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1 Full STRADS Program for Latent Dirichlet Allocation (LDA)
Big topic models (using LDA [2]) provide a strong use case for model-parallelism: when thousands
of topics and millions of words are used, the LDA model contains billions of global parameters, and
data-parallel implementations face the difficult challenge of providing access to all these parameters;
in contrast, model-parallellism explicitly divides up the parameters, so that workers only need to
access a fraction at a given time.

Formally, LDA takes a corpus of N documents as input, and outputs K topics (each topic is just a
categorical distribution over all V unique words in the corpus) as well as N K-dimensional topic
vectors (soft assignments of topics to documents). The LDA model is

P(W | Z,θ,β) =

N∏
i=1

Mi∏
j=1

P(wij | zij ,β)P(zij | θi),

where (1) wij is the j-th token (word position) in the i-th document, (2) Mi is the number of tokens
in document i, (3) zij is the topic assignment for wij , (4) θi is the topic vector for document i, and
(5) β is a matrix representing the K V -dimensional topics. LDA is commonly reformulated as a
“collapsed” model [6] in which θ,β are integrated out for faster inference. Inference is performed
using Gibbs sampling, where each zij is sampled in turn according to its distribution conditioned on
all other parameters, P(zij |W ,Z−ij). To perform this computation without having to iterate over
all W ,Z, sufficient statistics are kept in the form of a “doc-topic” table D (analogous to θ), and
a “word-topic” table B (analogous to β). More precisely, Dik counts the number of assignments
zij = k in doc i, while Bvk counts the number of tokens wij = v such that zij = k.
STRADS implementation: In order to perform model-parallelism, we first identify the model
parameters, and create a schedule strategy over them. In LDA, the assignments zij are the model
parameters, while D,B are summary statistics over the zij that are used to speed up the sampler.
Our schedule strategy equally divides the V words into U subsets V1, . . . , VU (where U is the
number of workers). Each worker will only process words from one subset Va at a time. Subsequent
invocations of schedule will “rotate” subsets amongst workers, so that every worker touches all U
subsets every U invocations. For data partitioning, we divide the document tokensW evenly across
workers, and denote worker p’s set of tokens byWqp .

During push, suppose that worker p is assigned to subset Va by schedule. This worker will only
Gibbs sample the topic assignments zij such that (1) (i, j) ∈ Wqp and (2) wij ∈ Va. In other
words, wij must be assigned to worker p, and must also be a word in Va. The latter condition is
the source of model-parallelism: observe how the assignments zij are chosen for sampling based on
word divisions Va. Note that all zij will be sampled exactly once after U invocations of schedule.
We use the fast Gibbs sampler from [12] to push update zij ← f1(i, j,D,B), where f1() represents
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// STRADS LDA

schedule() {
dispatch = [] // Empty list
for a=1..U // Rotation scheduling
idx = ((a+C-1) mod U) + 1
dispatch.append( V[q_idx] )

return dispatch
}

push(worker = p, pars = [V_a, ..., V_U]) {
t = [] // Empty list
for (i,j) in W[q_p] // Fast Gibbs sampling
if w[i,j] in V_p

t.append( (i,j,f_1(i,j,D,B)) )
return t

}

pull(workers = [p], pars = [V_a, ..., V_U], updates = [t]) {
for all (i,j) // Update sufficient stats
(D,B) = f_2([t])

}

Figure 1: STRADS LDA pseudocode. Definitions for f1, f2, qp are in the text. C is a global model parameter.

the fast Gibbs sampler equation. The pull step simply updates the sufficient statistics D,B using
the new zij , and we represent this procedure as a function (D,B) ← f2([zij ]). Figure 1 provides
pseudocode for STRADS LDA.
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Figure 2: STRADS LDA: s-
error ∆t at each iteration, on the
Wikipedia unigram dataset with
K = 5000 and 64 machines.

Model parallelism results in low error: Parallel Gibbs sam-
pling is not generally guaranteed to converge [5], unless the pa-
rameters being parallel-sampled are conditionally independent of
each other. Because STRADS LDA assigns workers to disjoint
words V and documents wij , each worker’s parameters zij are
(almost) conditionally independent of other workers, except for a
single shared dependency: the column sums of B (denoted by s,
and stored as an extra row appended to B), which are required
for correct normalization of the Gibbs sampler conditional dis-
tributions in f1(). The column sums s are synced at the end of
every pull, but will go out-of-sync during worker pushes. To un-
derstand how error in s affects sampler convergence, consider the
Gibbs sampling conditional distribution for a topic indicator zij :

P(zij |W ,Z−ij) ∝ P(wij | zij ,W−ij ,Z−ij)P(zij | Z−ij)

=
γ +Bwij ,zij

V γ +
∑V
v=1Bv,zij

×
α+Di,zij

Kα+
∑K
k=1Di,k

.

In the first term, the denominator quantity
∑V
v=1Bv,zij is exactly the sum over the zij-th column

of B, i.e. szij . Thus, errors in s induce errors in the probability distribution Uwij ∼ P(wij |
zij ,W−ij ,Z−ij), which is just the discrete probability that topic zij will generate word wij . As a
proxy for the error in U , we can measure the difference between the true s and its local copy s̃p on
worker p. If s = s̃p, then U has zero error.

We can show that the error in s is empirically negligible (and hence the error in U is also small).
Consider a single STRADS LDA iteration t, and define its s-error to be

∆t = 1
PM

∑P
p=1 ‖s̃p − s‖1, (1)

whereM is the total number of tokenswij . The s-error ∆t must lie in [0, 2], where 0 means no error.
Figure 2 plots the s-error for the “Wikipedia unigram” dataset (refer to our experiments section for
details), for K = 5000 topics and 64 machines (128 processor cores total). The s-error is ≤ 0.002
throughout, confirming that STRADS LDA exhibits very small parallelization error.

Memory usage: STRADS LDA explicitly partitions the model parameters into subsets, allowing
us to solve big model LDA problems with limited memory. Figure 3 shows the memory usage of
STRADS and YahooLDA [1] for topic modeling on unigram Wikipedia data with 10K topics. As
shown in the figure, as the number of machines increases, STRADS used less memory per machine,
but YahooLDA’s memory usage decreased only slightly. In data-parallel YahooLDA, each worker
stores a portion of word-topic table referenced by the words in the worker’s data partition. However,
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Figure 3: Topic modeling: Memory usage per machine, for model-parallellism (STRADS) vs data-
parallellism (YahooLDA).

// STRADS Matrix Factorization

schedule() {
// Round-robin scheduling
if counter <= U // Do W
return W[q_counter]

else // Do H
return H[r_(counter-U)]

}

push(worker = p, pars = X[s]) {
z = [] // Empty list
if counter <= U // X is from W
for row in s, k=1..K

z.append( (f_1(row,k,p),f_2(row,k,p)) )
else // X is from H
for col in s, k=1..K

z.append( (g_1(k,col,p),g_2(k,col,p)) )
return z

}

pull(workers=[p], pars=X[s], updates=[z]) {
if counter <= U // X is from W
for row in s, k=1..K

W[row,k] = f_3(row,k,[z])
else // X is from H
for col in s, k=1..K

H[k,col] = g_3(k,col,[z])
counter = (counter mod 2*U) + 1

}

Figure 4: STRADS MF pseudocode. Definitions for f1, g1, . . . and qp, rp are in the text. counter is a
global model variable.

in big model settings, STRADS’s dynamic model partitioning strategy used memory more efficiently
than YahooLDA’s static model partitioning strategy.

2 Full STRADS Program for Matrix Factorization (MF)

STRADS model-parallel programming can be applied to matrix factorization (collaborative filter-
ing); MF is used to predict users’ unknown preferences, given their known preferences and the
preferences of others. While most MF implementations tend to focus on small decompositions with
rank K ≈ 100 [14, 4, 13], we are interested in enabling larger decompositions with rank > 1000,
where the much larger factors (billions of parameters) pose a challenge for purely data-parallel al-
gorithms (such as naive SGD) that need to share all parameters across all workers; again, STRADS
addresses this by explicitly dividing parameters across workers.

Formally, MF takes an incomplete matrix A ∈ RN×M as input, where N is the number of users,
and M is the number of items/preferences. The idea is to discover rank-K matrices W ∈ RN×K
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and H ∈ RK×M such that WH ≈ A. Thus, the product WH can be used to predict the missing
entries (user preferences). Formally, let Ω be the set of indices of observed entries in A, let Ωi be
the set of observed column indices in the i-th row of A, and let Ωj be the set of observed row indices
in the j-th column of A. Then, the MF task is defined as an optimization problem:

minW,H

∑
(i,j)∈Ω(aij −wihj)

2 + λ(‖W‖2F + ‖H‖2F ). (2)

This can be solved using parallel CD [13], with the following update rule for H:

(hkj )(t) ←
∑
i∈Ωj

{
rij + (wik)(t−1)(hkj )(t−1)

}
(wik)(t−1)

λ+
∑
i∈Ωj

{
(wik)(t−1)

}2 , (3)

where rij = aij − (wi)(t−1)(hj)
(t−1) for all (i, j) ∈ Ω, and a similar rule holds for W.
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Figure 5: The
partitioning scheme
of STRADS MF
given three workers.
Shaded blocks are
stored in each worker.

STRADS implementation: Let us start with R = A assuming that W
and H are initialized with zeros. MF schedule strategy is to partition the
rows of R into U disjoint index sets {qp}Up=1, and the columns of R into U
disjoint index sets {rp}Up=1. Further, W and H are partitioned by the row
index set {qp}Up=1 and the column index set {rp}Up=1, respectively. Figure 5
shows the partition scheme of R, W and H given three workers (U = 3).
We then dispatch the model parameters W,H in a round-robin fashion, that
is, Wq1 , . . . ,WqU , . . . ,Hr1 , . . . ,HrU are updated in turn. Specifically, the
push update for H in the p-th worker (the case for W is similar) computes

(okj )(t)
p ← g1(k, j, p) :=

∑
i∈(Ωj)p

{
rij + (wik)(t−1)(hkj )(t−1)

}
(wik)(t−1), (4)

(bkj )(t)
p ← g2(k, j, p) :=

∑
i∈(Ωj)p

{
(wik)(t−1)

}2

, (5)

where (Ωj)p are the (observed) elements of column rj indexed by qp. Finally, pull aggregates the
updates:

(hkj )(t) ← g3(k, j, [(okj )(t)
p , (bkj )(t)

p ]) :=

∑U
p=1 (okj )

(t)
p

λ+
∑U
p=1 (bkj )

(t)
p

,

with a similar definition for updating W using (wik)(t) ← f3() and f1(i, k, p), f2(i, k, p). This
push-pull scheme is free from parallelization error. When W are updated by push, they are mutu-
ally independent because H is held fixed, and vice-versa.

3 Analysis of STRADS Lasso Scheduling for Parallel Coordinate Descent

Lasso [11] takes the following form of an optimization problem:

min
β

1

2
‖y −Xβ‖22 + λ

∑
j

|βj |, (6)

where X ∈ RN×J is the input data for J inputs andN samples, y ∈ RN×1 is the output vector, β ∈
RJ×1 is the vector of regression coefficients, and λ is a regularization parameter that determines the
sparsity of β. We solve (6) using a parallel coordinate descent (CD) algorithm [3] with a scheduler
that dynamically finds a set of coefficients to be updated at runtime. Here we present the analysis of
our scheduling schemes implemented under STRADS for parallel CD Lasso.

Let us start with the description of how our Lasso scheduling works under STRADS primitives:

1. Sampler: Select L′(> L) indices of coefficients in the t-th iteration, following the dis-

tribution of p(j) ∝
(
δβ

(t−1)
j

)2

+ η, where δβ(t−1)
j = β

(t−2)
j − β(t−1)

j and η is a small
positive constant. We denote the set of selected L′ indices of coefficients by C.

4



2. Correlation checker: From C, randomly select L indices of coefficients, denoted by B,
that satisfy |xTj xk| < ρ for all j 6= k j, k ∈ C. Here xTj xk represents the correlation
between xj and xk because X is standardized (i.e.,

∑
i x

i
j = 0,

∑
i(x

i
j)

2 = N, ∀j).

For analysis, we rewrite problem (6) by duplicating original features with opposite sign:

min
β

1

2
‖y −Xβ‖22 + λ

2J∑
j=1

βj . (7)

Here, with an abuse of notation, X contains 2J features and βj ≥ 0, for all j = 1, . . . , 2J . We define

F (β(t)) = 1
2

∥∥y −Xβ(t)
∥∥2

2
+
∑2J
j=1 β

(t)
j , and the following analysis shows that p(j) ∝

(
δβ

(t)
j

)2

aims to increase Lasso convergence rate at every iteration.
Proposition 1. Suppose B is the set of indices of coefficients updated in parallel at the t-th it-
eration, and ρ is sufficiently small constant such that ρδβ(t)

j δβ
(t)
k ≈ 0, for all j 6= k ∈ B.

Then, the sampling distribution p(j) ∝
(
δβ

(t)
j

)2

approximately maximizes a lower bound on

EB
[
F (β(t))− F (β(t) + ∆β(t))

]
.

Proof. Let us denote L by a lower bound on EB
[
F (β(t))− F (β(t) + ∆β(t))

]
, that is,

L ≤ EB
[
F (β(t))− F (β(t) + ∆β(t))

]
. (8)

Below, we show that p(j) ∝
(
δβ

(t)
j

)2

approximately maximizes L. We start with the assumption
used in [3]:

F (β(t))− F (β(t) + ∆β(t)) ≥ −(∆β(t))T∇F (β(t))− 1

2
(∆β(t))TXTX(∆β(t)), (9)

where (∆β(t))T∇F (β(t)) ≤ 0. For simple notation, let us omit the superscript representing the t-th
iteration.

Suppose that the index of coefficient j is drawn from a distribution p(j), and a pair of indices (j, k)
is drawn from p(j, k). Taking expectation of (9) with respect to B, we have

EB[F (β)− F (β + ∆β)]

≥ −EB[
∑
j∈B

δβj∇(F (β))j ]−
1

2
EB

 ∑
{(j,k):j,k∈B}

δβj(x
T
j xk)δβk

 (10)

= −L
∑
j∈B

p(j)

[
δβj∇(F (β))j +

1

2
(δβj)

2

]
−

1

2
L(L− 1)

 ∑
{(j,k):j,k∈B,j 6=k}

p(j, k)δβj(x
T
j xk)δβk

 (11)

= −L
∑
j∈B

p(j)

[
δβj∇(F (β))j +

1

2
(δβj)

2

]
−

1

2
L(L− 1)

 ∑
{
(j,k):j,k∈B,j 6=k,

∣∣∣xTj xk

∣∣∣<ρ}
p(j, k)(x

T
j xk)δβjδβk

 (12)

≈ L
∑
j∈B

p(j)

[
−δβj∇(F (β))j −

1

2
(δβj)

2

]
. (13)

In (11), we used p(j, k) = 0 if
∣∣xTj xk∣∣ ≥ ρ because βj and βk cannot be updated in parallel if

|xTj xk| ≥ ρ. Recall that we find B such that |xTj xk| < ρ for all j 6= k, j, k ∈ B using the correlation
checker. In (12), we used our assumption that ρδβjδβk ≈ 0 for all j 6= k ∈ B. From (13), we can
see that the lower bound of EB[F (β)− F (β + ∆β)] is maximized when

p(j) ∝
∣∣∣∣−δβj∇(F (β))j −

1

2
(δβj)

2

∣∣∣∣ . (14)

Now let us consider the following CD update rule: δβj = max{−βj ,−∇(F (β))j} [3]. Based on
this update rule, we have the following two cases: If δβj = −∇(F (β))j ,

p(j) ∝
∣∣∣∣−δβj∇(F (β))j −

1

2
(δβj)

2

∣∣∣∣ =
1

2
(δβj)

2.
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If δβj = −βj ,

p(j) ∝
∣∣∣∣−δβj∇(F (β))j −

1

2
(δβj)

2

∣∣∣∣ ≥ 1

2
(δβj)

2.

Here we used the fact that δβj ≥ −∇(F (β))j due to the CD update rule, and δβj ≤ 0 because
βj ≥ 0, as defined by (7). It shows that p(j) ∝ 1

2 (δβj)
2 approximately maximizes the lower bound

L of EB[F (β)− F (β + ∆β)].

4 Discussion and Related Work
As a programmable framework for dynamic Big Model-parallelism, STRADS provides the follow-
ing benefits: (1) scalability and efficient memory utilization, allowing larger models to be run with
additional machines (because the model is partitioned, rather than duplicated across machines); (2)
the ability to invoke dynamic schedules that reduce model parameter dependencies across workers,
leading to lower parallelization error and thus faster, correct convergence.

While the notion of model-parallelism is not new, our contribution is to study it within the context of
a programmable system (STRADS) that enables managed scheduling of parameter updates (based
on model dependencies). Previous works explore aspects of model-parallelism in a more specific
context: Scherrer et al. [10] proposed a static model partitioning scheme specifically for parallel
coordinate descent, while GraphLab [8, 9] statically pre-partitions data and parameters through a
graph abstraction.

An important direction for future research is to reduce the communication costs of using STRADS.
Currently, STRADS adopts a star topology from scheduler machines to workers, which causes the
scheduler to eventually become a bottleneck as we increase the number of machines. To mitigate
this issue, we wish to explore different sync schemes such as an asynchronous parallelism [1] and
stale synchronous parallelism [7]. We also want to explore the use of STRADS for other popular
ML applications, such as support vector machines and logistic regression.
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