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Abstract

This is the supplementary document for the paper on Probabilistic Differential
Dynamic Programming (PDDP). It includes derivations for the probabilistic rep-
resentation of the stochastic dynamics, the linearization of the dynamics model
and the cost function formulation.

1 Problem formulation

We consider a general unknown stochastic system described by the following differential equation
dx = f(x,u)dt + C(x,u)dw, x(tp) = %9, dw~N(0,%,), (1)

where x € R"™ is the state, u € R is the control, ¢ is time and w € RP is standard Brownian motion
noise. The trajectory optimization problem is defined as finding a sequence of state and controls that
minimize the expected cost

J™(x(to)) = E [h (x(T)) + /t ' c(x(t), 7 (x(t)), t) dt} : 2)

where h(x(T)) is the terminal cost, £(x(¢),7(x(t)),t) is the instantaneous cost rate, u(t) =
m(x(t)) is the control policy. The cost J™(x(to)) is defined as the expectation of the total cost
accumulated from ¢( to 7. For the rest of our analysis, we denote x;, = x(k) in discrete-time where
k=0,1,..., H is the time step, we use this subscript rule for other variables as well.

2 Probabilistic model learning

The continuous functional mapping from state-control pair X = (x,u) € R™™ to state tran-
sition dx can be viewed as an inference with the goal of inferring dx given x. We view this
inference as a nonlinear regression problem. In this subsection, we introduce the Gaussian pro-
cesses (GP) approach to learning the dynamics model in (I). A GP is defined as a collection of
random variables, any finite number subset of which have a joint Gaussian distribution. Given a
sequence of state-control pair X = {(xg, ug), - .. (Xg, ug)}, and the corresponding state transition
dX = {dxq,...,dxpg}, a GP is completely defined by a mean function and a covariance func-
tion. The joint distribution of the observed output and the output corresponding to a given test
state-control pair X* = (x*, u*) can be written as
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The covariance of this multivariate Gaussian distribution is defined via a kernel matrix K(x;,x;).
In particular, in this paper we consider the Gaussian kernel

1
K(Xi,Xj) = O'g exp(—i(xi — Xj)TW(Xi — Xj)) + 0'721, (4)

with o, 0,, W the hyper-parameters of the GP. The kernel function can be interpreted as a similarity
measure of random variables. More specifically, if the training pairs X; and X; are close to each
other in the kernel space, their output dx; and dx; are highly correlated.

The posterior distribution, which is also a Gaussian distribution, can be obtained by constraining
the joint distribution to contain the output dx* that are consistent with the observations. Assuming
independent outputs (no correlation between each output dimension) and given test input x; =
[xk, ug] at time k . The one-step prediction of dynamics based on GP can be evaluated as

where the mean and variance are given by
dpy, =Eldx;] = K (x5, X)(K(X, X) 4 0,,I) " 'dX, (6)
A%y, =Var[dx,] = K(Xg, %z) — K (X, X)(K(X, X) + 0,I) ' K(X, %)

where dp;, and dX, are predictive mean and variance of the state transition, respectively. Therefore,
the state distribution at k + 1 would be:

p(Xk) NN(#’kaEk)v (7)
where the state mean an variance are
M1 =X +dpy, X =d3g. )

When propagating the GP-based dynamics over a trajectory of time horizon H, the input state x;, be-
comes uncertain with Gaussian distribution, where k£ = 1, ..., H (the initial state X is deterministic).
Thus the distribution over state transition can be computed as:

p(dxy) =//p(f(Xk,uk)leuk)P(Xk,Uk)kaduk- )

Generally, the above distribution cannot be computed analytically because the nonlinear mapping of
input Gaussian distributions lead to non-Gaussian predictive distributions. However, the predictive
distribution can be approximated by a Gaussian. Thus the state distribution at ¢+ 1 is also a Gaussian

Kiy1 = Bg + duk, Y1 = X +d3g + COV[Xk,ka] + COV[ka,Xk]. (10)

In order to obtain the distribution over state N (g, 1, X1 ). Firstly, we compute the joint distribu-
tion over state-control pair p(Xj) = p(xx, ux) as follow

p( illz ) NN( Eﬁfk] ’ { CoV[?JI;:,Xk] C()Cvgi{ﬁ;ﬁk] }) (11)

where E[uy] and Cov|uy| are mean and covariance of the distribution over control policy p(uy).
To simplify notation, we denote the mean and covariance of the above distribution as p(Xj) ~
N (fay,, Xk). Since the control policy is a linear function of the Gaussian belief augmented state in
this paper, the control is actually deterministic.

Given the input joint distribution p(Xy ), we will compute the predictive distribution of state transi-
tion p(dxy). The predictive mean can be computed using the law of iterated expectations (Fubini’s



theorem)

duk:///f(xk,uk)p(x;ﬁuk;)dfdxk;du;C
- / / £(%5)p(Xp)df A dt
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where ¥ € RN*" and qi, = [qx1,- .-, qxn] " € RY with each element

Qi = /K(Xi,ik)/\/(ik\ﬁk,ﬁik)dik

— 2SS + W2 exp ( - %(Xi — ) (B + A) (X - ﬁk)). (13)
Next, we compute the predictive covariance matrix
Var(dxg1) . Cov(dxpn,dxk1)
Cov(dxi|Xy) = : : (14)
Cov(dxl;.l, dxgn) ... Var(dxkn)

where the variance terms can be obtained as

Var(dxy) =Es, [Var(£(%)| iy, Sx)] + Var (Ef [£(%) |y, Sk])

=Eg, [Var(dxy)] + <E,~<k [(dxx)?] — Ex, [dxx] 2)

:/ (K(ik,ik) — K (%, X)(K(X, X) + aiI)‘lK(f{,ik))p(ik)dik
5 X < X 211 2 e \ig
+ / (K(xk,X)(K(X,X)—&—anI) dx) p(%e )%y

_ ((K(X,X) +gfLI)*ldX)T/K(ik,X)N(ikmk,ik)dfck)Q. (15)

The last term in the above equation can be represented by ¥ and q defined earlier, then the equation
becomes

Var(dx;,) :/ (K (Re %) = Ko, X)(K(X,X) + 021) K (X, %) ) p(Re )%

+ /K(ik,X)WTK(Xik)p(ik)dik — (Tq)% (16)
Re-arrange the above expressions by pulling the terms that are independent of X, out of the integrals:

Var(dxy) _aﬁtr<(K(X,X)+ggx)1 / (K(X,ik)K(ik,X))p(ik)dik)

07 ([ KO xR R Xop)ane ) - (8’

Dy,

P

2 u«((mx, X) + azx)—l@k> TR — (U7, (17)



where the integral terms ®;, can be evaluated as

By = [ KX R0)K (R, X)pl0) 5
K(X;, 1) K(X;, 1 W, w,
_ _K li’k)(jluk)lex((i( i g4 %,
23,(W,H + W) + 1|2 2W, + W, T W, + W,
LW W, . _

) — i)

(18)
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where W;, W are the kernel parameters corresponding to output dimension 7 and j, respectively.
The cross covariance terms can be obtained by

Cov(dxg;, dxg;) = Ex, [dxkidxkj} —Eg, [dxki]E;{k [dxkﬂ (19)
Similarly, it can be found that the first term is
Ex, [dxpidxy;] = U7 @, V5, (20)
where
U, = K(X,X) +02)71dX;, ¥, = K(X,X) +021)"1dX;. (21)
Therefore
Covdxi, dxrj] = UF @) — (VT a) ™ (V] qw). (22)

The input-output cross-covariances can be obtained by
Cov[xg, dxi] = E[xpdx;] — E[xi|Eldxi] = Elxif (x5, ur)] — pr,dpsy- (23)

The kernel or hyper-parameter © = (o, 05, W) can be learned by maximizing the log-likelihood
of the training outputs given the inputs:

O* = argmax { log (p (dX|X, @)) } (24)
©

where

log (p (dX|X, @)) =— %dXT (K(X, X) + 07211) _ldX 05

1 .. H
~5log ‘K(X,X) +021| - 5 log 2.

The optimization problem can be solved using numerical methods such as conjugate gradient.

3 Local dynamics models

In DDP related algorithms, a local model along a nominal trajectory (X, ) , where k = 0, ..., H,
is created based on: i) a first or second-order local approximation of the dynamics model; ii) a
second-order local approximation of the value function. In our proposed PDDP framework, we will
create a local model along a trajectory of state distribution-control pair (p(Xg), ug). We introduce
the Gaussian augmented state vector z7 = [, vec(Zy)]T € R"T"X" where vec(X}) is the vector-
ization of 3. First, we create a local linear model of the dynamics. Based on eq.(I0), the dynamics
model with the augmented state can be written as

z5 1 = Flzg,ug). (26)

Define the control and state variations dzj, = zj — Zj, and duy, = uy — Uj. In this work we consider
the first order expansion of the dynamics. More precisely we have

0zy, 1 = Fj, 0zy, + Filoug, (27)



where the Jacobians F; and ' are specified as

Oy Oy

T _ o 9 (n+n2) (n+n2)
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o, B (28)
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where the partial derivatives can be evaluated as
0 ouT
i1 i o3
Oy, opy
pT [
I 0 qu Ofuy, (29)
Ofty,  Opy,
. . . o 00 ak; Oft, .
For each output dimension, the partial derivative o, o, can be obtain as
k k
- N -

OVl ar; Oy, Odyij Ofay,

DS, G O

Opy,  Opy, = Opry, Opy,

N T i
S S _ Iz
= (Z Vijdkij (X — fg) ' (Bk + W) 1) aTk' (30)
k

=1

o,
a,"tk . . .
to state covariance for each output dimension can be found as

where can be easily obtained. Similarly, the partial derivatives of predictive mean with respect

Oy OVTqu; 0% ZN: v Odij M
— y =k

0%y, oY, 0% _j:1 : 0%, 0%y

N 1 -1y I o \T
= Z UiiQkij | — 3 ((VVZ Y +I) 7T W, ) 3 (Xki — fy,)
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where g%’“ can be easily obtained. The partial derivatives of covariance with respect to input mean
k

for each output dimension can be evaluated as

82(k+1)1‘j _ 8d2;€ij n aCOV[in,dX/@j] 4 8COV[dxki,ij] 8ﬁk (32)
Opy, Opy, Ofy, Opy, Opy,
where
8d2kij T <8<I>k 8qi T 8qj> < 1 8(I)k>
— =, — — —q; —g;— Ui+ — (Kto,I —
opy, oy, Ky ! ( ) Oy,
Oy < W, W, . )T( 1 . >1
= o+ - W e T
8'U,k kij Wz + WJ X W’i 4 WJ X] I“l’kt W;l + W;l k
OCov[dxy, xk] )N Al ( - - 0k )
_ == U (Xpi — ) 5= + aAwil |- (33)
Oy, S+ W 2 v(( ) Oy,

i=0
The partial derivatives of covariance with respect to input covariance for each output dimension can
be evaluated as

62(k+1)ij . 8d23kij n BCOV[Xﬁi,kaj] 4 6COV[d)~(ki,xkﬂ aik
aEk ) 82k 62k 82k

(34)
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odX i 0P 8qi 8(1‘ _ 0P
(0o ()

o 0%, X 0%},
6<I>;m-j _ _1 B W +Wj —1 Wi +Wj T
0%, 2 ’W[(( W, W, B 1) W, W, ))
W, W, T 1 -1
7<Wi+Wj W, +W ”’“) (Wf1+W]1+2k>

(o Xi + Wi - B )
Wi + Wj ! Wz + Wj 7 k
OCov[dxy, xi] ( 1 N (X + W)—l)) mtn

- _ _ Wi (% — i — fug)+
o5y S+ W o5 Z:; kil Fii)
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S (zk ) > Vil = ﬂmg‘;’” (35)

1 6l‘l’lc-#l al‘l’k+1 82k+1 82k+1 . . . .
We have found the expression of TR SRR T A 3 analytically. The partial derivatives

with respective to control “"“ , 6?{1‘“ can be found similarly.

4 Cost function

In classic DDP/LQG and most optimal control problems, the following quadratic cost function was
used:

L(xp, ) = (x5 — x2°NTQ(x — x9°™) + uf Ruy, (36)

where 2J° is the target state. In probabilistic DDP, given the distribution p(xy,) ~ N (g, ). Let

okij = [Xk)i; and ¢;; = [Q]s;. The expectation of original quadratic cost function can be obtained
as:

E[E(xk,uk)} = E[(xk xzoal) Q(xy — qoal) +uy Ruk}

B[ w0y — )] + il Ry

i=1 j=1

- Z qu { i — 23 (why — ygoal)} +u; Ruy,

Z Zq” <C0v<(azkl — 29N (xh; — x?oal))—k

=

{xkz _ xgoal}E [fkj . xgotﬂ]) + uERuk

= 3> i (s + i — g = 29°")) + uf Ry

i=1 j=1
n n n n
= o+ > aii (e — ) (g — 29°") + uj Ruy
i=1 j=1 i=1 j=1

= Z[sz]n‘ + (g — x0T Qg — xI°) + uf Ruy,

=tr(QXg) + (py, — Xi"“Z)Tka goal) + u, Ruy,



Therefore,in this paper we use the cost function with the augmented state

L(z3,up) = tr(QXy) + (1, — P T Qpy — xI°) + (u) "Ruy. 37)

The partial derivatives of the above cost function with respect to (z7, uy) can be easily obtained by

D Lagou - [ £l

0z}, oy,
T T
o —xy7q )"

a x
Tmﬁ(zk’uk) = 2(uk)TR.

I 0
L(z, u) EoN

The cost function scales linearly with the state covariance, therefore the exploration strategy of
PDDP is balanced between the distance from the target and the variance of the state and avoids high
risk explorations.
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