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Abstract

We investigate the problem of stochastic network design in bidirected trees. In this
problem, an underlying phenomenon (e.g., a behavior, rumor, or disease) starts at
multiple sources in a tree and spreads in both directions along its edges. Actions
can be taken to increase the probability of propagation on edges, and the goal is
to maximize the total amount of spread away from all sources. Our main result is
a rounded dynamic programming approach that leads to a fully polynomial-time
approximation scheme (FPTAS), that is, an algorithm that can find (1−ε)-optimal
solutions for any problem instance in time polynomial in the input size and 1/ε.
Our algorithm outperforms competing approaches on a motivating problem from
computational sustainability to remove barriers in river networks to restore the
health of aquatic ecosystems.

1 Introduction

Many planning problems from diverse areas such as urban planning, social networks, and trans-
portation can be cast as stochastic network design, where the goal is to take actions to enhance
connectivity in a network with some stochastic element [1–8]. In this paper we consider a simple
and widely applicable model where a stochastic network G′ is obtained by flipping an independent
coin for each edge of a directed host graph G = (V,E) to determine whether it is included in G′.
The planner collects reward rst for each pair of vertices s, t ∈ V that are connected by a directed
path in G′. Actions are available to increase the probabilities of individual edges for some cost, and
the goal is to maximize the total expected reward subject to a budget constraint.

Stochastic network design generalizes several existing problems related to spreading phenomena in
networks, including the well known influence maximization problem. Specifically, the coin-flipping
process captures the live-edge characterization of the Independent Cascade model [7], in which the
presence of edge (u, v) in G′ allows influence (e.g., behavior, disease, or some other spreading phe-
nomenon) to propagate from u to v. Influence maximization seeks a seed set S of at most k nodes
to maximize the expected number of nodes reachable from S, which is easily modeled within our
model by assigning appropriate rewards and actions. The framework also captures more complex
problems with actions that increase edge probabilities—a setup that proved useful in various com-
putational sustainability problems aimed to restore habitat or remove barriers in landscape networks
to facilitate the spread and conserve a target species [4–6, 8].

The stochastic network design problem in its general form is intractable. It includes influence max-
imization as a special case and is thus NP-hard to approximate within a ratio of 1− 1/e+ ε for any
ε > 0 [7], and it is #P-hard to compute the objective function under fixed probabilities [9, 10]. Un-
like the influence maximization problem, which is a monotone submodular maximization problem
and thus admits a greedy (1 − 1/e)-approximation algorithm, the general problem is not submod-
ular [6]. Previous problems in this class were solved by a combination of techniques including the
sample average approximation, mixed integer programming, dual decomposition, and primal-dual
heuristics [6, 11–13], none of which provide both scalable running-time and optimality guarantees.
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It is therefore of great interest to design efficient algorithms with provable approximation guarantees
for restricted classes of stochastic network design. Wu, Sheldon, and Zilberstein [8] recently showed
that the special case in which G is a directed tree where influence flows away from the root (i.e.,
rewards are non-zero only for paths originating at the root) admits a fully polynomial-time approx-
imation scheme (FPTAS). Their algorithm—rounded dynamic programming (RDP)—is based on
recursion over rooted subtrees. Their work was motivated by the upstream barrier removal problem
in river networks [5], in which migratory fish such as salmon swim upstream from the root (ocean) of
a river network attempting to access upstream spawning habitat, but are blocked by barriers such as
dams along the way. Actions are taken to remove or repair barriers and thus increase the probability
fish can pass and therefore utilize a greater amount of their historical spawning habitat.

In this paper, we investigate the harder problem of stochastic network design in a bidirected tree,
motivated by a novel conservation planning problem we term bidirectional barrier removal. The
goal is to remove barriers to facilitate point-to-point movement in river networks. This applies to the
much broader class of resident (non-migratory) fish species whose populations and gene-flow are
threatened by dams and smaller river barriers (e.g., culverts) [14]. Replacing or retrofitting barriers
with passage structures is a key conservation priority [15, 16]. However, stochastic network design
in a bidirected tree is apparently much harder than in a directed tree. Since spread originates at all
vertices instead of a designated root and edges may have different probabilities in each direction, it
is not obvious how computations can be structured in a recursive fashion as in [8].

Our main contribution is a novel RDP algorithm for stochastic network design in bidirected trees and
a proof that it is an FPTAS—in particular, it computes (1− ε)-optimal solutions in time O(n8/ε6).
To derive the new RDP algorithm, we first show in Section 3 that the computation can be structured
recursively despite the lack of a fixed orientation to the tree by choosing an arbitrary orientation and
using a more nuanced dynamic programming algorithm. However, this algorithm does not run in
polynomial time. In Section 4, we apply a rounding scheme and then prove in Section 5 that this
leads to a polynomial-time algorithm with the desired optimality guarantee. However, the running
time of O(n8/ε6) limits scalability in practice, so in Section 6 we describe an adaptive-rounding
version of the algorithm that is much more efficient. Finally, we show that RDP significantly out-
performs competing algorithms on the bidirectional barrier removal problem in real river networks.

2 Problem Definition

The input to the stochastic network design problem consists of a bidirected tree T = (V,E) with
probabilities puv assigned to each directed edge (u, v) ∈ E. A finite set of possible repair actions
Au,v = Av,u is associated with each bidirected edge {u, v}; action a ∈ Au,v has cost cuv,a and, if
taken, simultaneously increases the two directed edge probabilities to puv|a and pvu|a. We assume
that Au,v contains a default zero-cost “noop” action a0 such that puv|a0 = puv and pvu|a0 = pvu. A
policy π selects an action π(u, v)—either a repair action or a noop—for each bidirected edge. We
write puv|π := puv|π(u,v) for the probability of edge (u, v) under policy π. In addition to the edge
probabilities, a non-negative reward rs,t is specified for each pair of vertices s, t ∈ V .

Given a policy π, the s-t accessibility ps t|π is the product of all edge probabilities on the unique
path from s to t, which is the probability that s retains a path to t in the subgraph T ′ where each
edge is present independently with probability puv|π . The total expected reward for policy π is
z(π) =

∑
s,t∈V rs,t ps t|π . Our goal is to find a policy that maximizes z(π) subject to a budget

b limiting the total cost c(π) of the actions being taken. Hence, the resulting policy satisfies π∗ ∈
argmax{π|c(π)≤b} z(π).

In this work, we will assume that the rewards factor as rs,t = hsht, which is useful for our dynamic
programming approach and consistent with several widely used metrics. For example, network
resilience [17] is defined as the expected number of node-pairs that can communicate after random
component failures, which is captured in our framework by setting rs,t = hs = ht = 1. Network
resilience is a general model of connectivity that can apply in diverse complex network settings.
The ecological measure of probability of connectivity (PC) [18], which was the original motivation
of our formulation, can also be expressed using factored rewards. PC is widely used in ecology
and conservation planning and is implemented in the Conefor software, which is the basis of many
planning applications [19]. A precise definition of PC appears below.
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Figure 1: Left: sample river network with bar-
riers A, B, C and contiguous regions u, v, w, x.
Right: corresponding bidirected tree.

Barrier Removal Problem Fig. 1 illustrates the bidi-
rectional barrier removal problem in river networks and
its mapping to stochastic network design in a bidirected
tree. A river network is a tree with edges that represent
stream segments and nodes that represent either stream
junctions or barriers that divide segments. Fish begin
in each segment and can swim freely between adjacent
segments, but can only pass a barrier with a specified
passage probability or passability in each direction; in
most cases, downstream passability is higher than up-
stream passability. To map this problem to stochastic
network design, we create a bidirected tree T = (V,E) where each node v ∈ V represents a con-
tiguous region of the river network—i.e., a connected set of stream segments among which fish can
move freely without passing any barriers—and the value hv is equal to the total amount of habitat
in that region (e.g., the total length of all segments). Each barrier then becomes a bidirected edge
that connects two regions, with the passage probabilities in the upstream and downstream directions
assigned to the corresponding directed edges. It is easy to see that T retains a tree structure.

Our objective function z(π) is motivated by PC introduced above. It is defined as follows:

PC(π) =
z(π)

R
=

∑
s∈S

∑
t∈S rs,tps t|π

R
(1)

where R =
∑
s,t hsht is a normalization constant. When hv is the amount of suitable habitat in

region v, PC(π) is the probability that a fish placed at a starting point chosen uniformly at random
from suitable habitat (so that a point in region s is chosen with probability proportional to hs) can
reach a random target point also chosen uniformly at random by passing each barrier in between.

In the rest of the paper, we present algorithms for solving this problem and their theoretical analysis
that generalize the rounded DP approach introduced in [8].

3 Dynamic Programming Algorithm

Given a bidirected tree T , we present a divide-and-conquer method to evaluate a policy π and a
dynamic programming algorithm to optimize the policy. We use the fact that given an arbitrary
root, any bidirected tree T can be viewed as a rooted tree in which each vertex u has corresponding
children and subtrees. To simplify our algorithm and proofs, we make the following assumption.
Assumption 1. Each vertex in the rooted tree has at most two children.

Any problem instance can be converted into one that satisfies this assumption by replacing any
vertex u with more than two children by a sequence of internal vertices with exactly two children.
The original edges are attached to the original children of u and the added edges have probabilities
1. In the modified tree, u has two children and its habitat is split equally among u and the newly
added vertices. The resulting binary tree has at most twice as many vertices as the original one.
Most importantly, a policy for the modified tree can be trivially mapped to a unique policy for the
original tree with the same expected reward.

Evaluating A Fixed Policy Using Divide and Conquer To evaluate a fixed policy π, we use a
divide and conquer method that recursively computes a tuple of three values per subtree. Let v and
w be the children of u. The tuple of the subtree Tu rooted at u can be calculated using the tuples of
subtrees Tv and Tw. Once the tuple of Troot = T , is calculated, we can extract the total expected
reward from that tuple.

Now, given a policy π, we define the tuple of Tu as ψu(π) = (νu(π), µu(π), zu(π)), where

• νu(π) =
∑
t∈Tu pu t|πht is the sum of the s-t accessibilities of all paths from u to t ∈ Tu,

each of which is weighted by the habitat ht of its ending vertex t.
• µu(π) =

∑
s∈Tu ps u|πhs is the sum of the s-t accessibilities of all paths from s ∈ Tu to

u, each of which is weighted by the habitat hs of its departing vertex s.
• zu(π) =

∑
s∈Tu

∑
t∈Tu ps t|πrs,t (rs,t = hsht) represents the total expected reward that

a fish obtains by following paths with both starting and ending vertices in Tu.
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The tuple ψu(π) is calculated recursively using ψv(π) and ψw(π). To calculate νu(π), we note that
a path from u to a vertex in Tu\{u} is the concatenation of either the edge (u, v) with a path from v
to Tv or the edge (u,w) with a path from w to Tw, that is, νu(π) can be written as∑

t∈Tv

puv|πpv t|πht +
∑
t∈Tw

puw|πpw t|πht + hu = puv|πνv(π) + puw|πνw(π) + hu (2)

Similarly, µu(π) =∑
s∈Tv

ps v|πpvu|πhs +
∑
s∈Tw

ps w|πpwu|πhs + hu = pvu|πµv(π) + pwu|πµw(π) + hu (3)

By dividing the reward from paths that start and end in Tu based on their start and end nodes, we
can express zu(π) as follows:

zu(π) = zv(π)+zw(π)+µv(π)pv w|πνw(π)+µw(π)pw v|πνv(π)+huνu(π)+huµu(π)−h2u (4)

The first two terms describe paths that start and end within a single subtree—either Tv or Tw. The
third and fourth terms describe paths that start in Tv and end in Tw or vice versa. The last three terms
describe paths that start or end at u, with an adjustment to avoid double-counting the trivial path that
starts and ends at u. That way, all tuples can be evaluated with one pass from the leaves to the root
and each vertex is only visited once. At the root, zroot(π) is the expected reward of policy π.

Dynamic Programming Algorithm We introduce a DP algorithm to compute the optimal policy.
Let subpolicy πu be the part of the full policy that defines actions for barriers within Tu. In the DP
algorithm, each subtree Tu maintains a list of tuples ψ that are reachable by some subpolicies and
each tuple is associated with a least-cost subpolicy, that is, π∗u ∈ argmin{πu|ψu(πu)=ψ} c(πu).

Let v and w be two children of u. We recursively generate the list of reachable tuples and the
associated least-cost subpolicies using the tuples of v and w. To do this, for each ψv , ψw, we first
extract the corresponding π∗v and π∗w. Then, using these two least-cost subpolicies of the children,
for each a ∈ Auv and a′ ∈ Auw, a new subpolicy πu is constructed for Tu with cost c(πu) =
cuv,a + cuw,a′ + c(π∗v) + c(π∗w). Using Eqs. (2), (3) and (4), the tuple ψu(πu) of πu is calculated.
If ψu(πu) already exists in the list (i.e., ψu(πu) was created by some other previously constructed
subpolicies), we update the associated subpolicy such that only the minimum cost subpolicy is kept.
If not, we add this tuple ψu(πu) and subpolicy πu to the list.

To initialize the recurrence, the list of a leaf subtree contains only a single tuple (hu, hu, h
2
u) asso-

ciated with an empty subpolicy. Once the list of Troot is calculated, we scan the list to pick a pair
(ψ∗root, π

∗) such that (ψ∗root, π
∗) ∈ argmax{(ψroot,π)|c(π)≤b} zroot where zroot is the third element

of ψroot. Finally, π∗ is the returned optimal policy and z∗root is the optimal expected reward.

4 Rounded Dynamic Programming

The DP algorithm is not a polynomial-time algorithm because the number of reachable tuples in-
creases exponentially as we approach the root. In this section, we modify the DP algorithm into a
FPTAS algorithm. The basic idea is to discretize the continuous space of ψu at each vertex such
that there only exists a polynomial number of different tuples. To do this, the three dimensions are
discretized using granularity factors Kν

u , Kµ
u and Kz

u respectively such that the space is divided into
a finite number of cubes with volume Kν

u ×Kµ
u ×Kz

u.

For any subpolicy πu of u in the discretized space, there is a rounded tuple ψ̂u(πu) =

(ν̂u(πu), µ̂u(πu), ẑu(πu)) to underestimate the true tuple ψu(πu) of πu. To evaluate ψ̂u(πu), we
use the same recurrences as (2), (3) and (4), but rounding each intermediate value into a value in
the discretized space. The recurrences are as follow:

ν̂sumu (πu) = puv|πu ν̂v(πu)+puw|πu ν̂w(πu)+hu µ̂sumu (πu) = pvu|πu µ̂v(πu)+pwu|πu µ̂w(πu)+hu

ν̂u(πu) = Kν
u

⌊
ν̂sumu (πu)

Kν
u

⌋
µ̂u(πu) = Kµ

u

⌊
µ̂sumu (πu)

Kµ
u

⌋
(5)
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ẑu(πu) = Kz
u· (6)⌊

ẑv(πu)+ẑw(πu)+µ̂v(πu)pv w|πu ν̂w(πu)+µ̂w(πu)pw v|πu ν̂v(πu)+huµ̂
sum
u (πu)+huν̂

sum
u (πu)−h2

u

Kz
u

⌋
The modified algorithm—rounded dynamic programming (RDP)—is the same as the DP algorithm,
except that it works in the discretized space. Specifically, each vertex maintains a list of reachable
rounded tuples ψ̂u, each one associated with a least costly subpolicy achieving ψ̂u, that is, π∗u ∈
argmin{πu|ψ̂u(πu)=ψ̂u} c(πu). Similarly to our DP algorithm, we generate the list of reachable
tuples for each vertex using its children’s lists of tuples. The difference is that to calculate the
rounded tuple of a new subpolicy we use recurrences (5) and (6) instead of (2), (3) and (4).

5 Theoretical Analysis
We now turn to the main theoretical result:
Theorem 1. RDP is a FPTAS. Specifically, let OPT be the value of the optimal policy. Then, RDP
can compute a policy with value at least (1− ε)OPT in time bounded by O(n

8

ε6 ).

Approximation Guarantee Let π∗ be the optimal policy and let π′ be the policy returned by RDP.
We bound the value loss z(π∗) − z(π′) by bounding the distance of the true tuple ψ(π) and the
rounded tuple ψ̂(π) for an arbitrary policy π. In Eqs. (5) and (6), starting from leaf vertices, each
rounding operation introduces an error at most K ·u where · represents ν, µ and z.

For ν, starting from u, each vertex t ∈ Tu introduces error Kν
t by using the rounding operation. The

error is discounted by the accessibility from u to t. For µ, each vertex s ∈ Tu introduces error Kµ
s ,

discounted in the same way. The total error is equal to the sum of all discounted errors.

Finally, we get the following result by setting

Kν
u =

ε

3
hu, Kµ

u =
ε

3
hu, Kz

u =
ε

3
h2u (7)

Lemma 1. If condition (7) holds, then for all u ∈ V and an arbitrary policy π:

νu(π)− ν̂u(π) ≤
∑
t∈Tu

pu t|πK
ν
t =

ε

3

∑
t∈Tu

pu t|πht =
ε

3
νu(π) (8)

µu(π)− µ̂u(π) ≤
∑
s∈Tu

ps u|πK
µ
s =

ε

3

∑
s∈Tu

ps u|πhs =
ε

3
µu(π) (9)

The difference of z(π)− ẑ(π) is bounded by the following lemma.
Lemma 2. If condition (7) holds, z(π)− ẑ(π) ≤ εz(π) for an arbitrary policy π.

The proof by induction on the tree appears in the supplementary material.
Theorem 2. Let π∗ and π′ be the optimal policy and the policy return by RDP respectively. Then,
if condition (7) holds, we have z(π∗)− z(π′) ≤ εz(π∗).
Proof. By Lemma 2, we have z(π∗)−ẑ(π∗) ≤ εz(π∗). Furthermore, z(π′) ≥ ẑ(π′) ≥ ẑ(π∗) where
the second inequality holds because π′ is the optimal policy with respect to the rounded policy value.
Therefore, we have z(π∗)− z(π′) ≤ z(π∗)− ẑ(π∗) which proves the theorem.

Runtime Analysis Now, we derive the runtime result of Theorem 1, that is, if condition (7) holds,
the runtime of RDP is bounded by O(n

8

ε6 ). First, it is reasonable to make the following assumption:
Assumption 2. The value hu is constant with respect to n and ε for each u ∈ V .

Let mu,ν̂ , mu,µ̂ and mu,ẑ be the number of different values for ν̂u, µ̂u and ẑu respectively in the
rounded value space of u.
Lemma 3. If condition (7) holds, then

mu,ν̂ = O
(nu
ε

)
, mu,µ̂ = O

(nu
ε

)
, mu,ẑ = O

(n2u
ε

)
(10)

for all u ∈ V where nu is the number of vertices in subtree Tu.
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Proof. The numbermu,ν̂ is bounded by
∑
t∈Tu ht

Kν
u

where
∑
t∈Tu ht is a naive and loose upper bound

of νu obtained assuming all passabilities of streams in Tu are 1.0. By Assumption (2), mu,ν̂ =
O(nuε ). The upper bound of mu,µ̂ can be similarly derived. Assuming all passabilities are 1.0, the

upper bound of zu is
∑
s∈Tu

∑
t∈Tu hsht. Therefore, mu,ẑ ≤

∑
s∈Tu

∑
t∈Tu hsht

Kz
u

= O(
n2
u

ε )

Recall that RDP works by recursively calculating the list of reachable rounded tuples and associated
least costly subpolicy. Using Lemma 3, we get the following main result:

Theorem 3. If condition (7) holds, the runtime of RDP is bounded by O(n
8

ε6 ).

Proof. Let T (n) be the maximum runtime of RDP for any subtree with n vertices. In RDP, for
vertex u with children v and w, we compute the list and associated subpolicies by iterating over all
combinations of ψ̂v and ψ̂w. For each combination, we iterate over all available action combinations
auv ∈ Auv and auw ∈ Auw, which takes constant time because the number of available repair
actions are constant w.r.t. n and ε. Therefore, we can bound T (n) using the following recurrence:

T (nu)=O(mv,ν̂mv,µ̂mv,ẑmw,ν̂mw,µ̂mw,ẑ) + T (nv) + T (nw) ≤ c
n4vn

4
w

ε6
+ T (nv) + T (nw)

≤ max
0≤k≤(nu−1)

c
k4(nu − k − 1)4

ε6
+ T (k) + T (nu − k − 1)

where nu = 1+nv +nw as Tu consists of u, Tv and Tw. The second inequality is due to Lemma 3.
The third inequality is obtained by a change of variable.

We prove that T (n) ≤ cn
8

ε6 using induction. For the base case n = 0, we have T (n) = 0 and for the
base case n = 1, the subtree only contains one vertex, so T (n) = c. Now assume that T (k) ≤ ck

8

ε6

for all k < n. Then one can show that

T (n) ≤ max
0≤k≤(n−1)

c

ε6
(
k4(n− k − 1)4 + k8 + (n− k − 1)8

)
≤ cn

8

ε6
(11)

and thus the theorem holds. A detailed justification of the final inequality appears in the supplemen-
tary material.

6 Algorithm Implementation and Experiments

The theoretical results suggest that the RDP approach may be impractical for large networks. How-
ever, we can accelerate the algorithm and produce high quality solutions by making some changes,
motivated by observations from our initial experiments. First, the theoretical runtime upper bound
is much worse than the actual runtime of RDP because in practice, because the number of reachable
tuples per vertex is much lower than the upper bounds of mu,ν̂ mu,µ̂ and mu,ẑ used in the proof.
Moreover, some inequalities used in Section 5 are very loose; most of the rounding operations in
fact produce much less error than the upper boundK ·u. Therefore, we can set the values ofK ·u much
larger than the theoretical values without compromising the quality of approximation.

Consequently, before calculating the list of reachable tuples of u, we first estimate the upper bound
and lower bound of the reachable values of ν̂u, µ̂u and ẑu using the list of tuples of its children.
Then, we dynamically assign values to K ·u by fixing the total number of different discrete values of
ν̂u, µ̂u and ẑu in the space, thereby determining the granularity of discretization. For example, if the
upper and the lower bounds of ν̂u are 1000 and 500 respectively, and we want 10 different values,
the value of Kν

u is set to be 1000−500
10 = 50. By using a finer granularity of discretization, we get

a slower algorithm but better solution quality. In our experiments, setting these numbers to be 50,
50 and 150 for ν̂u, µ̂u and ẑu, the algorithm became very fast and we were able to get very good
solution quality.

We compared RDP with a greedy algorithm and a state-of-the-art algorithm for conservation plan-
ning, which uses sample average approximation and mixed integer programming (SAA+MIP) [4,
6, 11]. We initially considered two different greedy algorithms. One incrementally maximizes the
increase of expected reward. The other incrementally maximizes the ratio between increase in ex-
pected reward and action cost. We found that the former performs better than the latter, so we
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only report results for that version. We compare all three algorithms on small river networks. On
large networks, we only compare RDP with the greedy algorithm because SAA+MIP fails to solve
problems of that size.

Figure 2: River networks in Massachusetts

Dataset Our experiments use data from the CAPS
project [20] for river networks in Massachusetts
(Fig. 2). Barrier passabilities are calculated from bar-
rier features using the model defined by the CAPS
project. We created actions to model practical repair
activities. For road-crossings, most passabilities start
close to 1 and are cheap to repair relative to dams. To
model this, we setAu,v={a1}, puv|a1 =pvu|a1 =1.0
and cuv|a1 = 5. In contrast, it is difficult and ex-
pensive to remove dams, so multiple strategies must
be considered to improve their passability. We cre-
ated actions Au={a1, a2, a3} with action a1 having
puv|a1 =pvu|a1 =0.2 and cuv|a1 =20; action a2 hav-
ing puv|a2 =pvu|a2 =0.5 and cuv|a2 =40; and action
a3 having puv|a3 =pvu|a3 =1.0 and cuv|a3 =100.

Results on Small Networks We compared SAA+MIP, RDP and Greedy on small river networks.
SAA+MIP used 20 samples for the sample average approximation and IBM CPLEX on 12 CPU
cores to solve the integer program. RDP1 used finer discretization than RDP2, therefore requiring
longer runtime. The results in Table 1 show that RDP1 gives the best increase in expected re-
ward (relative to a zero-cost policy) in most cases and RDP2 produces similarly good solutions, but
takes less time. Although Greedy is extremely fast, it produces poor solutions on some networks.
SAA+MIP gives better results than Greedy, but fails to scale up. For example, on a network with
781 segments and 604 barriers, SAA+MIP needs more than 16G of memory to construct the MIP.

Number of ER Increase Runtime
Segments Barriers SAA+MIP Greedy RDP1 RDP2 SAA+MIP Greedy RDP1 RDP2

106 36 3.7 4.1 4.1 4.0 3.3 0.0 0.7 0.4
101 71 4.0 3.6 4.3 4.3 19.5 0.0 2.5 1.2
163 91 11.3 11.2 12.3 12.1 42.3 0.0 13.6 6.8
263 289 20.7 11.1 25.3 24.8 1148.7 0.7 263.3 98.7
499 206 48.6 55.6 53.8 53.2 116.0 0.7 11.9 6.4
456 464 124.1 96.8 146.9 144.3 8393.5 0.7 359.9 142.0
639 609 51.8 25.8 53.7 51.6 12720.1 1.3 721.2 242.4

Table 1: Comparison of SAA, RDP and Greedy. Time is in seconds. Each unit of expected reward is 107

(square meters). “ER increase” means the increase in expected reward after taking the computed policy.

Results on Large Networks We compared RDP and Greedy on a large network—the Connecti-
cut River watershed, which has 10451 segments, 587 dams and 7545 crossings. We tested both
algorithms on three different settings of action passabilities.
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Figure 3: RDP vs Greedy on symmetric passabilities.

Actions w/ symmetric passabilities
In this experiment, we used the ac-
tions introduced above. The expected
reward increase (Fig. 3a) and runtime
(Fig. 3b) are plotted for different bud-
gets. For the expected reward, each
unit represents 1014 m2. Runtime is
in seconds. As before, RDP1 uses
finer discretization of tuple space
than RDP2. As Fig. 3 shows, the
RDP algorithms give much better so-
lution quality than the greedy algorithm. With a budget of 20000, the ER increase of RDP1 is almost
twice the increase for Greedy. Incidentally, RDP1 doesn’t improve the solution quality by much, but
it takes much longer time to finish. Notice that both RDP1 and RDP2 use constant runtime be-
cause the number of discrete values in both settings are bounded. In contrast, the runtime of Greedy
increases with the budget size and eventually exceeds RDP2’s runtime.
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Figure 4: RDP vs Greedy on asymmetric passabilities with all
downstream passabilities equal to 1.

Actions with asymmetric passabili-
ties The RDP algorithms work with
asymmetric passabilities as well. For
road-crossings, we set the actions to
be the same as before. For dams, we
first considered the case in which the
downstream passabilities are all 1—
which happens for some fish—and all
upstream passabilities are the same as
before. The results are shown in Fig-
ures 4a and 4b. In this case RDP
still performs better than Greedy and
tends to use less time as the budget
increases.
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Figure 5: RDP vs Greedy on asymmetric passabilities with vary-
ing downstream passabilities.

We also considered a hard case in
which the downstream passabilities
of a dam are given by pvu|a1 = 0.8,
pvu|a2 = 0.9, and pvu|a3 = 1.0.
These variations of passabilities pro-
duce more tuples in the discretized
space. Our RDP algorithm still works
well and produces better solutions
than Greedy over a range of budgets
as shown in Fig. 5a. As expected
in such hard cases, RDP needs much
more time than Greedy. However, obtaining high quality solutions to such complex conservation
planning problems in a matter of hours makes the approach very valuable.
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Figure 6: Time/quality tradeoffs

Time/Quailty Tradeoff Finally, we tested the time/quality trade-
off offered by RDP. The tradeoff is controlled by varying the level of
discretization. We ran these experiments on the Connecticut River
watershed using symmetric passabilities. Fig. 6 shows how runtime
and expected reward grow as we refine the level of discretization.
As we can see, in this case RDP converges quickly on high-quality
results and exhibits the desired diminishing returns property of any-
time algorithms—the quality gain is large initially and it diminishes
as we continue to refine the discretization.

7 Conclusion

We present an approximate algorithm that extends the rounded dynamic programming paradigm to
stochastic network design in bidirected trees. The resulting RDP algorithm is designed to maximize
connectivity in a river network by solving the bidirectional barrier removal problem—a hard conser-
vation planning problem for which no scalable algorithms exist. We prove that RDP is an FPTAS,
returning (1 − ε)-optimal solutions in polynomial time. However, its time complexity, O(n8/ε6),
makes it hard to apply it to realistic river networks. We present an adaptive-rounding version of the
algorithm that is much more efficient.

We apply this adaptive rounding method to segments of river networks in Massachusetts, including
the entire Connecticut River watershed. In these experiments, RDP outperforms both a baseline
greedy algorithm and an SAA+MIP algorithm, which is a state-of-art technique for stochastic net-
work design. Our new algorithm offers an effective tool to guide ecologists in hard conservation
planning tasks that help preserve biodiversity and mitigate the impacts of barriers in river networks.
In future work, we will examine additional applications of RDP and ways to relax the assumption
that the underlying network is tree-structured.
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