q/2
(A.3)

· exp

{
−1

2

(
(Xi − µi)TS−1i (Xi − µi)

)}
d(Xi) (A.4)

=
σ2
f

|S|1/2(2π)Q/2
(A.5)

·
∫

exp

{
−1

2

(
XT
i αXi − 2XT

i αZj + ZTj αZj +XT
i S
−1
i Xi − 2XT

i S
−1
i µi + µTi S

−1
i µi

)}
d(Xi)

(A.6)

=
σ2
f

|S|1/2(2π)Q/2
(A.7)

·
∫

exp

{
−1

2

(
XT
i (α+ S−1i )Xi − 2XT

i (αZj + S−1i µi) + ZTj αZj + µTi S
−1
i µi

)}
d(Xi)

(A.8)

=
σ2
f

|S|1/2|α+ S−1i |1/2 · (2π)Q/2|α+ S−1i |−1/2

∫
exp

{
−1

2

[
(A.9)(

Xi − (α+ S−1i )−1(αZj + S−1i µi)

)T(
α+ S−1i

)(
Xi − (α+ S−1i )−1(αZj + S−1i µi)

)
(A.10)

− (αZj + S−1i µi)
T (α+ S−1i )−1(αZj + S−1i µi) + ZTj αZj + µTi S

−1
i µi

]}
d(Xi)

(A.11)

=
σ2
f

|Si|1/2|α+ S−1i |1/2
exp

{
−1

2

Q∑
q=1

1

Siqαq + 1

(
−Siqα2

qZ
2
jq − 2αqµiqZjq − S−1iq µ

2
iq

(A.12)

+ Z2
jqαq + Z2

jqα
2
qSiq + µ2

iqS
−1
iq + µ2

iqαq

)}
(A.13)

=
σ2
f∏Q

q=1(Siqαq + 1)1/2
exp

{
−1

2

Q∑
q=1

(Zjq − µiq)2αq
Siqαq + 1

}
(A.14)
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Lastly, for
〈
KXi
miK

Xi
im

〉
q(Xi)

we can derive a similar result

〈
KXi
miK

Xi
im

〉
q(Xi)

= σ4
f

Q∏
q=1

exp

(
−αq(Zmq−Zm′q)

2

4 − αq(µiq−
Zmq

2 −
Z
m′q
2 )2

2αqSiq+1

)
(2αqSiq + 1)1/2

(A.15)

B Optimising the kernel hyper-parameters and locations of the
inducing points

In order to perform inference in the variational setting, we need to perform optimisation over the log
likelihood lower bound with respect to the kernel hyper-parameters and the locations of the inducing
points. In addition to that, for the latent variable model we also need to perform optimisation over the
means and covariances of the latent X points. For that, we need to obtain the partial derivatives of the
lower bound on the log marginal likelihood F with respect to each of the variables to be optimised.

F = −nd
2

log 2π +
dn

2
log β +

d

2
log |Kmm| −

d

2
log

∣∣∣∣Kmm + β

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

∣∣∣∣ (B.1)

− β

2

n∑
i=1

YiY
T
i −

βd

2

n∑
i=1

〈
KXi
ii

〉
q(Xi)

+
βd

2
Tr

(
K−1mm

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
(B.2)

+
β2

2
Tr

(( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T(
Kmm + β

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)−1
(B.3)

·
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

))
(B.4)

−
n∑
i=1

KL(q(Xi)||p(Xi)) (B.5)

(B.6)

We thus need to optimise over the variables Z, (µi, Si)i≤N , β, and θ = (σ2
f , α1, ..., αQ). Following the

chain rule for multivariate functions [wiki: chain rule], we get that the derivative of the lower bound of
the log marginal likelihood F for Zjk, for example, is given by:

∂F
∂Zjk

=
∂F

∂Kmm

∂Kmm

∂Zjk
(B.7)

+
∂F

∂

(∑n
i=1

〈
KXi
ii

〉
q(Xi)

) ∂
(∑n

i=1

〈
KXi
ii

〉
q(Xi)

)
∂Zjk

(B.8)

+
∂F

∂

(∑n
i=1

〈
KXi
mi

〉
q(Xi)

Yi

) ∂
(∑n

i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
∂Zjk

(B.9)

+
∂F

∂

(∑n
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

) ∂
(∑n

i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
∂Zjk

(B.10)

where when differentiating with respect to (µi, Si)i≤N we also need to find the partial derivative of

n∑
i=1

KL(q(Xi)||p(Xi)). (B.11)
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We have

∂

(∑n
i=1

〈
KXi
ii

〉
q(Xi)

)
∂Zjk

=

n∑
i=1

(∂ 〈KXi
ii

〉
q(Xi)

∂Zjk

)
(B.12)

∂

(∑n
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
∂Zjk

=

n∑
i=1

(∂ 〈KXi
mi

〉
q(Xi)

Yi

∂Zjk

)
(B.13)

∂

(∑n
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
∂Zjk

=

n∑
i=1

(∂ 〈KXi
miK

Xi
im

〉
q(Xi)

∂Zjk

)
(B.14)

Thus we only need to look at the partial derivatives inside the sums.

B.1 Partial derivatives of F
The partial derivative ∂F

∂

(∑n
i=1

〈
K

Xi
ii

〉
q(Xi)

)
∂F

∂

(∑n
i=1

〈
KXi
ii

〉
q(Xi)

) = −βd
2

(B.15)

The partial derivative ∂F

∂

(∑n
i=1

〈
K

Xi
mi

〉
q(Xi)

Yi

) Using properties of the trace operator [wiki: trace]

dF(

n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi) (B.16)

= dTr(
β2

2

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
) (B.17)

= Tr(
β2

2

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
) (B.18)

+ Tr(
β2

2
d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
)

(B.19)

= Tr(
β2

2

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
) (B.20)

+ Tr(
β2

2
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
)

(B.21)

(B.22)

Since

Tr(
β2

2

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
) (B.23)

= Tr(
β2

2
d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
)

(B.24)
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= Tr(
β2

2
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
)

(B.25)

We get that the differential equals

= Tr(β2(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
d

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
) (B.26)

Therefore,

∂F

∂

(∑n
i=1

〈
KXi
mi

〉
q(Xi)

Yi

) = β2(Kmm + β

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
(B.27)

The partial derivative ∂F

∂

(∑n
i=1

〈
K

Xi
miK

Xi
im

〉
q(Xi)

)

dF(

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
) (B.28)

= d

(
−d

2
logDet(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
) +

βd

2
Tr(K−1mm

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
) (B.29)

+
β2

2
Tr(

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1)

)
(B.30)

= −d
2

Tr((Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1βd

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
) (B.31)

+
βd

2
Tr(K−1mmd

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)− β2

2
Tr

(( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(B.32)

· (Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1βd

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
(B.33)

· (Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
)

(B.34)

Therefore,

∂F

∂

(∑n
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

) = −βd
2

(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1 +

βd

2
K−1mm (B.35)

− β3

2

(
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1 (B.36)

·
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(B.37)

· (Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
)

(B.38)
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The partial derivative ∂F
∂Kmm

dF(Kmm) = d

(
d

2
logDet(Kmm)− d

2
logDet(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
) (B.39)

+
βd

2
Tr(

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
K−1mm) (B.40)

+
β2

2
Tr(

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1)

)
(B.41)

=
d

2
Tr(K−1mmdKmm)− d

2
Tr((Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1dKmm) (B.42)

− βd

2
Tr(

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
K−1mmdKmmK

−1
mm) (B.43)

− β2

2
Tr

(( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1

(B.44)

· dKmm(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
)

(B.45)

Therefore,

∂F
∂Kmm

=
d

2
K−1mm −

d

2
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1 − βd

2
K−1mm

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
K−1mm

(B.46)

− β2

2
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(B.47)

· (Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1 (B.48)

B.2 The partial derivatives of the ARD kernel

Here we will look at the partial derivatives ∂Kmm, ∂
〈
KXi
ii

〉
q(Xi)

, ∂
〈
KXi
mi

〉
q(Xi)

, and ∂
〈
KXi
miK

Xi
im

〉
q(Xi)

with respect to the variables (Zjk), (µi, Si)i≤N , and θ = (σ2
f , α1, ..., αQ).

B.2.1 Partial derivatives with respect to Zjk

The partial derivative ∂Kmm

∂Zjk(
∂Kmm

∂Zjk

)
mm′

=
∂k(Zm, Zm′)

∂Zjk
= I(m = j ∧m′ 6= j ∨m 6= j ∧m′ = j)k(Zm, Zm′)(−αk)(Zmk − Zm′k)

(B.49)

The partial derivative
∂
〈
K

Xi
ii

〉
q(Xi)

∂Zjk

∂
〈
KXi
ii

〉
q(Xi)

∂Zjk
= 0 (B.50)
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The partial derivative
∂
〈
K

Xi
mi

〉
q(Xi)

∂Zjk

(∂ 〈KXi
mi

〉
q(Xi)

∂Zjk

)
m

= I(m = j)(
〈
KXi
mi

〉
q(Xi)

)m

(
αk(µik − Zmk)

αkSik + 1

)
(B.51)

Note that we are interested, for the calculation of the lower bound of the log-marginal likelihood, in the

derivative of
〈
KXi
mi

〉
q(Xi)

Yi which equals
∂
〈
K

Xi
mi

〉
q(Xi)

∂Zjk
Yi

The partial derivative
∂
〈
K

Xi
miK

Xi
im

〉
q(Xi)

∂Zjk

(∂ 〈KXi
miK

Xi
im

〉
q(Xi)

∂Zjk

)
mm′

= I(m = j)(
〈
KXi
miK

Xi
im

〉
q(Xi)

)mm′ (B.52)

·
(
−αk(Zmk − Zm′k)

2
+
αk(2µik − Zmk − Zm′k)

2(2αkSik + 1)

)
(B.53)

B.2.2 Partial derivatives with respect to σ2
f

The partial derivative ∂Kmm

∂σ2
f (

∂Kmm

∂σ2
f

)
mm′

=
k(Zm, Zm′)

σ2
f

(B.54)

The partial derivative
∂
〈
K

Xi
ii

〉
q(Xi)

∂σ2
f

∂
〈
KXi
ii

〉
q(Xi)

∂σ2
f

= 1 (B.55)

The partial derivative
∂
〈
K

Xi
mi

〉
q(Xi)

∂σ2
f

(∂ 〈KXi
mi

〉
q(Xi)

∂σ2
f

)
m

=

(
〈
KXi
mi

〉
q(Xi)

)m

σ2
f

(B.56)

The partial derivative
∂
〈
K

Xi
miK

Xi
im

〉
q(Xi)

∂σ2
f

(∂ 〈KXi
miK

Xi
im

〉
q(Xi)

∂σ2
f

)
mm′

= 2

(
〈
KXi
miK

Xi
im

〉
q(Xi)

)mm′

σ2
f

(B.57)

B.2.3 Partial derivatives with respect to αq

Note: in the Python implementation, we have αq =
1

l2
, therefore

∂αq
∂l

= −2
1

l3
.

The partial derivative ∂Kmm

∂αq(
∂Kmm

∂αq

)
mm′

= k(Zm, Zm′)(Zmq − Zm′q)
2 (B.58)
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The partial derivative
∂
〈
K

Xi
ii

〉
q(Xi)

∂αq

∂
〈
KXi
ii

〉
q(Xi)

∂αq
= 0 (B.59)

The partial derivative
∂
〈
K

Xi
mi

〉
q(Xi)

∂αq

(∂ 〈KXi
mi

〉
q(Xi)

∂αq

)
m

= −1

2
(
〈
KXi
mi

〉
q(Xi)

)m

((
µiq − Zmq
αqSiq + 1

)2

+
Siq

αqSiq + 1

)
(B.60)

The partial derivative
∂
〈
K

Xi
miK

Xi
im

〉
q(Xi)

∂αq

(∂ 〈KXi
miK

Xi
im

〉
q(Xi)

∂αq

)
mm′

= (
〈
KXi
miK

Xi
im

〉
q(Xi)

)mm′ (B.61)

·
(
− (Zmq − Zm′q)

2

4
−
(

2µiq − Zmq − Zm′q

2(2αqSiq + 1)

)2

− Siq
2αqSiq + 1

)
(B.62)

B.2.4 Partial derivatives with respect to µiq

The partial derivative ∂Kmm

∂µiq

∂Kmm

∂µiq
= 0 (B.63)

The partial derivative
∂
〈
K

Xi
ii

〉
q(Xi)

∂µiq

∂
〈
KXi
ii

〉
q(Xi)

∂µiq
= 0 (B.64)

The partial derivative
∂
〈
K

Xi
mi

〉
q(Xi)

∂µiq

(∂ 〈KXi
mi

〉
q(Xi)

∂µiq

)
m

=

(〈
KXi
mi

〉
q(Xi)

)
m

(
−αq(µiq − Zmq)

αqSiq + 1

)
(B.65)

The partial derivative
∂
〈
K

Xi
miK

Xi
im

〉
q(Xi)

∂µiq

(∂ 〈KXi
miK

Xi
im

〉
q(Xi)

∂µiq

)
mm′

= (
〈
KX
miK

X
im

〉
q(X)

)mm′

(
−2

αq(2µiq − Zmq − Zm′q)

2(2αqSiq + 1)

)
(B.66)

B.2.5 Partial derivatives with respect to Siq

The partial derivative ∂Kmm

∂Siq

∂Kmm

∂Siq
= 0 (B.67)
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The partial derivative
∂
〈
K

Xi
ii

〉
q(Xi)

∂Siq

∂
〈
KXi
ii

〉
q(Xi)

∂Siq
= 0 (B.68)

The partial derivative
∂
〈
K

Xi
mi

〉
q(Xi)

∂Siq

(∂ 〈KXi
mi

〉
q(Xi)

∂Siq

)
m

=

(〈
KXi
mi

〉
q(Xi)

)
m

(
1

2

(
αq(µiq − Zmq)
αqSiq + 1

)2

− 1

2

αq
αqSiq + 1

)
(B.69)

The partial derivative
∂
〈
K

Xi
miK

Xi
im

〉
q(Xi)

∂Siq

(∂ 〈KXi
miK

Xi
im

〉
q(Xi)

∂Siq

)
mm′

= (
〈
KXi
miK

Xi
im

〉
q(Xi)

)mm′

(
2

(
αq(2µiq − Zmq − Zm′q)

2(2αqSiq + 1)

)2

− 1

2

2αq
2αqSiq + 1

)
(B.70)

B.3 Partial derivatives of KL(q(Xi)||p(Xi))

We have q(Xi) = N (Xi;µi, Si) and p(Xi) = N (Xi; 0, Id). Therefore, the Kullback–Leibler divergence
can be evaluated analytically by [wiki ”multivariate Gaussian distribution: KL divergence”]

KL(q(Xi)||p(Xi)) =

∫
q(Xi) log

p(Xi)

q(Xi)
dXi =

1

2

( Q∑
q=1

(Siq − logSiq) + µTi µ−Q
)
. (B.71)

Therefore, we have

∂KL(q(Xi)||p(Xi))

∂(µi)
= µi (B.72)

and

∂KL(q(Xi)||p(Xi))

∂(Siq)
=

1

2

(
1− 1

Siq

)
(B.73)

B.4 Partial derivatives of F with respect to β

Lastly, we evaluate the partial derivatives of F with respect to β.

∂F
∂β

=
nd

2

1

β
− d

2
Tr((β

n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

+Kmm)−1
( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
) (B.74)

− 1

2
Tr(Y TY )− d

2
Tr(
〈
KXi
ii

〉
q(Xi)

) +
d

2
Tr(K−1mm

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
) (B.75)

+ βTr(

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
)

(B.76)

− β2

2
Tr(

( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)T
(Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
(B.77)

· (Kmm + β

( n∑
i=1

〈
KXi
miK

Xi
im

〉
q(Xi)

)
)−1
( n∑
i=1

〈
KXi
mi

〉
q(Xi)

Yi

)
) (B.78)
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