A Approximation Error

Recall that we view our data as a marked counting process
N;(t) = f(Si, t) + M;(t).

where t € [0,7] and T is the time window, S; C V is the marker, and M, (t) is a zero mean local
martingale.

We make the following assumptions for our analysis of the parametrization and estimation.

(A1) f(S,t) has derivative a(S, t) with respect to ¢. For any S, a(S,t) = df (S, t)/dt is smooth
and bounded on [0, T]: a(S, t) is smooth and bounded on [0,T]: 0 < amin < @ < Apax <
oo, and G := d?a/dt* is absolutely continuous with [ d(t)dt < oo.

(A2) There is a known distribution Q’(7) and a constant C' Wlth Q'(m)/C < Q(T) £ CQ/(7).

Let a® denote the convolution of a with a kernel smoothing function KX with bandwidth o. More
precisely, K (t) = 1k(%) and k is a kernel with

0 < k(t) < Kmax, /k(t) dt =1, /tk(t) dt=0, and o} := /t%(t) dt < .
Let

Z
{ sz t—tSZ,TZ)).w>O,C<w||1<ZC}

denote our hypothesis class. In the following, we show that there exists a € A that is close to a
when the number of features W is sufficiently large. We first show that a is close to a’* and then
show that there exists @ € A close to a®. The first step follows directly from a classic result in
kernel density estimation.

Lemma 5 (e.g., Theorem 6.28 in [20]). For any S and t, a¥(S,t) — a(S,t) = O(c?).

For the second step, we have the following lemma based on the quantitive C' measuring the differ-
ence between the true distribution Q of the features and the sample distribution Q.

Lemma 6. Let P(S) be any distribution of S. Suppose T, ..., Tw are drawn i.i.d. from Q' (1), and
W =0 ((CL(;MX) log ﬁ) Then with probability at least 1 — § over 71, ..., Tw, there exists
a € A such that,

_ 2
SNI?PIES) {Et [a(S,t) —a®(S,1)] > 62} < 0.

Q(m)
a(S,t) = 3 Zz 1 Q,(_r K (t — t(S, T;)) be the sample average of these functions. Then a € A

Z Z Qi) zZc
S]nce oW < WQ’(‘Q) < W

Proof. Let ai(S t) = Z ) K (t — ¢(S, ;) fori = 1,...,W. Then B oy (mylai] = a’*. Let

Fix S, and consider the Hilbert space with the inner product

1 T
(F.9) =B (S.00(8.0) = 7 [ 1(S.a(. 0y

We now apply the following lemma, which states that the average of bounded vectors in a Hilbert
space concentrates towards its expectation in the Hilbert norm exponentially fast.

Claim 1 (Lemma 4 in [21]]). Let X = {x1,- - ,xw } be iid random variables in a ball A of radius

M centered around the origin in a Hilbert space. Denote their average by X = % Z:/L ;. Then
for any 6 > 0, with probability 1 — 6,

- — M 1
X -EX|<—== |1 2log = | .
[ || W( +yf og5>
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Since [|w||, < CZ and |K| < “mx the norm |[ja;|| < ©Zfmex. Then when W =
0] ((%)2 log ﬁ), for any fixed S we have

Pr, [Et [6(S,) — a*(8,)]” > 62] < 66,
where Pr.- is over the random sample of 7, ..., 7y . This leads to
Prsr(s)Prr B [a(S,1) = a¥(8,6)]" > ] < o0y

Exchanging Prs.p(s) and Pr. by Fubini’s theorem, and then by Markov’s inequality, we have

Pry {Prsscs) [Ec [a(S.1) — a¥(8,0)] > | 281} <6
This means with probability at least 1 — § over the random features, on at least 1 — §; probability
mass of the distribution of S, E; [a(S,t) — a® (S, )] ‘<eé. O

Combining the two, we have the following approximation error bound.
Lemma 2| Let P(S) be any distribution of S. Suppose 11, . . ., Tw are drawn i.i.d. from Q' (1), and
e
a € A such that with probability at least 1 — 61 over S,

E: [a(S,1) — a(S,1)]* < &+ O(c"),
Consequently, if W = O ((CZ”"‘“) log “max+CZ”““x), with probability at least 1 — 0 over

Ti,...,Tw, there exists a € A such that

EsE, [a(S,t) — a(S,1)]*> = O(? + o).

2 . e .
(%) log ﬁ). Then with probability at least 1 — § over T, ..., Tw, there exists

Proof. The first statement follows from Lemma I and @ Since [a(S,t) — a(S,t)]* < C) =
(@max + CZkmax)?, we can set §; = €2/C}. Then

EsE: [a(S,t) — a(S,t)] < (1=01) (2 +0(ch) +6,C1 = O(e® + o%)
which completes the proof. O

For convenience, let €2 := O(e? + o) denote the ¢, approximation error.

B Sample Complexity

Setup Recall that the true intensity a is bounded on [0, T']:
0 < @min < a < Qmax < 0.
The kernel K is also bounded on [0, T
0 < Kmin < K(t) < Kmax, Vt € [0,T]

where Kpin = minte[o,T] K(t) > 0 is satisfied for typical kernels, e.g., the Gaussian kernel. Our
hypothesis class is

QlIN

{ Zw t—tSl,TZ)).w>0,<w||1<ZC’}

and thus aX is also bounded: Va €A,

A min
0<a®, = Z a'(S,t) < av = CZmax, VS, t € [0, T].

With the exception of kmin and ay.;,, that depend on o, all other parameters are treated as constants.
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We observe D™ = {(S;, N;(t))};~,, and we want to fit a(S,t) by af (S,t) by using maximum
likelihood estimation (MLE). The log-likelihood is defined as

((D™a) = Z/ [loga’(S;,t)] dN;(t Z/ "(S;,t)d

and we optimize the log-likelihood to find an approximate solution.
Definition 7. We say that a € A is an €;-MLE if
L{D"a) = maxﬁ(Dm|a ) — €.
a’€A

Analysis Roadmap Our final goal is to bound the ¢5 error between the truth f(¢) and the function

fo s)ds induced by the MLE output a. A natural choice for connecting /5 error with the
log hkehhood cost used in MLE is the Hellinger distance. So it suffices to prove an upper bound on
the hellinger distance between the MLE output @ and the truth a, for which we need to show a high
probability bound on the empirical Hellinger distance between the two. The key for the analysis is
to show that the empirical Hellinger distance can be bounded by a martingale plus some additive
error terms. This martingale is defined based on the martingales M; associated with the counting
process N;. The additive error terms are the optimization error and the likelihood gap between the
truth and the best one in our hypothesis class. Therefore, our analysis focuses on two parts: a high
probability bound for the martingale, and a high probability bound on the likelihood gap.

To bound the martingale, we need to show a uniform convergence inequality. We first introduce
a dimension notion measuring the complexity of the hypothesis class, and then prove the uniform
convergence based on this notion. Compared to classic uniform inequality for (unmarked) counting
process [13]], our uniform inequality is for marked counting processes, and the complexity notion
and the related conditions have more clear geometric interpretation and are thus easier to verify.

To bound the likelihood gap, we decompose it into three terms, related respectively to the martingale
part of the counting processes, the compensate part of the counting processes, and the cumulative
difference between the two intensities a and a. The first term can be bounded by bounding its vari-
ance and applying a classic martingale inequality. The second term reduces to the KL-divergence,
which can be bounded by the /> approximation error between the truth and the hypotheses. Simi-
larly, the cumulative difference between the two intensities can be bounded by the /5 approximation
error.

We then combine the two to get a bound on the Hellinger distance between the MLE output and the
truth based on the dimension of the hypothesis class. This bound is for general hypothesis class, so
we bound the dimension of our specific hypothesis class. Finally, we convert the Hellinger distance

between the MLE output and the truth to the desired /5 error bound on f and f

The rest of the section is organized as follows. We first show the construction of the key martingale
upper bound for the Hellinger distance in Section and then show how to bound the martingale
and the likelihood gap in Section and Section respectively. In Section we provide the
general bound for the Hellinger distance based on the dimension of the hypothesis class. Finally, in
Section we bound the dimension of our hypothesis class and convert the Hellinger distance to
{5 error, achieving the final bound for learning time varying coverage functions.

B.1 Upper Bound the Hellinger Distance

More precisely, the Hellinger distance is defined as

h%(a,a’) = %ESEt [\/a(S,t) - \/a’(S,t)r

where Es is with respect to the random drawing of S, and E; [g(t)] denotes 7 fo t)dt. Define the
(total) empirical Hellinger distance as

m

Z/ a(S,t) — \/a’(Si,t)rdt

and note that EgE, [Hz (a, a')} =mTh?(a,a’).
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Define a martingale

M) = [ a(o)d (ZMf,(t)) =3 [ start (149

where M, (t) is the martingale in the marked counting process (S;, N;(t)), and g € G where G is a

set of functions defined as
G = = 11 atad . cA
Ga’ B 0og 2m a :

Let V,,(t|g) denote the n-th order variation process corresponding to M (t|g).

Define two distances on G:

@ (9. Z/ exp (g) — exp (¢)))° dAi(1)

where A;(t) = f(S;,t) is the compensator of N;(¢) and
doo,t(9,9') = (e |exp (9(S, 7)) — exp (9'(S, 7)) -

2l

Now we show that H (+,-) can be bounded by a martingale plus some additive error terms.

Lemma 3| Suppose a is an e;-MLE. Then
2 ("5 ) < M(Tlgn) +

41
4
H?(@,a) < 16M(T|ga) + [ D"|a) — max (D" |a’ )} + dey.

{E(D"ﬂa) maxé(Dm|a )} + iez,
a’eA

Proof. This is a generalization of Lemma 4.1 in [13]] and the proof largely follows their arguments.
Claim 2. Foranyb > 0,

[((D™|b) — £(D™|a)] < M <T‘; log 2) — H?(b,a).

DN | =

Proof. Let hy, := %log 3.

%[K(Dm|b)—£(1)’”|a)] M(T|h) +Z / hodAs (¢ Z / )

and
i_n:/OThbdAi(t)— ;i/j(b—a)dt _ iATlog\/EdAi(t)—;i/;(b—a)dt
< Z/ ([1) dAl(t);Zm:/oT(ba)dt
i=1
= Z/O (x/%—a)dt—;zm:/;(b—a)dt
= —H*b,a) :
This completes the proof. O

Claim 3. Foranya > 0,

(0%

L) - oma) > 10" ) - (D"
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Proof. By the concavity of the log function,

(Dm|“+a>£(Dma) _ Z/ 1og(‘”a)dN Zin;/ <a+“ >dt
X

7
m

> 72/ log<> ;zin: a—a)d

= g[ﬁ(Dmla) — {D™[a)]. (15)

We letb = a# in Claim [2|and combine with Claima which then leads to
e “) — B%(b,a).

. This, together with the definition of ¢,-MLE, completes the proof for

itewm@ — (D) < M ( |1 o

Note that
the first statement

For the second statement, we use the following claim.

Claim 4 ([22]). 2H2(%t,a) < H?(b,a) < 16H?(%L2, a).
The second statement then follows from the first statement. O

B.2 Bounding the Martingale

We begin with some basics about martingales. Here, for a martingale M (¢), let V,,(¢) denote its n-th
order variation process for n > 2, and let V (¢) := Va(¢). In particular,

V()= lim >, Var(AMy | Hie—yi5) (16)

where the time interval [0, ¢] is partitioned into j subintervals each of length ¢/j, and AM;, =
M(kt/j) — M((k — 1)t/7) is the increment of the martingale over the kth of these intervals. The
higher order moments are defined similarly.

Informally, the increment dV (¢) of the predictable variation process can be written as dV () =
Var(dM (t) | Hs-) = Var(dN(t) | Hs-), since a(t) is predictable given H,;-. Finally, dN (¢) may
only take the value 0 or 1, and it follows that dV(¢) = a(t)dt(1 — a(t)dt) = a(t)dt = dA(t). This
motivates the following claim, which will be useful in our later analysis.

Claim 5 ( [11]). V(¢ fo s)ds = A(t).

The following two classic martingale inequalities will also be useful.

Lemma 8 ([23]]). Suppose that |dM (t)| < Cps forallt = 0 and some 0 < Cpp < 0o, and let V (t)
denote its variation process. Then for each x > 0, y > 0,

2
Pr[M(t) >z and V (t) < y° for some t| < exp {(Cx—l—Q)] .
rCm T Y

Lemma 9 ([13]]). Suppose for allt > 0 and some constant 0 < Cpy < oo,
Vi(t) < 5’017;23(15), Vn > 2

where R(t) is a predictable process. Then for each x > 0, y > 0,

2
Pr [M(t) > z and R(t) < y* for some t] < exp [—M} .
M

Uniform Inequality for Marked Counting Processes Now, we will prove a uniform inequality
for the martingale M (t|g) defined in (14), which is based on the marked counting process and the
function g € G. Consider the following complexity notion for G based on a covering argument.

14



Definition 10. Suppose d and d' are two families of metrics on G which are indexed by t, that is,
foranyt > 0, d; and d are two metrics on G. The (d, d')-covering dimension of G is the minimum
D > 1 such that there exist c; > 1 and co > 1 satisfying the following. For each ¢ > 0 and each
ball B C G with radius R > ¢, one can find C C G with

Cl < (exR/€)”

that is an e-covering of B for the d; metric and a (cq€)-covering for the d, metric for each t > 0.
8 8 t

Based on this notion we have the following uniform inequality.

Theorem 11. Let D be the (d, d')-covering dimension of G. Suppose for any g,¢9' € G, anyn > 2,
nl _._
Vn(t|g - g/) < C1§C2 Qdf(gvg/)a
and |
n! e
Va(tlg = ¢') < Cs = [Cadi(9,9)]"di (9. 9')

where C1,Cs,C3,Cy > 0 are some constants. Then there exists a constant Cy > 0, such that for
any g* € G, anyy,z > 0and z > Co(y + 1)(z + D),

Pr[M(tlg — g%) = x and d:(g*, g) < y for some t and some g € G] < exp[—2].

Corollary 12. Let D, V,, as specified in Theorem|[[1) Then there exists a constant Cy > 0, such that
forany g* € G, anyy > 0and 0 < 6 < 1, we have that with probability > 1 — 4,

1
M(tlg~ ") < Colu+1) (D -+ 10g 5

for all g and t satisfying d:(g*, g) < y.

Proof. Let M (-) denote M (t|-) for short. For each k = 0,1,2,..., for the ball B(g*,y) and §;, =
O(27%)y, there exists a subset Cy, of size exp {O(kD)} that is both a §;-covering with respect to d;
and a (rdy)-covering with respect to d; for some constant r > 0. Let gj, denote the one in Cy, closest
to g. Since g = go + Y peo(9k+1 — gr), we have

Pr[M(g — ¢*) > x and di(g*, g) < y for some ¢ and some g € G]

< Z Pr[M(go — ¢") > nand d(go, g*) < 2y for some ¢]
90€Co

oo
+Z Z Pr[M(gr — gk+1) > n and di (g, gr+1) < 20 for some
k=0 gk:gr+1

aslongasn+ >,k < .
We have by Lemma [9] that

2
Pr[M(go — g") > nand d:(go, g*) < 2y for some ¢] < exp [—O (niyzﬂ .
Also, for gy, gr+1 wWe have
n! e
Val(tlge — gr+1) < 03561?(%gk+1)[04d2(91«79k+1)] 2
n! e
<Cs gdf(gk,gkﬂ)[@di(%g) + Cudi(g, grs1)]" 2
nl o n—2
< C3 Edt (91> Gi+1)[Cardy + Cyropp1]
n! e
<C3 gdf(gkagk-‘rl) [2C,ra,])" 2.

Then by Lemma(9]

2
Pr[M(gr — gk+1) > nr and de(gk, grt1) < 20 for some ¢] < exp |—O 77’“2) )
77k§lc + 5k
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Note that ) = O(y+/z + cz) ensures 1 > z. So we can choose n = O(yv/z + D + z + D) and
N, = O(0k(z + kD)) so that the ﬁnal statement holds.

We still need to verify 7 + Y p o nx < 2. Since n = O(yvVz+ D + z + D) and iy, = O(03,(2 +
kD)) = O(2 %y(z + kD)), it suffices to have z = O((y + 1)(z + D)). 0

B.3 Bounding the Likelihood Gap

Lemma 13. Suppose there exists an a € A such that with probability at least 1 — §; over S,
B¢ [a'(S,t) — a(S,1)]° < €2. With probability > 1 — mé; over {8} |, we have that with proba-
bility > 1 — 05 over {Mi}?il,

{(D™)a) — €(D™]a) < B(62) :=0O (1/ Qlog 5 + log 5 + Qlog amax + mTea)

where
4 Gmax _ 10 ( mln)
mTei 2 Agin g Amax
Q=——"-"—, and c; = .

w 2 2
(min + Amin < a®. >
—min __ ]
Amax

Corollary 14. Under the condition of Lemmal[l3] (D™ |a) — maxq e 4 {(D™|a’) < B(d2).

Proof. With probability > 1 — méy, B, [a(S;, ) — a(S;, t)]> < €2 for all S;. Assume this is true.

(D™ |a) — £(D™|a)
. i . )
/0 (loga — loga)dN;(t) — /0 (a— a)dt]

|
.MS

N
Il
—

/Olog( )dM() /010g< )dA() /OT(a—a)dt

Tix Ti2 Tis3

I
i

where A;(t) := f(S;,t) is the compensator of N, (t). There are three terms under the sum, each of
which is bounded in the following.

Bounding 7;; The first term T}; has zero expectation, and its variance is Var(T;1) = Ejy [Tfl]
Then

T a T a T a\1’
Euv [TA] = / log? <> dVi(t) = / log? <> dAi(t) = 4/ [ log ()} dA(t).
0 a 0 a 0 2 a
We now apply the following claim:
Claim 6 ([24]). If g > —L for some constant L > 0, then
n n! 2 1 2
lg|" < ECLg[exp(g)—l] , foranyn > 2,

where C% = 74((: ;11)@.

Since £ log (£) > 1 log ( ) by the above claim we have

3] <ot (-1

16



and thus

Ey [13] < o<c3>/0Ta (f 1)2«# 0<cz>/0T (Va-va) at

< O(ET)E, (%)2

2T2
< Bl:O(M),

Qmin + a%in

We have that the variance of ), T;; is bounded by mB; and that | >, dM (¢]S;)| < 1 almost surely.
By martingale inequality in Lemmal(g]

1 1

Bounding T;>  Since T} is just the KL-divergence between a(S;, -) and a(S;, -), we can apply the
following claim.

PI‘M

for sufficiently large C;.

Claim 7 (Eqn (7.6) in Lemm 5 in [23])). The KL-divergence between g(-) and g(-) is at most 4 +

g(t) } times their Hellinger distance % fOT(\/g(t) —/g(t))dt.

2log {maxt ’ 70

By this claim,we have

g a G(Si, t) T — 2
Z ) < 4 ;
/0 log (Zi> dA;(t) < (4 + 2log [m?x s /0 <\/a(81,t) \/a(SZ,t)) dt
- _ 2
< <4 + 2log amax) / alSit) ~ (S, 1) dt
amin / Jo \ Va(Si, t) + /a(Si,t)
2
< By = (4 + 2log Gmax) Teq .
%in Gmin + a’%in

Bounding 7;3 For T;3, we have

T
|Ti3‘ § / |a(8i,t) — Zi(Sl,t)\dt S T\/Et|a(Si,t) — Zi(Si, t)|2 = TGa =: B3.
0

Combining the bounds together, we have that ¢(D™|a) — maxg e ¢(D™|a’) is bounded by
O<\/Bllogé+logé+m(B2+Bg)). O

B.4 MLE for Marked Counting Processes

Here we apply Theorem[IT]to bound the empirical Hellinger distance between an approximate MLE
and the truth.

Theorem 15. Let D be the (da, dw)-covering dimension of G, and @ be an ep-MLE. There exist
constants Cy,Cy > 1 such that for any {S;}/~ |, if = > C1 [D + A + €] , then we have

Pry {Eﬂ(a a) > z} < exp[—2/Co] + Prys |4(D™|a) — ngﬁﬁ(l)"ﬂa') > A

where Pr) is with respect to the randomness in {Mz}:11
Proof. We first verify the conditions of Theorem|T1]is satisfied and then apply it to prove the claim.
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Since g, g’ € G are lower bounded by  log 1, Claim@leads to

1
lg—d'|" < 01%5 [exp (g) — exp (¢')]”, forany n > 2

for some constant C'{ > 0. Since (S;, N;(t)) are independent, and the counting process |dM;(t)| <
Ch =1forall t and S, then

t
Vitla—d) = 3 [ la—g v,

t t
< (@Y /0 g — g/ "dVir = (€)™ 2 S /0 19— g/|"dA,

omnl
< UGS di(9,9)

where V; ,, are the n-th order variation processes for M;, and A; is the compensator of A/;. This
verifies the first condition. For the second condition, by Claim@] we have

21
9(S:8) = ¢'(S, ) < C1 55 [exp (9(S, 1)) — exp (¢'(S,t)]° < C3d% 4 (9,9)
where (C})? = C}% 1. Then
19(S,t) — (S, 1)]" 72 = (|g(S,t) — ¢'(S,1)[)""D/2 < [Cldoo (g, g')]" 2

and

Va(tlg —g")

t t
Z/ lg—g/"dVin < (Cé)"‘zz/ lg—g'PPlg—g'|"2dVis
i 70 i J0

t
[C5C1doo,t(9,9'))" > Z/ lg—g'[?dVi2
i 0

N

N

t
(ChChde (9,2 S / 19— g/ PdA;

n— n! n—
= 2d3,4(9,9)[C5C oo (9, 9)]" % < 275,49, 9)[C5Chdoc 19, 9N

We are now ready to apply Theorem [T} The argument is classic, see for example, in [26]. By
Lemma [3|and Lemma4] it suffices to prove

Pros [M(T|ga) > i <“;“,a) —Aand H (a;a,a) > ﬂ <exp|-0(2)].

Let b := 2£ for b € A. The left hand side of the above inequality is bounded by

Pry [M(T|gb) > H%(b,a) — A and H(b,a) > Z for some b}

oo ) N o .z
< ZPrM [M(Tgb) > (23*17> — Aand H(b,a) > 27— for some b] .
= 4 4
Denote the j-th term on the right hand side as P;. Note that g, = 0 and M (T|gy) = M (T'|gy — ga ),
and H(b,a) = d3 7(9b, ga)- So we can apply Theoremuon P;. By setting z = Q(max{D, A})
and z; = O(2/z), we have P; < exp [~2z;] and thus 3~77 | P; < exp [~O(2)]. O

B.5 Sample Complexity of MLE for Learning Time Varying Coverage Functions

To apply Theorem [I5]in our case, we need: 1) to bound the dimension of our hypothesis class; 2) to
transfer the Hellinger distance to ¢, error to get the final bound.

Lemma 16. The (d2, d)-covering dimension of G is at most the number of random features W.

18



Proof. Note that dy; and d ; are both nondecreasing with respect to t. So it suffices to show
the existence of a covering of size exponential in W with respect to both dy 7 and dog, 7. In the
following, we only consider the time 7', and write do 7 (doo, 7 respectively) as da (doo respectively).

Note that
~, (d +a d'+a ad+a d'+a
d% (ga/, ga’//) = H2 < 5 , 2 and doo (ga/ y ga//) = max —

t,S 2a 2a
Then, the covering dimension of G is just the (da,dw)-covering dimension of A on which the
distances are (overloading notations):

d%(a’/7 a‘//) = d%(ga'a ga”)7 dOO (a/7 G,N) = doo(ga' ) ga“)-
Then we can apply the same argument as Lemma 15 in [8] to show the dimension is at most 1. That

is, define a mapping from w to aX, and show that the /., distance of the former is approximately the
ds distance of the latter, and the d, distance is bounded by the d; distance (up to constant factors).

We will need to introduce the following definition and then prove a claim showing that the ¢,

distance on w is approximately the do distance on aXX.

Definition 17. Define £ = min,,.o w AW hore A = 7 s P(S)®® " and

T
@:/ odt, and ¢ = [K(t —t(S,11)),..., K(t —t(S,7w)]"
0

Claim 8. For an w,w’,

£

W Kmax

a0~ lloe < ol ) < o7 0 =
Proof. (1) By definition, we have
2
1 2 1 wlo—wTe
d2w7w/:*EE[ Tg_ /T}:i]EE
Haw ) = BB [VaTo = WTo] =SB | e s

1
> B [w o —wTg)”
amax
- (w—-w) A(w-—w)
2a¥%,..T
E /12 f 712
2 - = - .
e w1 > e - w

(2) By definition we have

2
1 2 1 w'd—wTo
2 ) = Z T4 /T —_ -
@B(au, aur) = SESE: [VwT o= Vw'To|” = SEsE, VAT
1
< 4:TESEt ['wT¢ - wlT¢]2
a’min
1
< 4qv Wzﬂ?nawaiw/”io'

min

O

To bound the dimension, the key is to construct coverings of small sizes. By the above claim, the
d2 metric on A approximately corresponds to the ¢, metric on the set of weights. So based on
coverings for the weights with respect to the /., metric, we can construct coverings for .4 with
respect to the dy metric. We then show that they are also coverings with respect to the d., metric.
The bound on the dimension then follows from the sizes of these coverings.

More precisely, given € > 0 and a ball B C A with radius R > €, we construct an e-covering C as
follows. Define a mapping 7 : w + a.,, and define BY = 7~1(B). By Claim the radius of B
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is at most R¥ = 4/ %R (with respect to the ¢, metric). Now consider finding an €¢*-covering

-1
for B with respect to the ¢, metric, where € = (2"‘\7&“%) e. Since BY C RW, by taking the

min

grid with length ¢ /2 on each dimension, we can get such a covering C* with

w
vl < <4Rw>W _ (4 2Ta®, . Wkmax R)

ev £ 2y/a%, €

min

Let C = m(C™), and for any b € B find b as follows. Suppose wj, € BY satisfies 7(w;,) = b and wy

is the nearest neighbor of wj, in C*, then we set b = m(wy).

First, we argue that C is an e-covering w.r.t. the dy metric, i.e., d(b,b) < € for any b € B. It follows
from Claim|[8}

~ w w
do(b,b) < ﬂ“wb — Wil < ﬂew — e

/W w
2 Amin 2 Amin

Second, we argue that C is also an O(e)-covering w.r.t. the do metric, i.e., doo(b,b) = O(e) for any

beB.
b+a E+a
oo (7 (wy), m(wp)) = max |\ [ == — [ —

|b—b|
“S|V2a (VbFa+Vi+a)
_ maxy s [(wy —wy) 9|
= 24/ 20min (0, + Gmin)
Wﬁmax
<
2\/2amin(alrﬁin + amin)

[[wp — wyloo-

So the conditions in the definition of the dimension are satisfied with D = W, ¢4 =

2Tay . . .
4 Gmax Weimax and ¢y = Wotomnas , and thus the dimension of A is at most W. [

£ 2y/al, 24/2azmin (A%, +Gmin)

Now, we can plug the lemma into Theorem [I3] and convert the Hellinger distance to the ¢, distance
between f and our output function f defined by a.

Theorem 18. Suppose a is an ¢;-MLE, and fis the corresponding function.

(i) Suppose there exists an a € A such that with probability at least 1 — 61 over S, E; (¢’ — a)2 < e
Then forany 0 <t < T, and v > 0,

~ 2
Es [F(S,0) = £(5,1)]

A 1 €2 a c2e? 1
< ofe{vaz  + n;“;" {W—i—logy—kez] + Apmax ea+Am"inlog< 2?:) + ﬁlog;

where Amax = Gmax + oo Amin = Gmin + Goyy, and cg is defined in Lemma
(ii) Consequently, if

a 5/4
AmaxT> 5/2 (AmaXT 1Og ar’gax ) / mAmaxT
s + | log ———

min
€

W =0 [ (CZkmax)? ( T

€

and

AIH XT Al’Il XT 1 AII] XT
m:0<a{w+1og = +e4+ g 2 )
€

€ Amin V aﬁinT 10 €
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then with probability > 1 — 6 over {Tz}l pforany 0 <t < T,
2
s|fisn-sen] <

Proof. (i) By Theorem@ and Lemma|T3] there exists 25 of probability at least 1 — md; so that for
any outcome of {S; }l , in it, we have that with probability > 1 — 24,

~ 1
H?*(@,a) <2=0 (D + B(d2) + €¢ + log 5)
2
where D < W by Lemma[I6]

Since H2(@, a) < mT (amax + a

max)

and Epn [fﬂ @, a)} — mTh? (@, a), we have
h2(@, 0) < (81, 05) i= (L= md1)(1 = 262) — + (mdy + 202) (Amax + Al

Now we convert the Hellinger distance between the intensities to the /5 distance between the funci-
tion f and the output f defined by a. Forany 0 < 7 < 7T,

s[fsn-rsn] < Bs UOT|a<s7t>—a(s,t>|dtr
< s [ L[S, 1) — oS, ) dt
< r8s [ [(VASD - Va0) (VAS. D + Vaiso)] e
< 2(amax + %) TEs/ [\/a (S,t) — \/a(S,t)rdt

< Hamax + ) 702 (@, @) < AGmax + Aia) 726 (01, 62).

The first statement then follows from choosing §; = v/m and d5 = v.

(ii) The second statement follows from the first statement and Lemma[2] More precisely, we check
each error term and set the parameters as follows.

e Toensure t?A2 v = O(e),letv = O <A2 < T2>

max

e Toensure “2max [T +log L + ¢/] = O (e), let

m:O(w[W—l-logW—i-q]). 17)
€

€

e To ensure that €2 = O(e?), let o = /€o, and
CZrmax )", 1 (CZFmax)” | M AmaxT
- Elmax ) oo 1) = 1 .
w=0 << €00 > ©8 51(5> © ( 6(5)/2 8T

2
o To ensure t?Apace, = O(e), we need ¢ = O (A £ T) ) To ensure

L i‘;?:é" log ( ) = O(¢), weneed €3 = O ([Amine] / {AmaxT log (‘;’:“:)D Then
we need

Qpmin

W =0 | (CZkmax) (

a 5/4

ApaT\*? [ AwsTlog =\ s
e + —mm logi
€ €Amin €d

(18)
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2 2
CKE(I
minmT’

2
CZ AmaxT 1 AmaxT
= 1 = 1 . 1
" © (AminT o8 € ) © <Amin a®. T o8 € ( 9)

min

e To ensure t2 A, y: log % = O(e), we need

The bound for IV and m then follows from (8] and (T9) respectively. The kernel bandwidth o is

chosen such that 0 = /eg = O (min { (m)lﬂ 7 [Amin€]1/4/ |:AmaxT2 log (‘Zﬁuﬂ)} 1/4})
O
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