
A Approximation Error

Recall that we view our data as a marked counting process
Ni(t) = f(Si, t) +Mi(t).

where t ∈ [0, T ] and T is the time window, Si ⊆ V is the marker, and Mi(t) is a zero mean local
martingale.

We make the following assumptions for our analysis of the parametrization and estimation.

(A1) f(S, t) has derivative a(S, t) with respect to t. For any S, a(S, t) = df(S, t)/dt is smooth
and bounded on [0, T ]: a(S, t) is smooth and bounded on [0, T ]: 0 < amin 6 a 6 amax <
∞, and ä := d2a/dt2 is absolutely continuous with

∫
ä(t)dt <∞.

(A2) There is a known distribution Q′(τ ) and a constant C with Q′(τ )/C 6 Q(τ ) 6 CQ′(τ ).

Let aK denote the convolution of a with a kernel smoothing function K with bandwidth σ. More
precisely, K(t) = 1

σk( tσ ) and k is a kernel with

0 6 k(t) 6 κmax,

∫
k(t) dt = 1,

∫
t k(t) dt = 0, and σ2

k :=

∫
t2k(t) dt <∞.

Let

A =

{
aKw =

W∑
i=1

wiK(t− t(Si, τi)) : w > 0,
Z

C
6 ‖w‖1 6 ZC

}
denote our hypothesis class. In the following, we show that there exists ã ∈ A that is close to a
when the number of features W is sufficiently large. We first show that a is close to aK and then
show that there exists ã ∈ A close to aK . The first step follows directly from a classic result in
kernel density estimation.

Lemma 5 (e.g., Theorem 6.28 in [20]). For any S and t, aK(S, t)− a(S, t) = O(σ4).

For the second step, we have the following lemma based on the quantitive C measuring the differ-
ence between the true distribution Q of the features and the sample distribution Q′.

Lemma 6. Let P(S) be any distribution of S. Suppose τ1, . . . , τW are drawn i.i.d. from Q′(τ ), and

W = O
((

CZκmax

εσ

)2
log 1

δδ1

)
. Then with probability at least 1 − δ over τ1, . . . , τW , there exists

ã ∈ A such that,
Pr

S∼P(S)

{
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

}
6 δ1.

Proof. Let ai(S, t) = Z Q(τi)
Q′(τi)K(t − t(S, τi)) for i = 1, . . . ,W . Then Eτi∼Q′(τi)[ai] = aK . Let

ã(S, t) = Z
W

∑W
i=1

Q(τi)
Q′(τi)K(t − t(S, τi)) be the sample average of these functions. Then ã ∈ A

since Z
CW 6 Z

W
Q(τi)
Q′(τi) 6

ZC
W .

Fix S, and consider the Hilbert space with the inner product

〈f, g〉 = Et [f(S, t)g(S, t)] =
1

T

∫ T

0

f(S, t)g(S, t)dt.

We now apply the following lemma, which states that the average of bounded vectors in a Hilbert
space concentrates towards its expectation in the Hilbert norm exponentially fast.

Claim 1 (Lemma 4 in [21]). LetX = {x1, · · · , xW } be iid random variables in a ball A of radius
M centered around the origin in a Hilbert space. Denote their average by X = 1

W

∑W
i=1 xi. Then

for any δ > 0, with probability 1− δ,

‖X − EX‖ 6 M√
W

(
1 +

√
2 log

1

δ

)
.
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Since ‖w‖1 6 CZ and |K| 6 κmax

σ , the norm ‖ai‖ 6 CZκmax

σ . Then when W =

O
((

CZκmax

εσ

)2
log 1

δδ1

)
, for any fixed S we have

Prτ

[
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

]
6 δδ1

where Prτ is over the random sample of τ1, . . . , τW . This leads to

PrS∼P(S)Prτ

[
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

]
6 δδ1

Exchanging PrS∼P(S) and Prτ by Fubini’s theorem, and then by Markov’s inequality, we have

Prτ

{
PrS∼P(S)

[
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

]
> δ1

}
6 δ

This means with probability at least 1 − δ over the random features, on at least 1 − δ1 probability
mass of the distribution of S, Et

[
ã(S, t)− aK(S, t)

]2
6 ε2.

Combining the two, we have the following approximation error bound.

Lemma 2 Let P(S) be any distribution of S. Suppose τ1, . . . , τW are drawn i.i.d. from Q′(τ ), and

W = O
((

CZκmax

εσ

)2
log 1

δδ1

)
. Then with probability at least 1 − δ over τ1, . . . , τW , there exists

ã ∈ A such that with probability at least 1− δ1 over S,

Et [ã(S, t)− a(S, t)]2 6 ε2 +O(σ4).

Consequently, if W = O
((

CZκmax

εσ

)2
log amax+CZκmax

δε

)
, with probability at least 1 − δ over

τ1, . . . , τW , there exists ã ∈ A such that

ESEt [ã(S, t)− a(S, t)]2 = O(ε2 + σ4).

Proof. The first statement follows from Lemma 5 and 6. Since [ã(S, t)− a(S, t)]2 6 C1 :=
(amax + CZκmax)2, we can set δ1 = ε2/C1. Then

ESEt [ã(S, t)− a(S, t)]2 6 (1− δ1)(ε2 +O(σ4)) + δ1C1 = O(ε2 + σ4)

which completes the proof.

For convenience, let ε2a := O(ε2 + σ4) denote the `2 approximation error.

B Sample Complexity

Setup Recall that the true intensity a is bounded on [0, T ]:
0 < amin 6 a 6 amax <∞.

The kernel K is also bounded on [0, T ]:
0 < κmin 6 K(t) 6 κmax,∀t ∈ [0, T ]

where κmin := mint∈[0,T ]K(t) > 0 is satisfied for typical kernels, e.g., the Gaussian kernel. Our
hypothesis class is

A =

{
aKw =

W∑
i=1

wiK(t− t(Si, τi)) : w > 0,
Z

C
6 ‖w‖1 6 ZC

}
and thus aKw is also bounded: ∀a′ ∈ A,

0 < awmin :=
Zκmin

C
6 a′(S, t) 6 awmax := CZκmax,∀S, t ∈ [0, T ].

With the exception of κmin and awmin that depend on σ, all other parameters are treated as constants.

11



We observe Dm = {(Si, Ni(t))}mi=1, and we want to fit a(S, t) by aKw(S, t) by using maximum
likelihood estimation (MLE). The log-likelihood is defined as

`(Dm|a′) :=

m∑
i=1

∫ T

0

[log a′(Si, t)] dNi(t)−
m∑
i=1

∫ T

0

a′(Si, t)dt

and we optimize the log-likelihood to find an approximate solution.
Definition 7. We say that â ∈ A is an ε`-MLE if

`(Dm|â) > max
a′∈A

`(Dm|a′)− ε`.

Analysis Roadmap Our final goal is to bound the `2 error between the truth f(t) and the function
f̂(t) =

∫ t
0
â(s)ds induced by the MLE output â. A natural choice for connecting `2 error with the

log-likelihood cost used in MLE is the Hellinger distance. So it suffices to prove an upper bound on
the hellinger distance between the MLE output â and the truth a, for which we need to show a high
probability bound on the empirical Hellinger distance between the two. The key for the analysis is
to show that the empirical Hellinger distance can be bounded by a martingale plus some additive
error terms. This martingale is defined based on the martingales Mi associated with the counting
process Ni. The additive error terms are the optimization error and the likelihood gap between the
truth and the best one in our hypothesis class. Therefore, our analysis focuses on two parts: a high
probability bound for the martingale, and a high probability bound on the likelihood gap.

To bound the martingale, we need to show a uniform convergence inequality. We first introduce
a dimension notion measuring the complexity of the hypothesis class, and then prove the uniform
convergence based on this notion. Compared to classic uniform inequality for (unmarked) counting
process [13], our uniform inequality is for marked counting processes, and the complexity notion
and the related conditions have more clear geometric interpretation and are thus easier to verify.

To bound the likelihood gap, we decompose it into three terms, related respectively to the martingale
part of the counting processes, the compensate part of the counting processes, and the cumulative
difference between the two intensities a and â. The first term can be bounded by bounding its vari-
ance and applying a classic martingale inequality. The second term reduces to the KL-divergence,
which can be bounded by the `2 approximation error between the truth and the hypotheses. Simi-
larly, the cumulative difference between the two intensities can be bounded by the `2 approximation
error.

We then combine the two to get a bound on the Hellinger distance between the MLE output and the
truth based on the dimension of the hypothesis class. This bound is for general hypothesis class, so
we bound the dimension of our specific hypothesis class. Finally, we convert the Hellinger distance
between the MLE output and the truth to the desired `2 error bound on f and f̂ .

The rest of the section is organized as follows. We first show the construction of the key martingale
upper bound for the Hellinger distance in Section B.1, and then show how to bound the martingale
and the likelihood gap in Section B.2 and Section B.3 respectively. In Section B.4 we provide the
general bound for the Hellinger distance based on the dimension of the hypothesis class. Finally, in
Section B.5 we bound the dimension of our hypothesis class and convert the Hellinger distance to
`2 error, achieving the final bound for learning time varying coverage functions.

B.1 Upper Bound the Hellinger Distance

More precisely, the Hellinger distance is defined as

h2(a, a′) =
1

2
ESEt

[√
a(S, t)−

√
a′(S, t)

]2
where ES is with respect to the random drawing of S, and Et [g(t)] denotes 1

T

∫ T
0
g(t)dt. Define the

(total) empirical Hellinger distance as

Ĥ2(a, a′) =
1

2

m∑
i=1

∫ T

0

[√
a(Si, t)−

√
a′(Si, t)

]2
dt

and note that ESEt
[
Ĥ2(a, a′)

]
= mTh2(a, a′).

12



Define a martingale

M(t|g) :=

∫ t

0

g(t)d

(∑
i

Mi(t)

)
=

m∑
i=1

∫ t

0

g(t)dMi(t) (14)

where Mi(t) is the martingale in the marked counting process (Si, Ni(t)), and g ∈ G where G is a
set of functions defined as

G =

{
ga′ =

1

2
log

a+ a′

2a
: a′ ∈ A

}
.

Let Vn(t|g) denote the n-th order variation process corresponding to M(t|g).

Define two distances on G:

d22,t(g, g
′) =

1

2

m∑
i=1

∫ t

0

[exp (g)− exp (g′)]
2
dΛi(t)

where Λi(t) = f(Si, t) is the compensator of Ni(t) and
d∞,t(g, g

′) = max
τ∈[0,t],S

|exp (g(S, τ))− exp (g′(S, τ))| .

Now we show that Ĥ(·, ·) can be bounded by a martingale plus some additive error terms.

Lemma 3 Suppose â is an ε`-MLE. Then

Ĥ2

(
â+ a

2
, a

)
6M(T |gâ) +

1

4

[
`(Dm|a)−max

a′∈A
`(Dm|a′)

]
+

1

4
ε`,

Ĥ2 (â, a) 6 16M(T |gâ) + 4

[
`(Dm|a)−max

a′∈A
`(Dm|a′)

]
+ 4ε`.

Proof. This is a generalization of Lemma 4.1 in [13] and the proof largely follows their arguments.

Claim 2. For any b > 0,
1

2
[`(Dm|b)− `(Dm|a)] 6M

(
T

∣∣∣∣12 log
b

a

)
− Ĥ2(b, a).

Proof. Let hb := 1
2 log b

a .

1

2
[`(Dm|b)− `(Dm|a)] = M(T |hb) +

m∑
i=1

∫ T

0

hbdΛi(t)−
1

2

m∑
i=1

∫ T

0

(b− a)dt

and
m∑
i=1

∫ T

0

hbdΛi(t)−
1

2

m∑
i=1

∫ T

0

(b− a)dt =

m∑
i=1

∫ T

0

log

√
b

a
dΛi(t)−

1

2

m∑
i=1

∫ T

0

(b− a)dt

6
m∑
i=1

∫ T

0

(√
b

a
− 1

)
dΛi(t)−

1

2

m∑
i=1

∫ T

0

(b− a)dt

=

m∑
i=1

∫ T

0

(√
ba− a

)
dt− 1

2

m∑
i=1

∫ T

0

(b− a)dt

= −Ĥ2(b, a).

This completes the proof.

Claim 3. For any â > 0,

`

(
Dm
∣∣∣∣ â+ a

2

)
− `(Dm|a) >

1

2
[`(Dm|â)− `(Dm|a)].
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Proof. By the concavity of the log function,

`

(
Dm| â+ a

2

)
− `(Dm|a) =

m∑
i=1

∫ T

0

log

(
â+ a

2a

)
dNi(t)−

m∑
i=1

∫ T

0

(
â+ a

2
− a
)
dt

>
1

2

m∑
i=1

∫ T

0

log

(
â

a

)
dNi(t)−

1

2

m∑
i=1

∫ T

0

(â− a)dt

=
1

2
[`(Dm|â)− `(Dm|a)]. (15)

We let b = â+a
2 in Claim 2 and combine with Claim 3, which then leads to

1

2
[`(Dm|â)− `(Dm|a)] 6M

(
T

∣∣∣∣12 log
â+ a

2a

)
− Ĥ2(b, a).

Note that 1
2 log â+a

2a is just gâ. This, together with the definition of ε`-MLE, completes the proof for
the first statement.

For the second statement, we use the following claim.

Claim 4 ([22]). 2Ĥ2(a+b2 , a) 6 Ĥ2(b, a) 6 16Ĥ2(a+b2 , a).

The second statement then follows from the first statement.

B.2 Bounding the Martingale

We begin with some basics about martingales. Here, for a martingaleM(t), let Vn(t) denote its n-th
order variation process for n > 2, and let V (t) := V2(t). In particular,

V (t) := lim
j→∞

∑n

k=1
Var(∆Mk |H(k−1)t/j) (16)

where the time interval [0, t] is partitioned into j subintervals each of length t/j, and ∆Mk :=
M(kt/j) −M((k − 1)t/j) is the increment of the martingale over the kth of these intervals. The
higher order moments are defined similarly.

Informally, the increment dV (t) of the predictable variation process can be written as dV (t) =
Var(dM(t) |Ht−) = Var(dN(t) |Ht−), since a(t) is predictable given Ht− . Finally, dN(t) may
only take the value 0 or 1, and it follows that dV (t) = a(t)dt(1− a(t)dt) ≈ a(t)dt = dΛ(t). This
motivates the following claim, which will be useful in our later analysis.

Claim 5 ( [11]). V (t) =
∫ t
0
a(s) ds = Λ(t).

The following two classic martingale inequalities will also be useful.

Lemma 8 ([23]). Suppose that |dM(t)| 6 CM for all t > 0 and some 0 6 CM <∞, and let V (t)
denote its variation process. Then for each x > 0, y > 0,

Pr
[
M(t) > x and V (t) 6 y2 for some t

]
< exp

[
− x2

2(xCM + y2)

]
.

Lemma 9 ([13]). Suppose for all t > 0 and some constant 0 < CM <∞,

Vn(t) 6
n!

2
Cn−2M R(t), ∀n > 2,

where R(t) is a predictable process. Then for each x > 0, y > 0,

Pr
[
M(t) > x and R(t) 6 y2 for some t

]
< exp

[
− x2

2(xCM + y2)

]
.

Uniform Inequality for Marked Counting Processes Now, we will prove a uniform inequality
for the martingale M(t|g) defined in (14), which is based on the marked counting process and the
function g ∈ G. Consider the following complexity notion for G based on a covering argument.
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Definition 10. Suppose d and d′ are two families of metrics on G which are indexed by t, that is,
for any t > 0, dt and d′t are two metrics on G. The (d, d′)-covering dimension of G is the minimum
D > 1 such that there exist c1 > 1 and c2 > 1 satisfying the following. For each ε > 0 and each
ball B ⊆ G with radius R > ε, one can find C ⊆ G with

|C| 6 (c1R/ε)
D

that is an ε-covering of B for the dt metric and a (c2ε)-covering for the d′t metric for each t > 0.

Based on this notion we have the following uniform inequality.

Theorem 11. Let D be the (d, d′)-covering dimension of G. Suppose for any g, g′ ∈ G, any n > 2,

Vn(t|g − g′) 6 C1
n!

2
Cn−22 d2t (g, g

′),

and

Vn(t|g − g′) 6 C3
n!

2
[C4d

′
t(g, g

′)]n−2d2t (g, g
′)

where C1, C2, C3, C4 > 0 are some constants. Then there exists a constant C0 > 0, such that for
any g∗ ∈ G, any y, z > 0 and x > C0(y + 1)(z +D),

Pr [M(t|g − g∗) > x and dt(g∗, g) 6 y for some t and some g ∈ G] 6 exp [−z] .
Corollary 12. Let D,Vn as specified in Theorem 11. Then there exists a constant C0 > 0, such that
for any g∗ ∈ G, any y > 0 and 0 < δ < 1, we have that with probability > 1− δ,

M(t|g − g∗) 6 C0(y + 1)

(
D + log

1

δ

)
for all g and t satisfying dt(g∗, g) 6 y.

Proof. Let M(·) denote M(t|·) for short. For each k = 0, 1, 2, . . . , for the ball B(g∗, y) and δk =
O(2−k)y, there exists a subset Ck of size exp {O(kD)} that is both a δk-covering with respect to dt
and a (rδk)-covering with respect to d′t for some constant r > 0. Let gk denote the one in Ck closest
to g. Since g = g0 +

∑∞
k=0(gk+1 − gk), we have

Pr [M(g − g∗) > x and dt(g∗, g) 6 y for some t and some g ∈ G]

6
∑
g0∈C0

Pr [M(g0 − g∗) > η and dt(g0, g∗) 6 2y for some t]

+

∞∑
k=0

∑
gk,gk+1

Pr [M(gk − gk+1) > ηk and dt(gk, gk+1) 6 2δk for some t]

as long as η +
∑∞
k=0 ηk 6 x.

We have by Lemma 9 that

Pr [M(g0 − g∗) > η and dt(g0, g∗) 6 2y for some t] 6 exp

[
−O

(
η2

η + y2

)]
.

Also, for gk, gk+1 we have

Vn(t|gk − gk+1) 6 C3
n!

2
d2t (gk, gk+1)[C4d

′
t(gk, gk+1)]n−2

6 C3
n!

2
d2t (gk, gk+1)[C4d

′
t(gk, g) + C4d

′
t(g, gk+1)]n−2

6 C3
n!

2
d2t (gk, gk+1)[C4rδk + C4rδk+1]n−2

6 C3
n!

2
d2t (gk, gk+1) [2C4rδk]

n−2
.

Then by Lemma 9,

Pr [M(gk − gk+1) > ηk and dt(gk, gk+1) 6 2δk for some t] 6 exp

[
−O

(
η2k

ηkδk + δ2k

)]
.
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Note that η = O(y
√
z+ cz) ensures η2

cη+y2 > z. So we can choose η = O(y
√
z +D+ z+D) and

ηk = O(δk(z + kD)) so that the final statement holds.

We still need to verify η +
∑∞
k=0 ηk 6 x. Since η = O(y

√
z +D + z + D) and ηk = O(δk(z +

kD)) = O(2−ky(z + kD)), it suffices to have x = O((y + 1)(z +D)).

B.3 Bounding the Likelihood Gap

Lemma 13. Suppose there exists an ã ∈ A such that with probability at least 1 − δ1 over S,
Et [a′(S, t)− a(S, t)]2 6 ε2a. With probability > 1 −mδ1 over {Si}mi=1, we have that with proba-
bility > 1− δ2 over {Mi}mi=1,

`(Dm|a)− `(Dm|ã) 6 B(δ2) := O

(√
c2`Q log

1

δ2
+ log

1

δ2
+Q log

amax

awmin

+mTεa

)
where

Q =
mTε2a

amin + awmin

, and c2` =

4

(√
amax

awmin
− 1− 1

2 log
(
awmin

amax

))
(√

awmin

amax
− 1

)2 .

Corollary 14. Under the condition of Lemma 13, `(Dm|a)−maxa′∈A `(Dm|a′) 6 B(δ2).

Proof. With probability > 1−mδ1, Et [a(Si, t)− a(Si, t)]2 6 ε2a for all Si. Assume this is true.

`(Dm|a)− `(Dm|ã)

=

m∑
i=1

[∫ T

0

(log a− log ã)dNi(t)−
∫ T

0

(a− ã)dt

]

=

m∑
i=1


∫ T

0

log
(a
ã

)
dMi(t)︸ ︷︷ ︸

Ti1

+

∫ T

0

log
(a
ã

)
dΛi(t)︸ ︷︷ ︸

Ti2

−
∫ T

0

(a− ã)dt︸ ︷︷ ︸
Ti3


where Λi(t) := f(Si, t) is the compensator of Ni(t). There are three terms under the sum, each of
which is bounded in the following.

Bounding Ti1 The first term Ti1 has zero expectation, and its variance is Var(Ti1) = EM
[
T 2
i1

]
.

Then

EM
[
T 2
i1

]
=

∫ T

0

log2

(
ã

a

)
dVi(t) =

∫ T

0

log2

(
ã

a

)
dΛi(t) = 4

∫ T

0

[
1

2
log

(
ã

a

)]2
dΛi(t).

We now apply the following claim:

Claim 6 ([24]). If g > −L for some constant L > 0, then

|g|n 6
n!

2
C2
L

1

2
[exp (g)− 1]

2
, for any n > 2,

where C2
L = 4(eL−1−L)

(e−L−1)2 .

Since 1
2 log

(
ã
a

)
> 1

2 log
(
awmin

amax

)
, by the above claim we have[

1

2
log

(
ã

a

)]2
6 O(c2`)

(√
ã

a
− 1

)2
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and thus

EM
[
T 2
i1

]
6 O(c2`)

∫ T

0

a

(√
ã

a
− 1

)2

dt = O(c2`)

∫ T

0

(√
ã−
√
a
)2
dt

6 O(c2`T )Et
(

ã− a√
ã+
√
a

)2

6 B1 := O

(
c2`Tε

2
a

amin + awmin

)
.

We have that the variance of
∑
i Ti1 is bounded bymB1 and that |

∑
i dM(t|Si)| 6 1 almost surely.

By martingale inequality in Lemma 8,

PrM

[∑
i

Ti1 > C1

(√
mB1 log

1

δ2
+ log

1

δ2

)]
6
δ2
2

for sufficiently large C1.

Bounding Ti2 Since Ti2 is just the KL-divergence between a(Si, ·) and ã(Si, ·), we can apply the
following claim.

Claim 7 (Eqn (7.6) in Lemm 5 in [25]). The KL-divergence between g(·) and g̃(·) is at most 4 +

2 log
[
maxt

∣∣∣ g(t)g̃(t)

∣∣∣] times their Hellinger distance 1
2

∫ T
0

(
√
g(t)−

√
g̃(t))dt.

By this claim,we have∫ T

0

log
(a
ã

)
dΛi(t) 6

(
4 + 2 log

[
max
t

∣∣∣∣∣
√
a(Si, t)
ã(Si, t)

∣∣∣∣∣
])∫ T

0

(√
a(Si, t)−

√
ã(Si, t)

)2
dt

6

(
4 + 2 log

amax

awmin

)∫ T

0

(
a(Si, t)− ã(Si, t)√
a(Si, t) +

√
ã(Si, t)

)2

dt

6 B2 :=

(
4 + 2 log

amax

awmin

)
Tε2a

amin + awmin

.

Bounding Ti3 For Ti3, we have

|Ti3| 6
∫ T

0

|a(Si, t)− ã(Si, t)|dt 6 T
√
Et|a(Si, t)− ã(Si, t)|2 = Tεa =: B3.

Combining the bounds together, we have that `(Dm|a) − maxa′∈A `(Dm|a′) is bounded by

O
(√

B1 log 1
δ2

+ log 1
δ2

+m (B2 +B3)
)

.

B.4 MLE for Marked Counting Processes

Here we apply Theorem 11 to bound the empirical Hellinger distance between an approximate MLE
and the truth.

Theorem 15. Let D be the (d2, d∞)-covering dimension of G, and â be an ε`-MLE. There exist
constants C1, C2 > 1 such that for any {Si}mi=1, if z > C1 [D + ∆ + ε`] , then we have

PrM

[
Ĥ2(â, a) > z

]
6 exp [−z/C2] + PrM

[
`(Dm|a)−max

a′∈A
`(Dm|a′) > ∆

]
where PrM is with respect to the randomness in {Mi}mi=1.

Proof. We first verify the conditions of Theorem 11 is satisfied and then apply it to prove the claim.
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Since g, g′ ∈ G are lower bounded by 1
2 log 1

2 , Claim 6 leads to

|g − g′|n 6 C ′1
n!

2

1

2
[exp (g)− exp (g′)]

2
, for any n > 2

for some constant C ′1 > 0. Since (Si, Ni(t)) are independent, and the counting process |dMi(t)| 6
C ′2 = 1 for all t and S, then

Vn(t|g − g′) =
∑
i

∫ t

0

|g − g′|ndVi,n

6 (C ′2)n−2
∑
i

∫ t

0

|g − g′|ndVi,2 = (C ′2)n−2
∑
i

∫ t

0

|g − g′|ndΛi

6 C ′1(C ′2)n−2
n!

2
d2t (g, g

′)

where Vi,n are the n-th order variation processes for Mi, and Λi is the compensator of Mi. This
verifies the first condition. For the second condition, by Claim 6 we have

|g(S, t)− g′(S, t)|2 6 C ′1
2!

2

1

2
[exp (g(S, t))− exp (g′(S, t))]2 6 C2

4d
2
∞,t(g, g

′)

where (C ′4)2 = C ′1
2!
2

1
2 . Then

|g(S, t)− g′(S, t)|n−2 = (|g(S, t)− g′(S, t)|2)(n−2)/2 6 [C ′4d∞,t(g, g
′)]n−2

and

Vn(t|g − g′) =
∑
i

∫ t

0

|g − g′|ndVi,n 6 (C ′2)n−2
∑
i

∫ t

0

|g − g′|2|g − g′|n−2dVi,2

6 [C ′2C
′
4d∞,t(g, g

′)]n−2
∑
i

∫ t

0

|g − g′|2dVi,2

6 [C ′2C
′
4d∞,t(g, g

′)]n−2
∑
i

∫ t

0

|g − g′|2dΛi

= 2d22,t(g, g
′)[C ′2C

′
4d∞,t(g, g

′)]n−2 6 2
n!

2
d22,t(g, g

′)[C ′2C
′
4d∞,t(g, g

′)]n−2.

We are now ready to apply Theorem 11. The argument is classic, see for example, in [26]. By
Lemma 3 and Lemma 4, it suffices to prove

PrM

[
M(T |gâ) > Ĥ2

(
â+ a

2
, a

)
−∆ and Ĥ

(
â+ a

2
, a

)
>
z

4

]
6 exp [−O(z)] .

Let b := a+b
2 for b ∈ A. The left hand side of the above inequality is bounded by

PrM

[
M(T |gb) > Ĥ2(b, a)−∆ and Ĥ(b, a) >

z

4
for some b

]
6

∞∑
j=1

PrM

[
M(T |gb) >

(
2j−1

z

4

)2
−∆ and Ĥ(b, a) > 2j

z

4
for some b

]
.

Denote the j-th term on the right hand side as Pj . Note that ga = 0 and M(T |gb) = M(T |gb− ga),
and Ĥ(b, a) = d22,T (gb, ga). So we can apply Theorem 11 on Pj . By setting z = Ω(max {D,∆})
and zj = O(2jz), we have Pj 6 exp [−zj ] and thus

∑∞
j=1 Pj 6 exp [−O(z)].

B.5 Sample Complexity of MLE for Learning Time Varying Coverage Functions

To apply Theorem 15 in our case, we need: 1) to bound the dimension of our hypothesis class; 2) to
transfer the Hellinger distance to `2 error to get the final bound.

Lemma 16. The (d2, d∞)-covering dimension of G is at most the number of random features W .
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Proof. Note that d2,t and d∞,t are both nondecreasing with respect to t. So it suffices to show
the existence of a covering of size exponential in W with respect to both d2,T and d∞,T . In the
following, we only consider the time T , and write d2,T (d∞,T respectively) as d2 (d∞ respectively).
Note that

d22(ga′ , ga′′) = Ĥ2

(
a′ + a

2
,
a′′ + a

2

)
and d∞(ga′ , ga′′) = max

t,S

∣∣∣∣a′ + a

2a
− a′′ + a

2a

∣∣∣∣ =

∣∣∣∣a′ − a′′2a

∣∣∣∣ .
Then, the covering dimension of G is just the (d2, d∞)-covering dimension of A on which the
distances are (overloading notations):

d22(a′, a′′) := d22(ga′ , ga′′), d∞(a′, a′′) := d∞(ga′ , ga′′).

Then we can apply the same argument as Lemma 15 in [8] to show the dimension is at mostW . That
is, define a mapping fromw to aKw , and show that the `∞ distance of the former is approximately the
d2 distance of the latter, and the d∞ distance is bounded by the d2 distance (up to constant factors).

We will need to introduce the following definition and then prove a claim showing that the `∞
distance on w is approximately the d2 distance on aKw .

Definition 17. Define ξ = minw 6=0
w>Aw
w>w

, whereA = 1
2T

∑
S P(S)ΦΦ> and

Φ =

∫ T

0

φdt, and φ = [K(t− t(S, τ1)), . . . ,K(t− t(S, τW )]
>
.

Claim 8. For an w,w′,√
ξ

2Tawmax

‖w −w′‖∞ 6 d2(aw, aw′) 6
Wκmax

2
√
awmin

‖w −w′‖∞.

Proof. (1) By definition, we have

d22(aw, aw′) =
1

2
ESEt

[√
w>φ−

√
w′>φ

]2
=

1

2
ESEt

[
w>φ−w′>φ√
w>φ+

√
w′>φ

]2
>

1

2awmax

ESEt
[
w>φ−w′>φ

]2
=

1

2awmaxT
(w −w′)>A (w −w′)

>
ξ

2awmaxT
‖w −w′‖22 >

ξ

2awmaxT
‖w −w′‖2∞.

(2) By definition we have

d22(aw, aw′) =
1

2
ESEt

[√
w>φ−

√
w′>φ

]2
=

1

2
ESEt

[
w>φ−w′>φ√
w>φ+

√
w′>φ

]2
6

1

4awmin

ESEt
[
w>φ−w′>φ

]2
6

1

4awmin

W 2κ2max‖w −w′‖2∞.

To bound the dimension, the key is to construct coverings of small sizes. By the above claim, the
d2 metric on A approximately corresponds to the `∞ metric on the set of weights. So based on
coverings for the weights with respect to the `∞ metric, we can construct coverings for A with
respect to the d2 metric. We then show that they are also coverings with respect to the d∞ metric.
The bound on the dimension then follows from the sizes of these coverings.

More precisely, given ε > 0 and a ball B ⊆ A with radius R > ε, we construct an ε-covering C as
follows. Define a mapping π : w 7→ aw, and define Bw = π−1(B). By Claim 8, the radius of Bw
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is at most Rw =
√

2Tawmax

ξ R (with respect to the `∞ metric). Now consider finding an εw-covering

for Bw with respect to the `∞ metric, where εw =

(
Wκmax

2
√
awmin

)−1
ε. Since Bw ⊆ RW , by taking the

grid with length εw/2 on each dimension, we can get such a covering Cw with

|Cw| 6
(

4Rw

εw

)W
6

(
4

√
2Tawmax

ξ

Wκmax

2
√
awmin

R

ε

)W
.

Let C = π(Cw), and for any b ∈ B find b̃ as follows. Suppose wb ∈ Bw satisfies π(wb) = b and wb̃
is the nearest neighbor of wb in Cw, then we set b̃ = π(wb̃).

First, we argue that C is an ε-covering w.r.t. the d2 metric, i.e., d(b, b̃) < ε for any b ∈ B. It follows
from Claim 8:

d2(b, b̃) 6
Wκmax

2
√
awmin

‖wb −wb̃‖∞ <
Wκmax

2
√
awmin

εw = ε.

Second, we argue that C is also an O(ε)-covering w.r.t. the d∞ metric, i.e., d∞(b, b̃) = O(ε) for any
b ∈ B.

d∞(π(wb), π(wb̃)) = max
t,S

∣∣∣∣∣∣
√
b+ a

2a
−

√
b̃+ a

2a

∣∣∣∣∣∣
= max

t,S

∣∣∣∣∣∣ |b− b̃|
√

2a
(√

b+ a+
√
b̃+ a

)
∣∣∣∣∣∣

6
maxt,S

∣∣(wb̃ −wb̃)>φ∣∣
2
√

2amin(awmin + amin)

6
Wκmax

2
√

2amin(awmin + amin)
‖wb −wb̃‖∞.

So the conditions in the definition of the dimension are satisfied with D = W , c1 =

4
√

2Tawmax

ξ
Wκmax

2
√
awmin

and c2 = Wκmax

2
√

2amin(awmin+amin)
, and thus the dimension of A is at most W .

Now, we can plug the lemma into Theorem 15, and convert the Hellinger distance to the `2 distance
between f and our output function f̂ defined by â.

Theorem 18. Suppose â is an ε`-MLE, and f̂ is the corresponding function.
(i) Suppose there exists an ã ∈ A such that with probability at least 1−δ1 over S, Et (a′ − a)

2 6 ε2a.
Then for any 0 6 t 6 T , and ν > 0,

ES
[
f̂(S, t)− f(S, t)

]2
6 O

t2
νA2

max +
Amax

mT

[
W + log

1

ν
+ ε`

]
+Amax

εa +
ε2a
Amin

log

(
amax

awmin

)
+

√
c2`ε

2
a

AminmT
log

1

ν




where Amax = amax + awmax, Amin = amin + awmin, and c2` is defined in Lemma 13.
(ii) Consequently, if

W = O

(CZκmax)
2

(AmaxT

ε

)5/2

+

(
AmaxT log amax

awmin

εAmin

)5/4
 log

mAmaxT

εδ


and

m = O

(
AmaxT

ε

[
W + log

AmaxT

ε
+ ε`

]
+

1

Amin

√
awminT

log
AmaxT

ε

)
.
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then with probability > 1− δ over {τi}Wi=1, for any 0 6 t 6 T ,

ES
[
f̂(S, t)− f(S, t)

]2
6 ε.

Proof. (i) By Theorem 15 and Lemma 13, there exists ΩS of probability at least 1−mδ1 so that for
any outcome of {Si}mi=1 in it, we have that with probability > 1− 2δ2,

Ĥ2(â, a) 6 z = O

(
D +B(δ2) + ε` + log

1

δ2

)
where D 6W by Lemma 16.

Since Ĥ2(â, a) 6 mT (amax + awmax) and EDm

[
Ĥ2(â, a)

]
= mTh2(â, a), we have

h2(â, a) 6 ε2(δ1, δ2) := (1−mδ1)(1− 2δ2)
z

mT
+ (mδ1 + 2δ2)(amax + awmax).

Now we convert the Hellinger distance between the intensities to the `2 distance between the funci-
tion f and the output f̂ defined by â. For any 0 6 τ 6 T ,

ES
[
f̂(S, τ)− f(S, τ)

]2
6 ES

[∫ τ

0

|â(S, t)− a(S, t)| dt
]2

6 τES
∫ τ

0

[â(S, t)− a(S, t)]2 dt

6 τES
∫ τ

0

[(√
â(S, t)−

√
a(S, t)

)(√
â(S, t) +

√
a(S, t)

)]2
dt

6 2(amax + awmax)τES
∫ τ

0

[√
â(S, t)−

√
a(S, t)

]2
dt

6 4(amax + awmax)τ2h2(â, a) 6 4(amax + awmax)τ2ε2(δ1, δ2).

The first statement then follows from choosing δ1 = ν/m and δ2 = ν.

(ii) The second statement follows from the first statement and Lemma 2. More precisely, we check
each error term and set the parameters as follows.

• To ensure t2A2
maxν = O(ε), let ν = O

(
ε

A2
maxT

2

)
.

• To ensure t2Amax

mT

[
W + log 1

ν + ε`
]

= O (ε), let

m = O

(
AmaxT

ε

[
W + log

AmaxT

ε
+ ε`

])
. (17)

• To ensure that ε2a = O(ε20), let σ =
√
ε0, and

W = O

((
CZκmax

ε0σ

)2

log
1

δ1δ

)
= O

(
(CZκmax)

2

ε
5/2
0

log
mAmaxT

εδ

)
.

• To ensure t2Amaxεa = O(ε), we need ε20 = O

((
ε

AmaxT

)2)
. To ensure

t2Amaxε
2
a

Amin
log
(
amax

awmin

)
= O(ε), we need ε20 = O

(
[Aminε]

/[
AmaxT

2 log
(
amax

awmin

)])
. Then

we need

W = O

(CZκmax)
2

(AmaxT

ε

)5/2

+

(
AmaxT log amax

awmin

εAmin

)5/4
 log

mAmaxT

εδ

 .

(18)

21



• To ensure t2Amax

√
c2`ε

2
a

AminmT
log 1

ν = O(ε), we need

m = O

(
c2`

AminT
log

AmaxT

ε

)
= O

(
1

Amin

√
awminT

log
AmaxT

ε

)
. (19)

The bound forW andm then follows from (18) and (17) (19) respectively. The kernel bandwidth σ is

chosen such that σ =
√
ε0 = O

(
min

{(
ε

AmaxT

)1/2
, [Aminε]

1/4
/[

AmaxT
2 log

(
amax

awmin

)]1/4})
.
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