
Supplement to: PAC-Bayesian AUC classification and
scoring

James Ridgway∗
CREST and CEREMADE University Dauphine

Timbre J120
3, Avenue Pierre Larousse 92245 MALAKOFF CEDEX

FRANCE
james.ridgway@ensae.fr

Pierre Alquier
University College Dublin

Address
pierre.alquier@ucd.ie

Nicolas Chopin
CREST(ENSAE) and HEC Paris

Timbre J120
3, Avenue Pierre Larousse 92245 MALAKOFF CEDEX

FRANCE
nicolas.chopin@ensae.fr

Feng Liang
University of Illinois at Urbana-Champaign

116A Illini Hall 725 S. Wright St. Champaign, IL 61820 USA

Abstract

This supplement follows the same plan as the paper.

2 PAC-Bayes bounds for linear scores

2.2 Assumptions and general results

A simple sufficient condition for Dens(c) to hold is that (X1−X2)/‖X1−X2‖ admits a probability
density with respect to the spherical measure of dimension d−1 which is bounded above byB. Then

P(〈X1 −X2, θ〉 ≥ 0, 〈X1 −X2, θ
′〉 ≤ 0) ≤ B arccos (〈θ, θ′〉)

2π

≤ B

2π

√
5− 5 〈θ, θ′〉

=
B

2π

√
5

2
‖θ − θ′‖.

Proof of lemma 2.1

In order to prove lemma 2.1 we need the following Bernstein inequality.

Proposition 2.1 (Bernstein’s inequality for U-statistics) For any γ > 0, for any θ ∈ Rd,

E exp[γ|Rn(θ)−Rn −R(θ) +R|] ≤ 2 exp

 γ2

n−1E((qθ1,2)2)(
1− 4γ

n−1

)
 .

∗http://www.crest.fr/pagesperso.php?user=3328
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Proof of Proposition 2.1. Fix θ. Remember that

qθi,j = 1{〈θ,Xi −Xj〉 (Yi − Yj) < 0} − 1{[σ(Xi)− σ(Xj)](Yi − Yj) < 0} −R(θ) +R

so that
Un := Rn(θ)−Rn −R(θ) +R =

1

n(n− 1)

∑
i 6=j

qθi,j .

First, note that
E exp[γ|Un|] ≤ E exp[γUn] + E exp[γ(−Un)].

We will only upper bound the first term in the r.h.s., as the upper bound for the second term may be
obtained exactly in the same way (just replace qθi,j by −qθi,j). Now, use Hoeffding’s decomposition
Hoeffding [1948]: this is the technique used by Hoeffding to prove inequalities on U-statistics.
Hoeffding proved that

Un =
1

n!

∑
π

1

bn2 c

bn2 c∑
i=1

qθπ(i),π(i+bn2 c)

where the sum is taken over all the permutations π of {1, . . . , n}. Jensen’s inequality leads to

E exp[γUn] = E exp

γ 1

n!

∑
π

1

bn2 c

bn2 c∑
i=1

qθπ(i),π(i+bn2 c)


≤ 1

n!

∑
π

E exp

 γ

bn2 c

bn2 c∑
i=1

qθπ(i),π(i+bn2 c)

 .
We now use, for each of the terms in the sum, Massart’s version of Bernstein’s inequality Massart
[2007] (ineq. (2.21) in Chapter 2, the assumption is checked by qθπ(i),π(i+bn2 c)

∈ [−2, 2] so

E((qθπ(i),π(i+bn2 c)
)k) ≤ E((qθπ(i),π(i+bn2 c)

)2)2k−2). We obtain:

E exp

 γ

bn2 c

bn2 c∑
i=1

qθπ(i),π(i+bn2 c)

 ≤ exp

E((qθπ(1),π(1+bn2 c)
)2) γ2

bn2 c

2
(

1− 2 γ
bn2 c

)
 .

First, note that we have the inequality bn2 c ≥ (n− 1)/2. Then, remark that as the pairs (Xi, Yi) are
iid, we have E((qθπ(1),π(1+bn2 c)

)2) = E((qθ1,2)2) so we have a simpler inequality

E exp

 γ

bn2 c

bn2 c∑
i=1

qθπ(i),π(i+bn2 c)

 ≤ exp

E((qθ1,2)2) γ2

n−1(
1− 4γ

n−1

)
 .

This ends the proof of the proposition. �
The following proposition is also of use in the proof of lemma 2.1.

Proposition 2.2 For any measure ρ ∈ M1
+(Θ) and any measurable function h : θ → R such that∫

exp(h(θ))π(dθ) <∞, we have

log

(∫
exp(h(θ))π(θ)

)
= sup
ρ∈M1

+

(∫
h(θ)ρ(dθ)−K(ρ, π)

)
.

In addition if h is bounded by above on the support of π the supremum is reached for the Gibbs
distribution,

ρ(dθ) ∝ exp (h(θ))π(dθ).

Proof: e.g. Catoni [2007]. �
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Proof of Lemma 2.1 From the proof of Proposition 2.1, and using the short-hand qθ for qθ1,2, we
deduce

E
[
exp{ρ

(
γ(Rn(θ)− R̄n −R(θ) + R̄)}+ η(θ)

)]
≤ exp

(
γ2

n− 1

ρ
(
Eq2

θ

)
(1− 4 γ

n−1 )
+ ρ (η(θ))

)
.

(1)

Using proposition 2.2, and the fact that ex ≥ 1{x ≥ 0} we have that

P{ sup
ρ∈M1

+(Θ)

ρ
(
γ(Rn(θ)− R̄n −R(θ) + R̄)− η(θ)

)
−K(ρ, π) ≥ 0}

≤ E
(
π{exp{ρ

(
γ(Rn(θ)− R̄n −R(θ) + R̄)− η(θ)}

))
}

= π
(
E{exp{ρ

(
γ(Rn(θ)− R̄n −R(θ) + R̄)− η(θ)}

))
} , by Fubini

≤ π

{
exp

(
γ2ρ(Eq2

θ)

(n− 1)(1− 4γ
n−1 )

− ρ(η(θ))

)}
, using (1).

In the following we take η(θ) = log 1
ε + γ2

n−1
ρ(Eq2θ)

(1−4 γ
n−1 ) leading to the following result with proba-

bility at least 1− ε, ∀ρ ∈M1
+(Θ):

ρ(Rn(θ))− R̄n ≤ ρ(R(θ))− R̄+
K(ρ, π) + log 1

ε

γ
+

γ

n− 1

ρ(Eq2
θ)

(1− 4 γ
n−1 )

. (2)

Under MA(1, C) we can write:

ρ(Rn(θ))− R̄n ≤

(
1 +

γC

n− 1

1

(1− 4
n−1 )

)(
ρ(R(θ))− R̄

)
+
K(ρ, π) + log 1

ε

γ
.

Using Bernstein’s inequality in the symmetric case, with probability 1− ε we can assert that:(
1− γC

n− 1

1

(1− γ 4
n−1 )

)(
ρ(R(θ))− R̄

)
≤ ρ(Rn(θ))− R̄n +

K(ρ, π) + log 1
ε

γ
.

The latter is true in particular for ρ = π(θ|S), the Gibbs posterior:(
1− γC

n− 1

1

(1− γ 4
n−1 )

)(∫
Θ

R(θ)πγ(dθ|D)− R̄
)
≤ inf
ρ∈M1

+

{
ρ(Rn(θ))− R̄n +

K(ρ, π) + log 1
ε

γ

}
.

Making use of equation (2) and the fact that γ ≤ (n− 1)/8C we have with probability 1− 2ε:(∫
Θ

Rn(θ)πγ(dθ|D)− R̄n
)
≤ 2 inf

ρ∈M1
+

(
ρ(R(θ))− R̄+ 2

K(ρ, π) + log 1
ε

γ

)
. �

Lemma 2.1 gives some approximately correct finite sample bound under hypothesis MA(1, C). It
is easy to extend those results to the more general case of MA(∞, C). Note in particular that this
assumption is always satisfied for C = 4.

Proof of Lemma 2.2 First consider in our case that, the margin assumption is always true for
C = 4, E(q2

θ) ≤ 4, the rest of the proof is similar to that of lemma 2.1. From equation (2) with the
above hypothesis:

ρ(Rn(θ))− R̄n ≤ ρ(R(θ))− R̄+
K(ρ, π) + log 1

ε

γ
+

γ

n− 1

4

(1− 4
n−1 )

From the Bernstein inequality with in the symmetric case we get with probability 1− ε:

ρ(R(θ))− R̄ ≤ ρ(Rn(θ))− R̄n +
K(ρ, π) + log 1

ε

γ
+

γ

n− 1

4

(1− 4γ
n−1 )
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We get, after noting that the Gibbs posterior can be written as an infimum (Legendre transform),
with probability 1− 2ε:

∫
(R(θ)πγ(dθ|D)− R̄ ≤ inf

ρ∈M1
+(Θ)

ρ(R(θ))− R̄+ 2
K(ρ, π) + log 1

ε

γ
+

16γ

n− 1

(we also used γ ≤ (n− 1)/8).

�

The two above lemma depend on some class complexity K(ρ, π). The latter can be specialized to
different choice of prior measure π. In the following we propose two specifications to a Gaussian
prior and a spike and slab prior.

2.3 Independent Gaussian Prior

Theorem 2.3 Assume MA(1, C), C ≥ 1, Dens(c), c > 0, and take ϑ = 2
d (1 + 1

n2d ), γ =
(n − 1)/8C, then there exists a constant α = α(c, C, d) such that for any ε > 0, with probability
1− ε, ∫

R(θ)πγ(θ|D)dθ − R̄ ≤ 2 inf
θ0

(
R(θ0)− R̄+ α

d log(n) + log 4
ε

n− 1

)
.

Proof: For any θ0 ∈ Rp with ‖θ0‖ = 1 and δ > 0 we put

ρθ0,δ(dθ) ∝ 1‖θ−θ0‖≤δπ(dθ).

Then we have, from Lemma 2.1, with probability at least 1− ε,

∫
R(θ)πγ(dθ|D)−R ≤ 2 inf

θ0,δ

{∫
R(θ)ρθ0,δ(dθ)−R+ 16C

K(ρθ0,δ, π) + log
(

4
ε

)
(n− 1)

}

First, note that

R(θ) = E (1{〈θ,X −X ′〉 (Y − Y ′) < 0})
= E (1{〈θ0, X −X ′〉 (Y − Y ′) < 0})

+ E (1{〈θ,X −X ′〉 (Y − Y ′) < 0} − 1{〈θ0, X −X ′〉 (Y − Y ′) < 0})
≤ R(θ0) + P(sign 〈θ,X −X ′〉 (Y − Y ′) 6= sign 〈θ0, X −X ′〉 (Y − Y ′))
= R(θ0) + P(sign 〈θ,X −X ′〉 6= sign 〈θ0, X −X ′〉)

≤ R(θ0) + c

∥∥∥∥ θ

‖θ‖
− θ0

∥∥∥∥
≤ R(θ0) + 2c‖θ − θ0‖.

As a consequence
∫
R(θ)ρθ0,δ(dθ) ≤ R(θ0) + 2cδ.

The next step is to calculate K(ρθ0,δ, π). We have

K(ρθ0,δ, π) = log
1

π ({θ : ‖θ − θ0‖ ≤ δ})
.
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Assuming that θ0,1 > 0 (the proof is exactly symmetric in the other case)

−K(ρθ0,δ, π) = log π

(
{θ :

d∑
i=1

(θi − θ0,i)
2 ≤ δ2}

)

≥ d log π

(
{θ : (θ1 − θ0,1)2 ≤ δ2

d
}
)

≥ d log

∫ θ0,1√
ϑ

+ δ√
ϑd

θ0,1√
ϑ
− δ√

ϑd

ϕ(0,1)(x)dx

≥ d log

(
δ

2
√
ϑd
ϕ

(
θ0,1√
ϑ

+
δ√
ϑd

))
≥ d log

(
δ

2
√
ϑd
ϕ

(
1√
ϑ

+
δ√
ϑd

))
= d log

(
δ

2
√

2πϑd
exp

[
−1

2

(
1√
ϑ

+
δ√
ϑd

)2
])

≥ d log

{
δ

2
√

2πϑd
exp

(
− 1

ϑ
− δ2

ϑd

)}

K(ρθ0,δ, π) ≤ −d log{δ}+
d

2
log{8πϑd}+

1

ϑ
+
δ2

ϑd

And we can plug the equation above in the result of lemma 2.1 with δ = 1
n∫

R(θ)πγ(θ|D)− R̄ ≤ 2 inf
θ0

(
R(θ0)− R̄+ 2c

1

n
+

2

γ

(
d log{n}+

d

2
log{8πϑd}+

1

ϑ
+

1
n2

ϑd
+ log

4

ε

))
Any γ = O(n) will lead to a convergence result. Taking γ = (n − 1)/8C and optimizing in ϑ we

obtain a variance of ϑ =
2(1+ 1

n2d
)

d . �

As was done for the previous lemmas we can lift the MA(∞, C) and use the lemma 2.2 instead, this
gives rise to the following theorem.

Theorem 2.4 Assume MA(∞, C), C ≥ 1, Dens(c) c > 0, and take ϑ = 2
d (1 + 1

n2d ), γ =

C
√
dn log(n), there exists a constant α = α(c, C, d) such that for any ε > 0, with probability 1−ε,∫

R(θ)πγ(θ|D)dθ − R̄ ≤ inf
θ0

(
R(θ0)− R̄+ α

√
d log(n) + log 2

ε√
n

)
.

Proof: Use Lemma 2.2 and the same steps as in the proof of Theorem 2.3, optimize w.r.t. γ and ϑ
to get the result. �

We show the same kind of result in the following but for spike and slab priors.

2.4 Spike and slab prior for feature selection

Theorem 2.5 Assume MA(1, C) holds with C ≥ 1, Dens(c) holds with c > 0, and take p =
1 − exp(−1/d) and v0 ≤ 1/(2nd log(d)), and γ = (n − 1)/(8C). Then there is a constant
α = α(C, v1, c) such that for any ε > 0, with probability at least 1 − ε on the drawing of the data
D, ∫

R(θ)πγ(dθ|D)−R ≤ 2 inf
θ0

{
R(θ0)−R+ α

‖θ0‖0 log(nd) + log
(

4
ε

)
2(n− 1)

}
.
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Proof: As for the proof of theorem 2.3 we start by defining, for any θ0 ∈ Rp with ‖θ0‖ = 1 and
δ > 0,

ρθ0,δ(dθ) ∝ 1‖θ−θ0‖≤δπ(dθ)

so that in the end, by a similar argument as previously it remains only to upper bound the following
quantity,

K(ρθ0,δ, π) = log
1

π ({θ : ‖θ − θ0‖ ≤ δ})
.

Let π0 denote the probability distribution such that the θi are iid N (0, v0). So:

−K(ρθ0,δ, π) = log π

({
θ :

d∑
i=1

(θi − θ0,i)
2 ≤ δ2

})

≥ log π

({
θ : ∀i, (θi − θ0,i)

2 ≤ δ2

d

})
=

∑
i:θ0,i 6=0

log π

({
(θi − θ0,i)

2 ≤ δ2

d

})

+ log π

({
∀i with θ0,i = 0, θ2

i <
δ2

d

})
≥

∑
i:θ0,i 6=0

log π

({
(θi − θ0,i)

2 ≤ δ2

d

})

+ log π0

({
∀i with θ0,i = 0, θ2

i <
δ2

d

})
+ d log(1− p)

=
∑

i:θ0,i 6=0

log π

({
(θi − θ0,i)

2 ≤ δ2

d

})

+ log

[
1− π0

({
∃i, θ0,i = 0, θ2

i >
δ2

d

})]
+ d log(1− p)

≥
∑

i:θ0,i 6=0

log π

({
(θi − θ0,i)

2 ≤ δ2

d

})

+ log

[
1−

∑
i:θi=0

π0

({
θ2
i >

δ2

d

})]
+ d log(1− p).

Assume first that i is such that θ0,i = 0. Then:

π0

({
θ2
i >

δ2

d

})
= π0

({∣∣∣∣ θi√v0

∣∣∣∣ > δ√
v0d

})
≤ exp

(
− δ2

2v0d

)
,

and so

∑
i:θ0,i=0

π0

({
θ2
i >

δ2

d

})
≤ d exp

(
− δ2

2v0d

)
≤ 1

2
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as soon as v0 ≤ δ2/(2d log(d)). Then, assume that i is such that θ0,i 6= 0. Now assume that θ0,i > 0
(the proof is exactly symmetric if θ0,i < 0):

π

({
θ : (θi − θ0,i)

2 ≤ δ2

d

})
≥ p

∫ θ0,i√
v1

+ δ√
v1d

θ0,i√
v1
− δ√

v1d

ϕ(0,1)(x)dx

≥ pδ

2
√
v1d

ϕ

(
θ0,i√
v1

+
δ√
v1d

)
≥ pδ

2
√
v1d

ϕ

(
1
√
v1

+
δ√
v1d

)
=

pδ

2
√

2πv1d
exp

[
−1

2

(
1
√
v1

+
δ√
v1d

)2
]

≥ pδ

2
√

2πv1d
exp

[
− 1

v1
− δ2

v1d

]
.

Putting everything together:

K(ρθ0,δ, π) ≤ −‖θ0‖0 log

(
pδ

2
√

2πv1d
exp

[
− 1

v1
− δ2

v1d

])
+ log(2) + d log

1

1− p

= ‖θ0‖0
[
log

(
2
√

2πv1d

pδ

)
+

1

v1
+

δ2

v1d

]
+ log(2) + d log

1

1− p
.

So, we have:∫
R(θ)πγ(dθ|D)−R ≤ 2 inf

θ0,δ

{
R(θ0)−R+ 2cδ

+ 16C
‖θ0‖0

[
log
(

2
√

2πv1d
pδ

)
+ 1

v1
+ δ2

v1d

]
+ log(2) + d log 1

1−p + log
(

4
ε

)
(n− 1)

}

�

3 Practical implementation of the PAC-Bayesian approach

3.2 Sequential Monte Carlo

The resampling scheme we use in our SMC sampler is systematic resampling, see Algorithm 1.

Algorithm 1 Systematic resampling

Input: Normalised weights W j
t := wt(θ

j
t−1)/

∑N
i=1 wt(θ

i
t−1).

Output: indices Ai ∈ {1, . . . , N}, for i = 1, . . . , N .
a. Sample U ∼ U([0, 1]).
b. Compute cumulative weights as Cn =

∑n
m=1NW

m.
c. Set s← U , m← 1.
d. For n = 1 : N

While Cm < s do m← m+ 1.
An ← m, and s← s+ 1.

End For

To move the particles while leaving invariant the current target πξ,γ(θ|D), we use the standard
random walk Metropolis strategy, but scaled to the current set of particles, as outlined by Algorithm
2.
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Algorithm 2 Gaussian random walk Metropolis step

Input: θ, S (d× d positive matrix)
Output: θnext

a. Sample θprop ∼ N (θ, S).
b. Sample U ∼ U([0, 1]).
c. If log(U) ≤ log πξ,γ(θprop|D)/πξ,γ(θ|D), set θnext ← θprop, otherwise set θnext ← θ.

3.3 Expectation-Propagation (Gaussian prior)

EP aims at approximating posterior distributions of the form,

π(θ|D) =
1

Zπ
P0(θ)

n∏
i=1

ti(θ)

by approximating each site ti(θ) by a distribution from an exponential family qi(θ). The algorithm
cycles through each site, computes the cavity distribution Q\i(θ) ∝ Q(θ)q−1

i (θ) and minimizes
the Kullback-Leibler divergence between Q\i(θ)ti(θ) and the global approximation Q(θ). This is
efficiently done by using properties of the exponential family (e.g. Bishop [2006]).

In the Gaussian case the EP approximation can be written as a product of some prior and a product
of sites:

Q(θ) ∝ N (θ; 0,Σ)
∏
i,j

qij(θ),

for which the sites are unnormalized Gaussians for the natural parametrization qij(θ) ∝
exp

(
− 1

2θ
TQijθ + θrij

)
. We can equivalently use the one dimensional representation qij(sij) ∝

exp
(
− 1

2s
2
ijKij + sijhij

)
, going from one to the other is easily done by multiplying θ by (ei−ej)X

where ∀i ∈ {1, · · · , n}, ei is a vector of zeroes with one on the i-th line. Hence we keep in mem-
ory only (Kij)ij and (hij)ij .

While computing the cavity moment we must compute (Q− (Xi −Xj)(Xi −Xj)Kij) and its
inverse. The latter can be computed efficiently using Woodbury formula. Equivalently one could
use similar tricks where only the Cholesky factorisation is saved and updated as in Seeger [2005].
By precomputing some matrix multiplication the later cavity moment computation can be done in
complexity O(p2).

To update the sites we compute normalizing constant Zij =
∫
N (s;m\ij , σ\ij)tij(s)ds and use

properties of exponential families.

Algorithm 3 parallel EP for Gaussian Prior

Input: ϑ, γ
Output: m and V
Init: V ← Σ, m← 0

Untill Convergence Do
For all sites (i, j)Do in parallel

a. Compute the cavity moments m\ij , V \ij

b. Compute the 1st and 2nd order moments of q\ij(sij)tij(sij)
c. Update Kij and hij

End For
Update V = (Σ−1 +

∑
ij(Xi −Xj)

T (Xi −Xj)Kij)
−1, m = V (

∑
ij(Xi −Xj)hij)

End While
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Normalising Constant The normalizing constant of the posterior can be computed using EP. We
have that for each sites tij(θ) = Cijqij(θ) we replace those sites in integral we wish to approximate,∫

N (θ; 0,Σ)
∏
ij

tij(θ)dθ '
∏
ij

Cij

∫
N (θ; 0,Σ)

∏
ij

qij(θ)dθ

The integral on the right hand side is a Gaussian convolution and is therefore also Gaussian. The
Cijs can be approximated by matching the zeroth order moment in the site update. As noted in the
paper we can also compute the derivatives with respect to some prior hyper-parameter (see Seeger
[2005]).

3.4 Expectation-Propagation (spike and slab prior)

The posterior can be written as

π(θ|D) ∝
∏
i,j

tij(θ)

d∏
k=1

tk(θk, zk)Ber(zk; p),

where zk ∈ {0, 1} codes the origin of θk, spike/slab, and where tk(θk, zk) ∝ zkN (θk; 0, v0) + (1−
zk)N (θk; 0, v1). The approximation given by EP is of the form,

Q(θ, z) ∝
∏
i,j

qij(θ)

d∏
k=1

qk(θk, zk)Ber(zk; pk),

where qk(θk, zk) ∝ Ber(zk, pk)N (θk;mk, σ
2
k), and tij(θ) is as in the previous section. The cavity

moments are easy to compute as the approximation is Gaussian in θ and Bernoulli in z. In both
cases we can deduce cavity moments because division is stable inside those classes of functions. We
get some distributionQ\k(θk) ∝ Ber(zk; p\k)N (θk;m\k, σ2,\k). We can compute the normalizing
constant of the distribution Q\ij(θ)tk(θk, zk), namely,

Zk = p\k
∫
N (θk; 0, v0)N (θk;m\k, σ2,\k)dθk + (1− p\k)

∫
N (θk; 0, v0)N (θk;m\k, σ2,\k)dθk

Where we can find the update by computing the derivatives of logZk with respect to p\k, m\k and
σ2,\k

Initialization for the Gaussian is done to a given Σ0 that will be subtracted later on. The initial pks
are taken such that the approximation equals the prior p at the first iteration.

5 Numerical illustration

Figure 1 shows the posterior marginals as given by EP and tempering SMC. The later is exact in
the sense that the only error stems from Monte Carlo; we see that the mode is well approximated
however the variance is slightly underestimated.

In Table 1 we show the CPU times in seconds, on all dataset studied. Experiments where run with a
i7-3720QM CPU @ 2.60GHz intel processor with 6144 KB cache. Our linear model is overall faster
on those datasets. A caveat is that Rankboost is implemented in Matlab, while our implementation
is in C.
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Figure 1: Comparison of the output of the two algorithms
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Comparison of the Gaussian approximation obtained by Fractional EP (green) with the true density generated by SMC
(blue) on the Pima indians dataset

Dataset Covariates Balance EP-AUC GPEP-AUC Rankboost

Pima 7 34% 0.06 7.75 3.26
Credit 60 28% 1.98 7.59 56.54
DNA 180 22% 11.26 63.47 141.60
SPECTF 22 50% 0.25 63.47 3.55
Colon 2000 40% 636.63 60.99 156.85
Glass 10 1% 0.23 1.33 2.36

Table 1: Computation times in seconds
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