
The limits of squared
Euclidean distance regularization∗

Michał Dereziński
Computer Science Department

University of California, Santa Cruz
CA 95064, U.S.A.

mderezin@soe.ucsc.edu

Manfred K. Warmuth
Computer Science Department

University of California, Santa Cruz
CA 95064, U.S.A.

manfred@cse.ucsc.edu

Abstract

Some of the simplest loss functions considered in Machine Learning are the square
loss, the logistic loss and the hinge loss. The most common family of algorithms,
including Gradient Descent (GD) with and without Weight Decay, always predict
with a linear combination of the past instances. We give a random construction
for sets of examples where the target linear weight vector is trivial to learn but any
algorithm from the above family is drastically sub-optimal. Our lower bound on
the latter algorithms holds even if the algorithms are enhanced with an arbitrary
kernel function.
This type of result was known for the square loss. However, we develop new
techniques that let us prove such hardness results for any loss function satisfying
some minimal requirements on the loss function (including the three listed above).
We also show that algorithms that regularize with the squared Euclidean distance
are easily confused by random features. Finally, we conclude by discussing re-
lated open problems regarding feed forward neural networks. We conjecture that
our hardness results hold for any training algorithm that is based on the squared
Euclidean distance regularization (i.e. Back-propagation with the Weight Decay
heuristic).

1 Introduction

We define a set of simple linear learning problems described by an n dimensional square matrix
M with ±1 entries. The rows xi of M are n instances, the columns correspond to the n possible
targets, and Mij is the label given by target j to the
instance xi (See Figure 1). Note, that Mij = xi · ej ,
where ej is the j-th unit vector. That is, the j-th target
is a linear function that picks the j-th column out of
M. It is important to understand that the matrix M,
which we call the problem matrix, specifies n learn-
ing problems: In the jth problem each of the n in-
stances (rows) are labeled by the jth target (column).
The rationale for defining a set of problems instead of
a single problem follows from the fact that learning a
single problem is easy and we need to average the pre-

→ −1 +1 −1 +1
instances → −1 +1 +1 −1

→ +1 −1 −1 +1
→ +1 +1 −1 +1

↑ ↑ ↑ ↑
targets

Figure 1: A random±1 matrix M: the instances
are the rows and the targets the columns of the
matrix. When the j-th column is the target, then
we have a linear learning problem where the j-th
unit vector is the target weight vector.

diction loss over the n problems to obtain a hardness
result.
∗This research was supported by the NSF grant IIS-1118028.

1

The protocol of learning is simple: The algorithm is given k training instances labeled by one of
the targets. It then produces a linear weight vector w that aims to incur small average loss on all n
instances labeled by the same target.1 Any loss function satisfying some minimal assumptions can
be used, including the square, the logistic and the hinge loss. We will show that when M is random,
then this type of problems are hard to learn by any algorithm from a certain class of algorithms.2

By hard to learn we mean that the loss is high when we average over instances and targets. The class
of algorithms for which we prove our hardness results is any algorithm whose prediction on a new
instance vector x is a function of w ·x where the weight vector w is a linear combination of train-
ing examples. This includes any algorithm motivated by regularizing with ||w ||22 (i.e. algorithms
motivated by the Representer Theorem [KW71, SHS01]) or alternatively any algorithm that exhibits
certain rotation invariance properties [WV05, Ng04, WKZ14]. Note that any version of Gradient
Descent or Weight Decay on the three loss functions listed above belongs to this class of algorithms,
i.e. it predicts with a linear combination of the instances seen so far.

This class of simple algorithms has many advantages (such as the fact that it can be kernelized).
However, we show that this class is very slow at learning the simple learning problems described
above. More precisely, our lower bounds for a randomly chosen M have the following form: For
some constants A ∈ (0, 1] and B ≥ 1 that depend on the loss function, any algorithm that predicts
with linear combinations of k instances has average
loss at least A−B k

n with high probability, where the
average is over instances and targets. This means that
after seeing a fraction of A

2B of all n instances, the
average loss is still at least the constant A2 (see the red
solid curve in Figure 2 for a typical plot of the average
loss of GD).

Note, that there are trivial algorithms that learn our
learning problem much faster. These algorithms
clearly do not predict with a linear combination of the
given instances. For example, one simple algorithm
keeps track of the set of targets that are consistent
with the k examples seen so far (the version space)
and chooses one target in the version space at ran-
dom. This algorithm has the following properties: Af-
ter seeing k instances, the expected size of the version
space is min(n/2k, 1), so after O(log2 n) examples,
with high probability there is only one unit vector ej
left in the version space that labels all the examples
correctly.

Figure 2: The average logistic loss of the Gradi-
ent Descent (with and without 1-norm regulariza-
tion) and the Exponentiated Gradient algorithms
for the problem of learning the first column of a
100 dimensional square ±1 matrix. The x-axis is
the number of examples k in the training set. Note
that the average logistic loss for Gradient Descent
decreases roughly linearly.

One way to closely approximate the above version space algorithm is to run the Exponentiated Gra-
dient (EG) algorithm [KW97b] with a large learning rate. The EG algorithm maintains a weight
vector which is a probability vector. It updates the weights by multiplying them by non-negative
factors and then re-normalizes them to a probability vector. The factors are the exponentiated neg-
ative scaled derivatives of the loss. See dot-dashed green curve of Figure 2 for a typical plot of the
average loss of EG. It converges ”exponentially faster” than GD for the problem given in Figure
1. General regret bounds for the EG algorithm are known (see e.g. [KW97b, HKW99]) that grow
logarithmically with the dimension n of the problem. Curiously enough, for the EG family of algo-
rithms, the componentwise logarithm of the weight vector is a linear combination of the instances.3
If we add a 1-norm regularization to the loss, then GD behaves more like the EG algorithm (see
dashed blue curve of Figure 2). In Figure 3 we plot the weights of the EG and GD algorithms (with
optimized learning rates) when the target is the first column of a 100 dimensional random matrix.

1Since the sample space is so small it is cleaner to require small average loss on all n instances than just the
n− k test instances. See [WV05] for a discussion.

2Our setup is the same as the one used in [WV05], where such hardness results were proved for the square
loss only. The generalization to the more general losses is non-trivial.

3This is a simplification because it ignores the normalization.

2

Figure 3: In the learning problem the rows of a 100-dimensional random ±1 matrix are labeled
by the first column. The x-axis is the number of instances k ∈ 1..100 seen by the algorithm. We
plot all 100 weights of the GD algorithm (left), GD with 1-norm regularization (center) and the EG
algorithm (right) as a function of k. The GD algorithms keeps lots of small weights around and the
first weight grows only linearly. The EG algorithm wipes out the irrelevant weights much faster and
brings up the good weight exponentially fast. GD with 1-norm regularization behaves like GD for
small k and like EG for large k.

The GD algorithm keeps all the small weight around and the weight of the first component only
grows linearly. In contrast, the EG algorithm grows the target weight much faster. This is because
in a GD algorithm the squared 2-norm regularization does not punish small weight enough (because
w2
i ≈ 0 when wi is small). If we add a 1-norm regularization to the loss then the irrelevant weights

of GD disappear more quickly and the algorithm behaves more like EG.

Kernelization

We clearly have a simple linear learning problem in Figure 1. So, can we help the class of algorithms
that predicts with linear combinations of the instances by “expanding” the instances with a feature
map? In other words, we could replace the instance x by φ(x), where φ is any mapping from Rn to
Rm, and m might be much larger than n (and can even be infinite dimensional). The weight vector
is now a linear combination of the expanded instances and computing the dot product of this weight
vector with a new expanded instance requires the computation of dot products between expanded
instances.4

Even though the class of algorithms that predicts with a linear combination of instances is good at
incorporating such an expansion (also referred to as an embedding into a feature space), we can
show that our hardness results still hold even if any such expansion is used. In other words it does
not help if the instances (rows) are represented by any other set of vectors in Rm. Note that the
learner knows that it will receive examples from one of the n problems specified by the problem
matrix M. The expansion is allowed to depend on M, but it has to be chosen before any examples
are seen by the learner.

Related work

There is a long history for proving hardness results for the class of algorithms that predict with
linear combinations of instances [KW97a, KWA97]. In particular, in [WV05] it was shown for
the Hadamard matrix and the square loss, that the average loss is at least 1− k

n even if an arbitrary
expansion is used. This means, that if the algorithm is given half of all n instances, its average square
loss is still half. The underlying model is a simple linear neuron. It was left as an open problem
what happens for example for a sigmoided linear neuron and the logistic loss. Can the hardness
result be circumvented by choosing different neuron and loss function? In this paper, we are able to
show that this type of hardness results for algorithms that predict with a linear combination of the
instances are robust to learning with a rather general class of linear neurons and more general loss
functions. The hardness result of [WV05] for the square loss followed from a basic property of the
Singular Value Decomposition. However, our hardness results require more complicated counting

4This can often be done efficiently via a kernel function. Our result only requires that the dot products
between the expanded instances are finite and the φ map can be defined implicitly via a kernel function.

3

techniques. For the more general class of loss functions we consider, the Hadamard matrix actually
leads to a weaker bound and we had to use random matrices instead.

Moreover, it was shown experimentally in [WV05] (and to some extent theoretically in [Ng04]) that
the generalization bounds of 1-norm regularized linear regression grows logarithmically with the
dimension n of the problem. Also, a linear lower bound for any algorithm that predicts with linear
combinations of instances was given in Theorem 4.3 of [Ng04]. However, the given lower bound
is based on the fact that the Vapnik Chervonienkis (VC) dimension of n-dimensional halfspaces is
n + 1 and the resulting linear lower bound holds for any algorithm. No particular problem is given
that is easy to learn by say multiplicative updates and hard to learn by GD. In contrast, we give
a random problem in Figure 1 that is trivial to learn by some algorithms, but hard to learn by the
natural and most commonly used class of algorithms which predicts with linear combinations of
instances. Note, that the number of target concepts we are trying to learn is n, and therefore the VC
dimension of our problem is at most log2 n.

There is also a large body of work that shows that certain problems cannot be embedded with a large
2-norm margin (see [FS02, BDES02] and the more recent work on similarity functions [BBS08]).
An embedding with large margins allows for good generalization bounds. This means that if a
problem cannot be embedded with a large margin, then the generalization bounds based on the
margin argument are weak. However we don’t know of any hardness results for the family of
algorithms that predict with linear combinations in terms of a margin argument, i.e. lower bounds
of generalization for this class of algorithms that is based on non-embeddability with large 2-norm
margins.

Random features

The purpose of this type of research is to delineate which types of problems can or cannot be effi-
ciently learned by certain classes of algorithms. We give a problem for which the sample complexity
of the trivial algorithm is logarithmic in n, whereas it is linear in n for the natural class of algorithms
that predicts with the linear combination of instances. However, why should we consider learning
problems that pick columns out of a random matrix? Natural data is never random. However, the
problem with this class of algorithms is much more fundamental. We will argue in Section 4 that
those algorithms get confused by random irrelevant features. This is a problem if datasets are based
on some physical phenomena and that contain at least some random or noisy features. It seems that
because of the weak regularization of small weights (i.e. w2

i ≈ 0 when wi is small), the algorithms
are given the freedom to fit noisy features.

Outline

After giving some notation in the next section and defining the class of loss functions we consider,
we prove our main hardness result in Section 3. We then argue that the family of algorithms that
predicts with linear combination of instances gets confused by random features (Section 4). Finally,
we conclude by discussing related open problems regarding feed forward neural nets in Section 5:
We conjecture that going from single neurons to neural nets does not help as long as the training
algorithm is Gradient Descent with a squared Euclidean distance regularization.

2 Notations

We will now describe our learning problem and some notations for representing algorithms that
predict with a linear combination of instances. Let M be a ±1 valued problem matrix. For the sake
of simplicity we assume M is square (n×n). The i-th row of M (denoted as xi) is the i-th instance
vector, while the j-th column of M is the labeling of the instances by the j-th target. We allow
the learner to map the instances to an m-dimensional feature space, that is, xi is replaced by φ(xi),
where φ : Rn → Rm is an arbitrary mapping. We let Z ∈ Rn×m denote the new instance matrix
with its i-th row being φ(xi).5

5The number of features m can even be infinite as long as the n2 dot products ZZ> between the expanded
instances are all finite. On the other hand, m can also be less than n.

4

The algorithm is given the first k rows of Z labeled by one of the n targets. We use Ẑ to denote
the first k rows of Z. After seeing the rows of Ẑ labeled by target i, the algorithm produces a linear

combination wi of the k rows. Thus the weight vector wi takes the form wi = Ẑ
>
ai, where ai

is the vector of the k linear coefficients. We aggregate the n weight vectors and coefficients into
the m × n and k × n matrices, respectively: W := [w1, . . . ,wn] and A = [a1, . . . ,an]. Clearly,

W = Ẑ
>
A. By applying the weight matrix to the instance matrix Z we can obtain the n × n

prediction matrix of the algorithm: P = ZW = Z Ẑ
>
A. Note that Pij = φ(xi) ·wj is the linear

activation of the algorithm produced for the i-th instance after receiving the first k rows of Z labeled
with the j-th target.

We are now interested to compare the prediction matrix with the problem matrix using a non-
negative loss function L : R × {−1, 1} → R≥0. We define the average loss of the algorithm
as

1

n2

∑
i,j

L(Pi,j ,Mi,j).

Note that the loss is between linear activations and binary labels and we average it over instances
and targets.

Definition 1 We will call a loss function L : R× {−1, 1} → R≥0 to be C-regular where C > 0, if
L(a, y) ≥ C whenever a · y ≤ 0, i.e. a and y have different signs.

The loss function guarantees that if the algorithm produces a linear activation of a different sign,
then a loss of at least C is incurred. Three commonly used 1-regular losses are the:

• Square Loss, L(a, y) = (a− y)2, used in Linear Regression.

• Logistic Loss, L(a, y) = −y+1
2 log2(σ(a))− y−1

2 log2(1−σ(a)), used in Logistic Regres-
sion. Here σ(a) denotes the sigmoid function 1

1+exp(−a) .

• Hinge Loss, L(a, y) = max(0, 1− ay), used in Support Vector Machines.

[WV05] obtained a linear lower bound for the square:

Theorem 2 If the problem matrix M is the n dimensional Hadamard matrix, then for any algorithm
that predicts with linear combinations of expanded training instances, the average square loss after
observing k instances is at least 1− k

n .

The key observation used in the proof of this theorem is that the prediction matrix P = Z Ẑ
>
A

has rank at most k, because Ẑ has only k rows. Using an elementary property of the singular value
decomposition, the total squared loss ‖P−M ‖22 can be bounded by the sum of the squares of the
last n − k singular values of the problem matrix M. The bound now follows from the fact that
Hadamard matrices have a flat spectrum. Random matrices have a “flat enough” spectrum and the
same technique gives an expected linear lower bound for random problem matrices. Unfortunately
the singular value argument only applies to the square loss. For example, for the logistic loss the
problem is much different. In that case it would be natural to define the n × n prediction matrix as

σ(ZW) = σ(Z Ẑ
>
A). However the rank of σ(ZW) jumps to n even for small values of k. Instead

we keep the prediction matrix P as the n2 linear activations Z Ẑ
>
A produced by the algorithm, and

define the loss between linear activations and labels. This matrix still has rank at most k. In the next
section, we will use this fact in a counting argument involving the possible sign patterns produced
by low rank matrices.

If the algorithms are allowed to start with a non-zero initial weight vector, then the hardness results
essentially hold for the class of algorithms that predict with linear combinations of this weight vector
and the k expanded training instances. The only difference is that the rank of the prediction matrix is
now at most k+1 instead of k and therefore the lower bound of the above theorem becomes 1− k+1

n

instead of 1 − k
n . Our main result also relies on the rank of the prediction matrix and therefore it

allows for a similar adjustment of the bound when an initial weight vector is used.

5

3 Main Result

In this section we present a new technique for proving lower bounds on the average loss for the
sparse learning problem discussed in this paper. The lower bound applies to any regular loss and is
based on counting the number of sign-patterns that can be generated by a low-rank matrix. Bounds
on the number of such sign patterns were first introduced in [AFR85]. As a corollary of our method,
we also obtain a lower bound for the “rigidity” of random matrices.

Theorem 3 Let L be aC-regular loss function. A random n×n problem matrix M almost certainly
has the property that for any algorithm that predicts with linear combinations of expanded training
instances, the average square loss L after observing k instances is at least 4C (1

20 −
k
n).

ProofC-regular losses are at leastC if the sign of the linear activation for an example does not match
the label. So, we can focus on counting the number of linear activations that have wrong signs. Let
P be the n×n prediction matrix after receiving k instances. Furthermore let sign(P) ∈ {−1, 1}n×n
denote the sign-pattern of P. For the sake of simplicity, we define sign(0) as 1. This simplification
underestimates the number of disagreements. However we still have the property that for any C-
regular loss: L(a, y) ≥ C| sign(a)− y|/2.

We now count the number of entries on which sign(P) disagrees with M. We use the fact that P
has rank at most k. The number of sign patterns of n×m rank ≤ k matrices is bounded as follows
(This was essentially shown6 in [AFR85], the exact bound we use below is a refinement given in
[Sre04]):

f(n,m, k) ≤
(

8e · 2 · nm
k(n+m)

)k(n+m)

.

Setting n = m = a · k, we get

f(n, n, n/a) ≤ 2(6+2 log2(e·a))·n
2/a.

Now, suppose that we allow additional up to r = αn2 signs of sign(P) to be flipped. In other words,
we consider the set Skn(r) of sign-patterns having Hamming distance at most r from any sign-pattern
produced from a matrix of rank at most k. For a fixed sign-pattern, the number g(n, α) of matrices
obtained by flipping at most r entries is the number of subsets of size r or less that can be flipped:

g(n, α) =

αn2∑
i=0

(
n2

i

)
≤ 2H(α)n2

.

Here, H denotes the binary entropy. The above bound holds for any α ≤ 1
2 . Combining the two

bounds described above, we can finally estimate the size of Skn(r):

|Skn(r)| ≤ f(n, n, n/a) · g(n, α) ≤ 2(6+2 log2(e·a))·n
2/a · 2H(α)n2

= 2

(
6+2 log2(e·a)

a +H(α)
)
n2

.

Notice, that if the problem matrix M does not belong to Skn(r), then our prediction matrix P will
make more than r sign errors. We assumed that M is selected randomly from the set {−1, 1}n×n
which contains 2n

2

elements. From simple asymptotic analysis, we can conclude that for large
enough n, the set Skn(r) will be much smaller than {−1, 1}n×n, if the following condition holds:

6 + 2 log2(e · a)

a
+H(α) ≤ 1− δ < 1. (1)

In that case, the probability of a random problem matrix belonging to Skn(r) is at most

2(1−δ)n
2

2n2 = 2−δn
2

−→ 0.

We can numerically solve Inequality (1) for α by comparing the left-hand side expression to 1.
Figure 4 shows the plot of α against the value of k

n = a−1. From this, we can obtain the simple

6Note that they count {−1, 0, 1} sign patterns. However by mapping 0’s to 1’s we do not increase the
number of sign patterns.

6

Figure 4: Lower bound for average error. The solid line
is obtained by solving inequality (1). The dashed line
is a simple linear bound.

Figure 5: We plot the distance of the
unit vector to a subspace formed by k
randomly chosen instances.

linear bound of 4(1
20 −

k
n) = 1

5 − 4 kn , because it satisfies the strict inequality for δ = 0.005. It is
easy to estimate, that this bound will hold for n = 40 with probability approximately 0.996, and
for larger n that probability converges to 1 even faster than exponentially. It remains to observe that
each sign error incurs at least loss C, which gives us the desired bound for the average loss of the
algorithm. 2

The technique used in our proof also gives an interesting insight into the rigidity of random matrices.
Typically, the rigidity RM(r) of a matrix M is defined as the minimum number of entries that need
to be changed to reduce the rank of M to r. In [FS06], a different rigidity measure, R̃M(r), is
considered, which only counts the sign-non-preserving changes. The bounds shown there depend
on the SVD spectrum of a matrix. However, if we consider a random matrix, then a much stronger
lower bound can be obtained with high probability:

Corollary 4 For a random matrix M ∈ {−1, 1}n×n and 0 < r < n, almost certainly the minimum
number of sign-non-preserving changes to a matrix in Rn×n that is needed to reduce the rank of the
matrix to r is at least

R̃M(r) ≥ n2

5
− 4rn.

Note that the rigidity bound given in [FS06] also applies to our problem, if we use the Hadamard
matrix as the problem matrix. In this case, the lower bound is much weaker and no longer linear.
Notably, it implies that at least

√
n instances are needed to get the average loss down to zero (and this

is conjectured to be tight for Hadamard matrices). In contrast our lower bound for random matrices
assures that Ω(n) instances are required to get the average loss down to zero.

4 Random features

In this section, we argue that the family of algorithms whose weight vector is a linear combination
of the instances gets confused by random features. Assume we have n instances that are labeled by
a single ±1 feature. We represent this feature as a single column. Now, we add random additional
features. For the sake of concreteness, we add n − 1 of them. So our learning problem is again
described by an n dimensional square matrix: The n rows are the instances and the target is the unit
vector e1. In Figure 5, we plot the average distance of the vector e1 to the subspace formed by a
subset of k instances. This is the closest a linear combination of the k instances can get to the target.

We show experimentally, that this distance is
√

1− k
n on average. This means, that the target e1

cannot be expressed by linear combinations of instances until essentially all instances are seen (i.e.
k is close to n).

7

It is also very important to understand that expanding the instances using a feature map can be costly
because a few random features may be expanded into many “weakly random” features that are still
random enough to confuse the family of algorithms that predict with linear combination of instances.
For example, using a polynomial kernel, n random features may be expanded to nd features and now
the sample complexity grows with nd instead of n.

5 Open problems regarding neural networks

We believe that our hardness results for picking single features out of random vectors carry over
to feed forward neural nets provided that they are trained with Gradient Descent (Backpropatation)
regularized with the squared Euclidean distance (Weight Decay). More precisely, we conjecture
that if we restrict ourself to Gradient Descent with squared Euclidean distance regularization, then
additional layers cannot improve the average loss on the problem described in Figure 1 and the
bounds from Theorem 3 still hold.

On the other hand if 1-norm regularization is used, then Gradient Descent behaves more like the
Exponentiated Gradient algorithm and the hardness result can be avoided.

One can view the feature vectors arriving at the output node as an expansion of the input instances.
Our lower bounds already hold for fixed expansions (i.e. the same expansion must be used for
all targets). In the neural net setting the expansion arriving at the output node is adjusted during
training and our techniques for proving hardness results fail in this case. However, we conjecture that
the features learned from the k training examples cannot help to improve its average performance,
provided its training algorithm is based on the Gradient Descent or Weight Decay heuristic.

Note that our conjecture is not fully specified: what initialization is used, which transfer functions,
are there bias terms, etc. We believe that the conjecture is robust to many of those details. We have
tested our conjecture on neural nets with various numbers of layers and standard transfer functions
(including the rectifier function). Also in our experiments, the dropout heuristic [HSK+12] did not
improve the average loss. However at this point we have only experimental evidence which will
always be insufficient to prove such a conjecture.

It is also an interesting question to study whether random features can confuse a feed forward neural
net that is trained with Gradient Descent. Additional layers may hurt such training algorithms when
some random features are in the input. We conjecture that any such algorithm requires at least O(1)
additional examples per random redundant feature to achieve the same average accuracy.

References
[AFR85] N. Alon, P. Frankl, and V. Rödel. Geometrical realization of set systems and probabilis-

tic commnunication complexity. In Proceedings of the 26th Annual Symposium on the
Foundations of Computer Science (FOCS), pages 277–280, Portland, OR, USA, 1985.
IEEE Computer Society.

[BBS08] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. Improved Guarantees for
Learning via Similarity Functions. In Rocco A. Servedio and Tong Zhang, editors,
COLT, pages 287–298. Omnipress, 2008.

[BDES02] S. Ben-David, N. Eiron, and H. U. Simon. Limitations of learning via embeddings in
Euclidean half-spaces. Journal of Machine Learning Research, 3:441–461, November
2002.

[FS02] J. Forster and H. U. Simon. On the smallest possible dimension and the largest possible
margin of linear arrangements representing given concept classes. In Proceedings of the
13th International Conference on Algorithmic Learning Theory, number 2533 in Lec-
ture Notes in Computer Science, pages 128–138, London, UK, 2002. Springer-Verlag.

[FS06] J. Forster and H. U. Simon. On the smallest possible dimension and the largest possible
margin of linear arrangements representing given concept classes. Theor. Comput. Sci.,
pages 40–48, 2006.

[HKW99] D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Relative loss bounds for single neu-
rons. IEEE Transactions on Neural Networks, 10(6):1291–1304, November 1999.

8

[HSK+12] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. CoRR, abs/1207.0580, 2012.

[KW71] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian Spline Functions.
J. Math. Anal. Applic., 33:82–95, 1971.

[KW97a] J. Kivinen and M. K. Warmuth. Additive versus Exponentiated Gradient updates for
linear prediction. Information and Computation, 132(1):1–64, January 1997.

[KW97b] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1–64, January 1997.

[KWA97] J. Kivinen, M. K. Warmuth, and P. Auer. The perceptron algorithm vs. winnow: lin-
ear vs. logarithmic mistake bounds when few input variables are relevant. Artificial
Intelligence, 97:325–343, December 1997.

[Ng04] A. Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In
Proceedings of Twentyfirst International Conference in Machine Learning, pages 615–
622, Banff, Alberta, Canada, 2004. ACM Press.

[SHS01] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized Representer Theorem. In
D. P. Helmbold and B. Williamson, editors, Proceedings of the 14th Annual Confer-
ence on Computational Learning Theory, number 2111 in Lecture Notes in Computer
Science, pages 416–426, London, UK, 2001. Springer-Verlag.

[Sre04] N. Srebro. Learning with Matrix Factorizations. PhD thesis, Massachusetts Institute of
Technology, 2004.

[WKZ14] M. K. Warmuth, W. Kotłowski, and S. Zhou. Kernelization of matrix updates. Jour-
nal of Theoretical Computer Science, 2014. Special issue for the 23nd International
Conference on Algorithmic Learning Theory (ALT 12), to appear.

[WV05] M. K. Warmuth and S.V.N. Vishwanathan. Leaving the span. In Proceedings of the
18th Annual Conference on Learning Theory (COLT ’05), Bertinoro, Italy, June 2005.
Springer-Verlag.

9

