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1 Additional Experiments

We also evaluate the classification performance of ordinary LR and RoLR on the UCI SUSY
dataset1. The SUSY dataset contains 5 million samples from 2 categories: background or parti-
cles. The feature dimension is 18. We randomly partition the dataset into training (including 3
million samples) and test (including 2 million samples) subsets for 10 times. The training data are
corrupted by different fraction of outliers (ranging from 5% to 50%). Figure 1 shows the averaged
classification error of LR and RoLR. As for the computational efficiency, it takes the ordinary LR
8.55 hours to learn the regression parameter in a single PC. In contrast, RoLR only costs 48 min-
utes for the parameter inference, whose time cost is less than 1/10 of LR. Note that 0.45 is the
classification error that can be achieved by trivially classifying all the samples to be positive.
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Figure 1: Classification performance on SUSY dataset.

To see what RoLR needs to pay for the robustness, or more concretely the cost brought by optimiz-
ing the correlation instead of likelihood probability, we conduct several simulations over the data
generated by the same experimental protocol as in the main body. Here, the sample dimension is
varying from 10 to 200, and the number of samples is fixed as n = 1×103. Table 1 gives the regres-
sion error of LR and RoLR as well as their computational time cost. Generally, RoLR suffers from

1https://archive.ics.uci.edu/ml/datasets/SUSY
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Table 1: Comparisons between LR and RoLR without any outliers. n = 1× 103.
p 10 20 50 100 200
LR error 0.03 0.06 0.07 0.14 0.28
RoLR error 0.09 0.13 0.20 0.23 0.35
LR time cost (sec.) 0.43 0.42 0.41 0.44 0.43
RoLR time cost (sec.) 0.88 0.68 1.23 4.74 23.74

small error increase, compared with LR, when there are no outliers. Both the performance of LR
and RoLR degrades along with the increasing of parameter dimension, as the number of the sample
is fixed at a relatively small value. RoLR presents significant computational efficiency advantages
over LR, especially for high-dimensional data.

2 Non-robustness of Ordinary Logistic Regression

In this section, we give the influence function of ordinary logistic regression to formally describe
the robustness property of logistic regression. The influence function (IF) [2] of an estimator is an
approximation to its behavior when the sample contains a small fraction ε of identical outliers. It is
defined as

IFβ̂(x0, F ) = lim
ε↓0

β∗((1− ε)F + εδx0
)− β∗(F )

ε
=

∂

∂ε
β∗((1− ε)F + εδx0

) |ε↓0,

where β∗ is the estimator, F denotes the sample distribution, δx0
is the point-mass at x0 and “↓”

stands for “limit from the right”.

Logistic regression is not robust when the samples are corrupted by gross noise. Even one corrupted
sample can manipulate the model estimation severely and make the result arbitrarily bad. To see
this, recall the optimal solution to the above optimization problem β∗ satisfies,

n∑
i=1

−yixi
1 + exp(yiβ∗

>xi)
= 0

We can calculate the influence function to show its non-robustness. The influence function of the
MLE for the logistic regression model is [5]

IF(y, x, β) =M−1(y − F (〈β, x〉))x,

where M = E
(
F ′(〈β, x〉)xx>

)
. Since the factor (y − τ(〈β, x〉)) is bounded, the only outliers that

make this influence large are those such that ‖x‖ → ∞. This kind of outliers make the MLE of
β tend to zero. Although the estimate remains bounded, we also say the logistic regression breaks
down since the value of β is manipulated by the outliers.

3 Objective function

In the following proofs, we define the objective function:

fβ(β̂) =
1

n

n∑
i=1

yi〈xi, β̂〉,

where n is the number of inlier samples and β is the groundtruth parameter of inlier generating
model.

4 Proof of Lemma 3

Proof. We first note that if X is a zero-mean sub-Gaussian variable with parameter σx, then the
rescaled variable X/σx is sub-Gaussian with parameter 1. Consequently, we may assume that σx =
1 without loss of generality, and with rescaling as necessary.
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Let g , 〈β∗, x〉 + v. Since x ∼ N (0, I) is a standard Gaussian random vector and ‖β∗‖ = 1, the
random variable h , 〈β∗, x〉 ∼ N (0, 1). Define the function θ(g) = tanh(g/2) = 1−e−g

1+e−g , we have

E[y|g] = P {y = +1|g} − P {y = −1|g} = 1

1 + e−g
− e−g

1 + e−g
=

1− e−g

1 + e−g
= θ(g).

Therefore,
Ey〈β∗, x〉 = Eyh = Ev,hhEy [y|h, v] = Ev,hθ(h+ v)h.

Denote f(h) as the density function of h, which represents a normal distribution, i.e., f(h) =
1√
2π
e−

h2

2 . Note that f ′(h) = −hf(h). We calculate the expectation of θ(h+ v)h using integration
by parts:

Eθ(h+ v)h =

∫ ∫
θ(h+ v)hf(h)f(v)dhdv

= −
∫ ∫

θ(h+ v)f ′(h)f(v)dhdv

=

∫ (∫
θ′(h+ v)f(h)dh− θ(h+ v)f(h)

∣∣∣+∞
−∞

)
f(v)dv

=

∫ ∫
θ′(h+ v)f(h)f(v)dhdv

= Eh,vθ′(h+ v) =
1

2
Eg sech2(g/2).

Here g , h + v. Since h and v are independent Gaussian random variable, g is also a Gaussian
random variable, and g ∼ N (0, 1 + σ2

e).

To further bound this quantity below, we can use the fact that sech2(x) is an even and decreasing
function for x ≥ 0. This yields

E sech2(g/2) =

∫ +∞

−∞
sech2(g/2)f(g)dg

≥
∫ 1+σ2

e

−(1+σ2
e)

sech2(g/2)f(g)dg

≥ P
{
|g| ≤ 1 + σ2

e

}
· sech2

(
1 + σ2

e

2

)
≥ 2

3
sech2

(
1 + σ2

e

2

)
.

Hence,

Ey〈β∗, x〉 = Eθ(h+ v)h ≥ 1

3
sech2

(
1 + σ2

e

2

)
.

Similarly, we can lower bound E sech2(g/2) by

E sech2(g/2) ≤
∫ σ2

e+1

−(σ2
e+1)

sech2(0)f(g)dg + 2

∫ −(σ2
e+1)

−∞
sech2

(
1 + σ2

e

2

)
f(g)dg

≤ 2

3
+

1

3
sech2

(
1 + σ2

e

2

)
.

Therefore,

Ey〈β∗, x〉 = Eθ(h+ v)h ≤ 1

3
+

1

6
sech2

(
1 + σ2

e

2

)
.

Taking the magnitude of the signal x, σx, into consideration, we have

σx
3

sech2
(
1 + σ2

e

2

)
≤ σxEy〈β∗, x/σx〉 = σxEθ(h+ v)h ≤ σx

3
+
σx
6

sech2
(
1 + σ2

e

2

)
.
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5 Proof of Lemma 4

Proof. Since the samples are i.i.d., we have

Efβ(β̂) =
1

n

n∑
i=1

Eyi〈xi, β̂〉 = Ey1〈x1, β̂〉.

Now we condition on x1 to give

Ey1〈x1, β̂〉 = EE[y1〈x1, β̂〉|x1] = Eθ(〈x1, β〉)〈x1, β̂〉.

Note that 〈x1, β〉 and 〈x1, β̂〉 are a pair of normal random variables with covariance 〈β, β̂〉. Thus,
by taking g, h ∈ N (0, 1) to be independent, we may rewrite the above expectation as

Eθ(g)
(
〈β, β̂〉g + (‖β̂‖22 − 〈β, β̂〉2)1/2h

)
= 〈β, β̂〉Eθ(g)g = η〈β, β̂〉.

6 Technical lemmas for proving Theorem 1

Tools: symmetrization and Gaussian concentration
Lemma S.1 (Symmetrization [4]). Let ε1, ε2, . . . , εn be independent Rademacher random vari-
ables. Let K ⊂ Bp2 . K\K = {a− b, a, b ∈ K}. Then

µ := E sup
z∈K\K

|fβ(z)− Efβ(z)| ≤ 2E sup
z∈K\K

1

n

∣∣∣∣∣
n∑
i=1

εiyi〈xi, z〉

∣∣∣∣∣ . (S.1)

Furthermore, we have the deviation inequality

P

{
sup

z∈K\K
|fβ(z)− Efβ(z)| ≥ 2µ+ t

}
≤ 4P

{
sup

z∈K\K

∣∣∣∣∣
n∑
i=1

εiyi〈xi, z〉

∣∣∣∣∣ > t/2

}
. (S.2)

In the above lemma, inequality (S.1) follows from the proof of Lemma 6.3 in [4], and inequality (S.2)
is from Chapter 6.1 in [4].
Theorem S.1 (Gaussian concentration inequality [6]). Let (Gx)x∈T be a centered Gaussian process
indexed by a finite set T . Then for every r > 0 one has

P
{
sup
x∈T

Gx ≥ E sup
x∈T

Gx + r

}
≤ exp(−r2/σ2)

where σ2 = supx∈T EG2
x <∞.

A proof of this result is contained in [3].

This theorem can be extended to separable sets T in metric spaces by an approximation argument.
In particular, given a set K ⊆ Bp2 and r > 0, the standard Gaussian random vector g in Rp satisfies

P

{
sup

z∈K\K
〈g, z〉 ≥ E sup

z∈K\K
〈g, z〉+ r

}
≤ exp(−r2/2). (S.3)

Since the inlier samples obey the sub-Gaussian design and the parameter β has a unit norm, the
linear measure 〈β, xi〉 is also a Gaussian random variable and possesses the following concentration
property [6].
Lemma S.2. For each t > 0, and β ∈ Sp−1, we have

P

{∣∣∣∣∣ 1n
n∑
i=1

yi〈β, xi〉 − Ey〈β, x〉

∣∣∣∣∣ > 4

√
p

n
+ t

}
≤ 4 exp

(
−nt

2

8

)
.
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From Lemma S.2, we can easily obtain the following concentration result for the correlation differ-
ences.

Lemma S.3. For each t > 0, we have

P

{
sup

z∈Sp−1\Sp−1

∣∣∣∣∣ 1n
n∑
i=1

yi〈z, xi〉 − Ey〈z, x〉

∣∣∣∣∣ ≥ 5

√
p

n
+ t

}
≤ 4 exp

(
−nt

2

8

)
.

Here the set Sp−1\Sp−1 = {β − β′ : β, β′ ∈ Sp−1}.

Proof. We apply the first part (S.1) of Symmetrization Lemma S.1. Note that since xi have sym-
metric distributions and yi ∈ {−1,+1}, the random vectors εiyixi has the same (iid) distribution as
xi. Using the rotational invariance and the symmetry of the Gaussian distribution, we can represent
the right hand side of (S.1) as

sup
z∈K\K

1

n

∣∣∣∣∣
n∑
i=1

εiyi〈xi, z〉

∣∣∣∣∣ dist= sup
z∈K\K

1

n

∣∣∣∣∣
n∑
i=1

〈xi, z〉

∣∣∣∣∣ dist=
1√
n

sup
z∈K\K

|〈g, z〉| = 1√
n

sup
z∈K−K

〈g, z〉,

(S.4)
where dist= signifies the equality in distribution. So taking the expectation in (S.1) we obtain

E sup
z∈K\K

|fβ(z)− Efβ(z)| ≤
2√
n
E sup
z∈K\K

〈g, z〉. (S.5)

To supplement this expectation bound with a deviation inequality, we use the second part (S.2) of
Symmetrization Lemma S.1 along with (S.4) and (S.5). This yields

P

{
sup

z∈K\K
|fβ(z)− Efβ(z)| ≥

4√
n
E sup
z∈K\K

〈g, z〉+ t

}
≤ 4P

{
1√
n

sup
z∈K\K

〈g, z〉 > t/2

}
.

Now it remains to use the Gaussian concentration inequality (S.3) with r = t
√
m/2. The proof is

complete.

7 Proof of Theorem 1

Proof. In Algorithm 1, we actually minimize the empirical loss over trimmed samples. Let I denote
the index set of the trimmed inliers, and let O denote the index set of the remained outliers. Note
that n2 := |I| = |O| ≤ n1. Let I ′ denote the index set of the remained inliers.

By the definition of Algorithm 1, for the solution output β̂, we have

n∑
i=1

yi〈β̂, xi〉 −
∑
i∈I

yi〈β̂, xi〉+
∑
i∈O

yi〈β̂, xi〉 ≥
n∑
i=1

yi〈β∗, xi〉 −
∑
i∈I

yi〈β∗, xi〉+
∑
i∈O

yi〈β∗, xi〉.

Thus,

n∑
i=1

yi〈β∗, xi〉 −
n∑
i=1

yi〈β̂, xi〉 ≤
∑
i∈I

yi〈β∗, xi〉 −
∑
i∈I

yi〈β̂, xi〉+
∑
i∈O

yi〈β̂, xi〉 −
∑
i∈O

yi〈β∗, xi〉.

(S.6)

According to Algorithm 1, the trimmed samples have smaller value of yi〈β̂, xi〉 (larger empirical
loss) than remained samples. Therefore, −

∑
i∈I yi〈β̂, xi〉+

∑
i∈O yi〈β̂, xi〉 < 0. We get

1

n

n∑
i=1

yi〈β∗, xi〉 −
1

n

n∑
i=1

yi〈β̂, xi〉 ≤
1

n

∑
i∈I

yi〈β∗, xi〉 −
1

n

∑
i∈O

yi〈β∗, xi〉.
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Again from the definition of the algorithm, we have

1

n

n∑
i=1

yi〈β∗, xi〉 −
1

n

n∑
i=1

yi〈β̂, xi〉

≤ 1

n

∑
i∈I

yi〈β∗, xi〉 −
1

n

∑
i∈O

yi〈β∗, xi〉

≤ 1

n

∑
i∈I

yi〈β∗, xi〉+
1

n

∑
i∈O
|〈β∗, xi〉|

(a)

≤ 1

n

∑
i∈I

yi〈β∗, xi〉+
1

n

∑
i∈O
‖xi‖

(b)

≤ 1

n

∑
i∈I

yi〈β∗, xi〉+
4n1
n
σ2
x

√
log p

n
+

log n

n
.

The inequality (a) is from the fact that |〈β∗, xi〉| ≤ ‖β∗‖‖xi‖ = ‖xi‖, and the inequality (b) is
from the definition of the algorithm.

Applying the above expectation (Lemma 3) and concentration (Lemma S.2) results of the function
yi〈β∗, xi〉 gives

1

n2

∑
i∈I

yi〈β∗, xi〉 ≤ E [yi〈β∗, xi〉] + 5

√
p

n2
≤ ϕ−(σ2

e , σ
2
x) + 5

√
p

n2
,

with probability 1− 4 exp(−cn/8), where n2 = |I| = |O| ≤ n1. Thus we have,

1

n

n∑
i=1

yi〈β∗, xi〉 −
1

n

n∑
i=1

yi〈β̂, xi〉

≤ n2
n

(
1

n2

∑
i∈I

yi〈β∗, xi〉

)
+

4n1
n
σ2
x

√
log p

n
+

log n

n

≤ n2
n

(
ϕ−(σ2

e , σ
2
x) + 5

√
p

n2

)
+

4n1
n
σ2
x

√
log p

n
+

log n

n

≤ n1
n

(
ϕ−(σ2

e , σ
2
x) + 5

√
p

n1

)
+

4n1
n
σ2
x

√
log p

n
+

log n

n
(S.7)

= λ

(
ϕ−(σ2

e , σ
2
x) + 5

√
p

n1

)
+ 4λσ2

x

√
log p

n
+

log n

n
. (S.8)

where we apply the fact that n2 ≤ n1 and λ , n1

n . According to Lemma 4 and Lemma S.3,

‖β̂ − β∗‖

≤ 2

ϕ+(σ2
e , σ

2
x)

E
[
y〈x, β∗〉 − y〈x, β̂〉

]
≤ 2

ϕ+(σ2
e , σ

2
x)

(
1

n

n∑
i=1

yi〈β∗, xi〉 −
1

n

n∑
i=1

yi〈β̂, xi〉+ (λ+ 4)

√
p

n

)
,

holds with probability larger than 1− 4 exp(−cn/8). Substituting (S.7) into above equality yields

‖β̂ − β∗‖

≤ 2

ϕ+(σ2
e , σ

2
x)

{
λ

(
ϕ−(σ2

e , σ
2
x) + 5

√
p

n1

)
+ 4λσ2

x

√
log p

n
+

log n

n
+ (λ+ 4)

√
p

n

}

= 2λ
ϕ−(σ2

e , σ
2
x)

ϕ+(σ2
e , σ

2
x)

+
2(λ+ 4 + 5

√
λ)

ϕ+(σ2
e , σ

2
x)

√
p

n
+

8λ

ϕ+(σ2
e , σ

2
x)
σ2
x

√
log p

n
+

log n

n
.
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8 Proof of Corollary 1

Proof. We first provide a bound of the empirical risk of RoLR as follows,

|Remp(β̂)−Remp(β
∗)|

=
1

n

n∑
i=1

(
1

1 + exp{−yi〈β̂, xi〉}
− 1

1 + exp{−yi〈β∗, xi〉}

)
(a)

≤ L

n

n∑
i=1

|yi〈β̂, xi〉 − yi〈β∗, xi〉|

=
L

n

n∑
i=1

|〈β̂ − β∗, xi〉|

≤ L‖β̂ − β∗‖ 1
n

n∑
i=1

‖xi‖.

(b)

≤ L‖β̂ − β∗‖4σx
√
(log n+ log p)/n. (S.9)

The inequality (a) is from the fact that function τ(z) = 1/(1 + e−z) is Lipschitz continuous with
Lipschitz constant L = 1:

|τ(z)− τ(z′)| ≤ |z − z′|,
and the inequality (b) is from Lemma 2 that the magnitude of inliers is upper bounded.

Then applying the result in Theorem 1 directly gives the following empirical risk bound for RoLR.

9 Proof of Corollary 2

Proof. Let β∗ denote the optimal parameter can be learned from authentic training samples, and β̂
denote the output of the Algorithm 1, we aim to bound the difference of their population risk:

|R(β̂)−R(β∗)|
= |R(β̂)−Remp(β̂) +Remp(β̂)−Remp(β

∗) +Remp(β
∗)−R(β∗)|

≤ |R(β̂)−Remp(β̂)|+ |Remp(β̂)−Remp(β
∗)|+ |Remp(β

∗)−R(β∗)|.
Suppose the parameter space B 3 β has finite VC dimension d, we can apply the uniform conver-
gence bound here to bound the generalization risk (i.e., the difference between the population risk
and empirical risk for a specific parameter β) in the above first and third term [1], i.e.,

|R(β̂)−Remp(β̂)| ≤ c3

√
d+ ln(1/δ)

n
,

|R(β∗)−Remp(β
∗)| ≤ c4

√
d+ ln(1/δ)

n
,

with probability at least (1 − δ). Here c3 and c4 are constants. Then we get the population risk
bound.

10 Proof of Lemma 5

Proof. The proof is similar to the one for Lemma 3.

Let g , 〈β∗, x〉+ v. Since x ∼ N (0, σ2
xI) is a standard Gaussian random vector and ‖β∗‖ = 1, the

random variable h , 〈β∗, x〉 ∼ N (0, σ2
x). Thus the random variable g = h + v is also a Gaussian

random variable: g ∼ N (0, σ2
x + σ2

e).

Recall y = sign(〈β∗, x〉+v), and we calculate the expectation of the correlation y〈β∗, x〉 as follows,

Ey〈β∗, x〉 = Esign(v + h)h.

7



Recall that h and v are independent, we can also calculate the above expectation via integration by
parts:

Esign(v + h)h

=

∫ ∫
sign(v + h)hf(h)f(v)dhdv

= −σ2
x

∫ (∫
sign(v + h)f(h)′dh

)
f(v)dv

= −σ2
x

∫ (
−
∫ −v
−∞

f(h)′dh+

∫ +∞

−v
f(h)′dh

)
f(v)dv

= σ2
x

∫ (
1− 2

∫ +∞

−v
f(h)′dh

)
f(v)dv

= σ2
x

∫ (
1− 2f(h)|+∞−v

)
f(v)dv

= σ2
x

√
2

π(σ2
x + σ2

v)

11 Proof of Theorem 2

Proof. The proof of the parameter estimation bound in Theorem 2 is similar to the proof of The-
orem 1 as the optimization algorithms are the same. Thus, based on the definition of Algorithm 1
and the distribution assumption of the samples, we have a result for the classification case which is
similar to Eqn. (S.8):

1

n

n∑
i=1

yi〈β∗, xi〉 −
1

n

n∑
i=1

yi〈β̂, xi〉 ≤ λ
(
Eyi〈β∗, xi〉+ 5

√
p

n1

)
+ 4λσ2

x

√
log p

n
+

log n

n
.

According to Lemma 5, we have Eyi〈β∗, xi〉 = σ2
x

√
2

π(σ2
x+σ

2
v)

. Substituting it into the above
equation yields:

1

n

n∑
i=1

yi〈β∗, xi〉 −
1

n

n∑
i=1

yi〈β̂, xi〉 ≤ λ

(
σ2
x

√
2

π(σ2
x + σ2

v)
+ 5

√
p

n1

)
+ 4λσ2

x

√
log p

n
+

log n

n
.

(S.10)
According to Lemma 4 and Lemma S.3,

‖β̂ − β∗‖ ≤
√

2π(σ2
x + σ2

e)

σ2
x

E
[
y〈x, β∗〉 − y〈x, β̂〉

]
≤

√
2π(σ2

x + σ2
e)

σ2
x

(
1

n

n∑
i=1

yi〈β∗, xi〉 −
1

n

n∑
i=1

yi〈β̂, xi〉+ (λ+ 4)

√
p

n

)
,

holds with probability larger than 1− 4 exp(−cn/8). Substituting (S.10) into above equality yields

‖β̂ − β∗‖

≤ 2λ+ 2(λ+ 4 + 5
√
λ)

√
(σ2
e + σ2

x)πp

2σ4
xn

+ 8λ

√
(σ2
e + σ2

x)π

2

√
log p

n
+

log n

n
.
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