
A Dynamic Programming with Guided Policy Search

In this appendix, we present the details of the dynamic programming algorithm for optimizing the
trajectory distributions in the presence of policy KL-divergence terms. Recall that the trajectory
optimization objective is

LGPS(p) = Ep(τ)[`(τ)] +

T∑
t=1

λtDKL(p(xt)πθ(ut|xt)‖p(xt,ut)).

Adding the KL-divergence constraint against the previous trajectory distribution p̂(τ) with Lagrange
multiplier η, the goal of the dynamic programming pass is to minimize the following objective:

LGPS(p) = Ep(τ)[`(τ)− η log p̂(τ)]− ηH(p) +

T∑
t=1

λtDKL(p(xt)πθ(ut|xt)‖p(xt,ut)).

Dividing by η and letting ˜̀(xt,ut) = 1
η `(xt,ut)− log p̂(ut|xt), we can simplify the objective to be

1

η
LGPS(p) = Ep(τ)[˜̀(τ)]−H(p) +

T∑
t=1

λt
η
DKL(p(xt)πθ(ut|xt)‖p(xt,ut)).

The distribution p(τ) factorizes over time steps into the linear-Gaussian dynamics terms and the
conditional action terms p(ut|xt) = N (Ktxt + kt,Ct). We will use (x̂t, ût)

T to denote the mean
of the marginals p(xt,ut) and Σt to denote their covariance, while St will denote the covariance of
p(xt). Using a second order Taylor expansion of the cost and a linear-Gaussian approximation to
the policy πθ(ut|xt), the objective LGPS(p) becomes
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ût

]T
˜̀
xu,xut

[
x̂t
ût
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where πθ(ut|xt) ≈ N (ut;µ
π
xt(x̂t)xt + µπt (x̂t),Σ

π
t ) is the linear-Gaussian approximation to the

policy around (x̂t, ût). This linearization is fitted to the samples in the same fashion as the dy-
namics. In fact, the same type of GMM can be used to enable this fitting to be done with a small
number of samples. Once this objective is formed, it can be optimized with a backward dynamic
programming pass analogous to iLQG, which is described in previous work [14], to produce updated
linear-Gaussian parameters x̂t, ût, Kt, and Ct.

After performing the dynamic programming pass and updating x̂t, ût, Kt, and Ct, the policy pa-
rameters θ are optimized to minimize the KL-divergenceDKL(p(xt)πθ(ut|xt)‖p(xt,ut)), weighted
by λt at each time step. This is equivalent to minimizing Ep(xt)[DKL(πθ(ut|xt)‖p(xt,ut))], and
we can use the same samples to estimate this expectation that we will use to fit the new dynamics
corresponding to the updated trajectory distribution, as shown in Algorithm 1. Note that we must
sample before updating the policy, so that the samples are drawn from the new p(τ), optimize the
policy, and only then update p(τ) using the new samples. Rewriting the policy objective as a sample
average, we get

L(θ) =

T∑
t=1

λt

N∑
i=1
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}
,

where we assume the policy is conditional Gaussian with the mean µπ(xt) and covariance Σπt (xt)
any function of the state xt. Note that the objective is a least squares objective on the policy mean,
weighted by the conditional covariance of the trajectory, and can be minimized with any uncon-
strained nonlinear optimization algorithm. We use LBFGS in our implementation. When using
the GMM and a small number of samples per iteration, we augment the training set with samples
from previous iterations. Although this is not strictly correct, since the samples no longer all come
from p(xt), we still use the actions from the new trajectory distribution, and this tends to produce
significantly better results in practice.
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B Simulation Parameters and Cost Functions

In this appendix, we present the physical parameters of each system in our experimental evaluation,
as well as the cost function used for each task. All of the systems were simulated using a rigid
body simulation package, with simulated frictional contacts and torque motors at the joints used for
actuation.

Peg insertion: The 2D peg insertion task has 6 state dimensions (joint angles and angular veloc-
ities) and 2 action dimensions. The 3D version of the task has 12 state dimensions, since the arm
has 3 degrees of freedom at the shoulder, 1 at the elbow, and 2 at the wrist. Trials were 8 seconds in
length and simulated at 100 Hz, resulting in 800 time steps per rollout. The cost function is given by

`(xt,ut) =
1

2
wu‖ut‖2 + wp`12(pxt − p?),

where pxt is the position of the end effector for state xt, p? is the desired end effector position at
the bottom of the slot, and the norm `12(z) is given by 1

2‖z‖
2 +
√
α+ z2, which corresponds to the

sum of an `2 and soft `1 norm. We use this norm to encourage the peg to precisely reach the target
position at the bottom of the hole, but to also receive a larger penalty when far away. The task also
works well in 2D with a simple `2 penalty, though we found that the 3D version of the task takes
longer to insert the peg all the way into the hole without the `1-like square root term. The weights
were set to wu = 10−6 and wp = 1.

Octopus arm: The octopus arm consists of six four-sided chambers. Each edge of each chamber
is a simulated muscle, and actions correspond to contracting or relaxing the muscle. The state
space consists of the positions and velocities of the chamber vertices. The midpoint of one edge
of the first chamber is fixed, resulting in a total of 25 degrees of freedom: the 2D positions of
the 12 unconstrained points, and the orientation of the first edge. Including velocities, the total
dimensionality of the state space is 50. The cost function depends on the activation of the muscles
and distance between the tip of the arm and the target point, in the same way as for peg insertion.
The weights are set to wu = 10−3 and wp = 1.

Swimming: The swimmer consists of 3 links and 5 degrees of freedom, including the global
position and orientation which, together with the velocities, produces a 10 dimensional state space.
The swimmer has 2 action dimensions corresponding to the torques between joints. The simulation
applied drag on each link of the swimmer to roughly simulate a fluid, allowing it to propel itself.
The rollouts were 20 seconds in length at 20 Hz, resulting in 400 time steps per rollout. The cost
function for the swimmer is given by

`(xt,ut) =
1

2
wu‖ut‖t +

1

2
wv‖vxxt − v

?
x‖2

where vxxt is the horizontal velocity, v?x = 2.0m/s, and the weights werewu = 2·10−5 andwv = 1.

Walking: The bipedal walker consists of a torso and two legs, each with three links, for a total of
9 degrees of freedom and 18 dimensions, with velocity, and 6 action dimensions. The simulation
ran for 5 seconds at 100 Hz, for a total of 500 time steps. The cost function is given by

`(xt,ut) =
1

2
wu‖ut‖t +

1

2
wv‖vxxt − v

?
x‖2 +

1

2
wh‖pyxt − p

?
y‖2

where vxxt is again the horizontal velocity, pyxt is the vertical position of the root, v?x = 2.1m/s,
p?y = 1.1m, and the weights were set to wu = 10−4, wv = 1, and wh = 1.
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