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This supplementary material provides the proofs of the results given in the main paper.

1 Proof of Th. 1

Theorem 1. Let ν ∈ ∆S×A, µ ∈ ∆S×A, π̂ ∈ AS and C1(ν, µ, π̂) ∈ [1,+∞[∪{+∞} the
smallest constant verifying (1− γ)ν

∑
t≥0 γ

tP tπ̂ ≤ C1(ν, µ, π̂)µ, then:

∀Q ∈ RS×A, ‖Q∗ −Qπ‖p,ν ≤
2

1− γ

(
C1(ν, µ, π) + C1(ν, µ, π∗)

2

) 1
p

‖T ∗Q−Q‖p,µ, (1)

where π is greedy with respect to Q and π∗ any optimal policy.

Proof. This proof is widely inspired by the proof of a similar result for value functions
(Th. 5.3 in [1]). First, we show that, componentwise:

∀Q ∈ RS×A, Q∗ −Qπ ≤ [(I − γPπ∗)−1 + (I − γPπ)−1]|T ∗Q−Q|. (2)

To do so, we use principally the fact that T ∗Q ≥ Tπ∗Q and TπQ = T ∗Q as π is greedy with
respect to Q. Thus:

Q∗ −Qπ =
(a)

Tπ
∗
Q∗ − T ∗Q+ T ∗Q− TπQπ,

≤
(b)
Tπ
∗
Q∗ − Tπ

∗
Q+ TπQ− TπQπ,

= γPπ∗(Q∗ −Q) + γPπ(Q−Qπ),
= γPπ∗(Q∗ −Qπ +Qπ −Q) + γPπ(Q−Qπ),

where equality (a) comes from the fact that Q∗ = Tπ
∗
Q∗ and Qπ = TπQπ and inequality

(b) from the fact that T ∗Q ≥ Tπ
∗
Q and TπQ = T ∗Q. Hence (I − γPπ∗)(Q∗ − Qπ) ≤

γ(Pπ∗ − Pπ)(Qπ − Q). In addition as (I − γPπ∗)−1 =
∑
t≥0 γ

tP tπ∗ is a matrix with only
positive elements, we can multiply by (I − γPπ∗)−1 on each side of the matricial inequality
and conserve the order:

(Q∗ −Qπ) ≤ γ(I − γPπ∗)−1(Pπ∗ − Pπ)(Qπ −Q).

Moreover, we have:

(I − γPπ)(Qπ −Q) = γPπ(Q−Qπ) +Qπ −Q,
= TπQ− TπQπ +Qπ −Q =

(c)
T ∗Q−Q,
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where equality (c) comes from the fact that Qπ = TπQπ and TπQ = T ∗Q. Therefore, we
have:

(Q∗ −Qπ) ≤ γ(I − γPπ∗)−1(Pπ∗ − Pπ)(Qπ −Q),
= (I − γPπ∗)−1(γPπ∗ − γPπ)(I − γPπ)−1(T ∗Q−Q),
= (I − γPπ∗)−1 ((I − γPπ)− (I − γPπ∗)) (I − γPπ)−1(T ∗Q−Q),
= [(I − γPπ∗)−1 − (I − γPπ)−1](T ∗Q−Q),
≤ [(I − γPπ∗)−1 + (I − γPπ)−1]|T ∗Q−Q|.

Now, as it is mentioned in [1], in order to obtain an Lp,µ bound, we remark that if u ∈ RS×A
and v ∈ RS×A are two vectors with positive elements and N is stochastic matrix of size
NSNA × NSNA such that u ≤ Nv and if ν ∈ ∆S×A and µ ∈ ∆S×A are two distributions
such that νN ≤ Cµ where C is a constant greater to 1, then :

‖u‖p,ν ≤ C
1
p ‖v‖p,µ. (3)

Indeed:

‖u‖pp,ν =
∑

(s,a)∈S×A

[u(s, a)]pν(s, a) ≤
(d)

∑
(s,a)∈S×A

 ∑
(s′,a′)∈S×A

N((s, a), (s′, a′))v(s′, a′)

p

ν(s, a),

≤
(e)

∑
(s,a)∈S×A

∑
(s′,a′)∈S×A

N((s, a), (s′, a′))[v(s′, a′)]pν(s, a),

≤
(f)

C
∑

(s′,a′)∈S×A

µ(s′, a′)[v(s′, a′)]p = C‖v‖pp,µ,

where inequality (d) is true because u ≤ Nv, inequality (e) is true using Jensen’s Inequality
and inequality (f) comes from νN ≤ Cµ.
To establish our bound (Eq. (1)), it is sufficient to remark that the inequality Eq. (2) can
be written:

Q∗ −Qπ ≤ A 2
1− γ |T

∗Q−Q|,

where A = 1−γ
2 [(I − γPπ∗)−1 + (I − γPπ)−1] is a stochastic matrix. Moreover by definition

of C1(ν, µ, π) and C1(ν, µ, π∗) we have:

νA ≤
(
C1(ν, µ, π) + C1(ν, µ, π∗)

2

)
µ.

Thus, if we rewrite Eq. (3), where Q∗−Qπ plays the role of u, 2
1−γ |T

∗Q−Q| plays the role
of v, A plays the role of N , and C1(ν,µ,π)+C1(ν,µ,π∗)

2 plays the role of C, then we have:

‖Q∗ −Qπ‖p,ν ≤
2

1− γ

(
C1(ν, µ, π) + C1(ν, µ, π∗)

2

) 1
p

‖T ∗Q−Q‖p,µ.

2 Proof of Th. 2

Theorem 2. Let η ∈]0, 1[ and M be a finite deterministic MDP, with probability at least
1− η, we have:

∀Q ∈ Q, ‖T ∗Q−Q‖pp,µ ≤ ‖T ∗Q−Q‖pp,µN + 2‖R‖∞
1− γ

√
ε(N),
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where ε(N) = h(ln( 2N
h )+1)+ln( 4

η )
N and h = 2NA(d + 1). Moreover, with probability at least

1− 2η:

εOBRM = ‖T ∗QN −QN‖pp,µ ≤ εB + 2‖R‖∞
1− γ

(√
ε(N) +

√
ln(1/η)

2N

)
,

where εB = minQ∈Q ‖T ∗Q−Q‖pp,µ is the error due to the choice of features.

Proof. Here, we work with finite deterministic MDPs. This means that for each state-action
couple (s, a), there exists a unique next state s′. Let us note l ∈ SS×A the function that
maps each state-action couple (s, a) to its next state s′. Then, we have:

∀Q ∈ RS×A,∀(s, a) ∈ S ×A, T ∗Q(s, a) = R(s, a) + γmax
b∈A

Q(l(s, a), b).

The result is based on Th 5.3 of [2], briefly recalled here. Let F ⊂ RX be a set of measurable
bounded real-valued functions where X is a measurable set. In particular, we have ∀f ∈
F,∀x ∈ X, a ≤ f(x) ≤ b where (a, b) ∈ R2. Let (xi)Ni=1 be N independent and identically
distributed random variables taking their values in X and such that xi ∼ F where F is
a distribution over X. If F has a finite VC-dimension (Vapnik-Chervonenkis dimension)
v(F) ≤ h and η ∈]0, 1[ then with probability at least 1− η, we have:

∀f ∈ F,

∫
x∈X

f(x)F (dx) ≤ 1
N

N∑
i=1

f(xi) + (b− a)
√
ε(N),

where ε(N) = h(ln( 2N
h )+1)+ln( 4

η )
N . And with probability at least 1− 2η:

min
f∈F

(∫
x∈X

f(x)F (dx)
)
≤ min

f∈F

(
N∑
i=1

f(xi)
)

+ (b− a)
(√

ε(N) +
√
ln(1/η)

2N

)
.

Our result has exactly the same form where X = S × A, the random variables (xi)Ni=1
are replaced by (Si, Ai)Ni=1, the distribution F = µ ∈ ∆S×A, the space F is replaced by
Q̃ = {|T ∗Q −Q|p, where Q ∈ Q}, a = 0 and b = 2‖R‖∞

1−γ . The only thing left to prove our
result is to show that the VC-dimension of Q̃, v(Q̃), is such that v(Q̃) ≤ 2NA(d+ 1).
First, let recall some definitions relative to the VC-dimension of a set of functions. Let
f ∈ RX be a real-valued function where X is a set and (xi, ti)Ni=1 ∈ (X × R)N a sequence
of couples of one element of X and one real value, m(f, xi, ti) = 1{f(xi)≥ti} is a boolean
which says if f(xi) is greater than ti or not. Moreover, M(f, (xi, ti)Ni=1) = (m(f, xi, ti))Ni=1
can be seen as a boolean vector of size N and we call it the message relative to both the
function f and the sequence (xi, ti)Ni=1. Let F ⊂ RX , N(F, (xi, ti)Ni=1) is the number of
possible messages M(f, (xi, ti)Ni=1) obtained when f ∈ F:

N(F, (xi, ti)Ni=1) = Card({M(f, (xi, ti)Ni=1), f ∈ F}),

where Card denotes the cardinal of a given set. As M(f, (xi, ti)Ni=1) is a boolean vec-
tor of size N , we have N(F, (xi, ti)Ni=1) ≤ 2N . In addition, we define N(F, N) =
sup(xi,ti)Ni=1∈(X×R)N N(F, (xi, ti)Ni=1) the maximum number of possible messages when f ∈ F

that a given sequence (xi, ti)Ni=1 can produce. Finally, the VC-dimension of F is defined by:

v(F) = inf
N∈N
{N(F, N) < 2N}.

In our proof, the followings properties relative to VC-dimensions of functions sets are needed.

Property 1. Let (Fk)Kk=1 be a sequence of set of functions where Fk ⊂ RX and v(Fk) is
finite. Then, the set of functions F = {maxk∈[|1:K|] fk, where ∀k ∈ [|1 : K|], fk ∈ Fk} has a
finite VC-dimension lower that

∑K
k=1 v(Fk).
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Let (xi, ti)Ni=1 ∈ (X × R)N , (fk ∈ Fk)Kk=1 and f = maxk∈[|1:K|] fk, then:

M(f, (xi, ti)Ni=1) = M(f1, (xi, ti)Ni=1) ∨M(f2, (xi, ti)Ni=1) · · · ∨M(fK , (xi, ti)Ni=1),
where ∨ is the boolean disjunction (the inclusive or). Thus, the number of possible messages
N(F, (xi, ti)Ni=1) is such that:

N(F, (xi, ti)Ni=1) ≤
K∏
i=1

N(Fk, (xi, ti)Ni=1).

This implies that:

N(F, N) ≤
K∏
i=1

N(Fk, N).

Now, if we choose N such that N > maxk∈[|1:K|] v(Fk), we have:

N(F, N) ≤
K∏
i=1

2v(Fk) = 2
∑K

k=1
v(Fk).

So, F has a finite VC-dimension lower that
∑K
k=1 v(Fk). A second interesting result is a

corollary of the previous proposition.
Property 2. Let F ⊂ RX be a set of functions with a finite VC-dimension, then the set of
functions F|.| = {|f |, f ∈ F} has a VC-dimension lower than 2v(F).

Indeed, to prove the result, we remark that |f | = max(f,−f) and as the set F− = {−f, f ∈
F} has the same VC-dimension than F, we apply the previous result to conclude. The last
result needed is the following.
Property 3. Let F ⊂ RX+ be a set of functions with a finite VC-dimension, then the set
Fp = {fp, f ∈ F}, where p ≥ 1, has the same VC-dimension.

To show this property, let f ∈ F and (xi, ti)Ni=1 ∈ (X × R)N , then:

M(f, (xi, ti)Ni=1) = M(fp, (xi, sgn(ti)|ti|p)Ni=1),
where sgn is the sign function, thus N(F, (xi, ti)Ni=1) = N(Fp, (xi, sgn(ti)|ti|p)Ni=1). As the
function t→ sgn(t)|t|p is a bijection, then:

sup
(xi,ti)Ni=1∈(X×R)N

N(Fp, (xi, ti)Ni=1) = sup
(xi,ti)Ni=1∈(X×R)N

N(Fp, (xi, sgn(ti)|ti|p)Ni=1).

So, N(F, N) = N(Fp, N) which implies that v(F) = v(Fp).

Now, let show that the VC-dimension of Q̃ is such that v(Q̃) ≤ 2NA(d + 1). To do so, we
are going to proceed in several steps. The first step is to remark that:

T ∗Qθ(s, a)−Qθ(s, a) = max
b∈A

(
d∑
k=1

θk[γφk(l(s, a), b)− φk(s, a)] +R(s, a)
)
.

Thus, if we note ∀b ∈ A,∀k ∈ [|1 : d|], ψbk(s, a) = γφk(l(s, a), b)− φk(s, a), we have:

T ∗Qθ(s, a)−Qθ(s, a) = max
b∈A

[
d∑
k=1

θkψ
b
k(s, a) + θ0R(s, a)].

where θ0 = 1. Let b ∈ A, the set of functions Fb = {fθ =
∑d
k=1 θkψ

b
k + θ0R, θ ∈ Rd}

has a finite VC-dimension lower than d + 1 as the functions fθ ∈ Fb depends linearly on
d + 1 parameters [2] where one of them (θ0) is fixed. Now, we want to show that the set
F = {fθ = maxb∈A[

∑d
k=1 θkψ

b
k+R], θ ∈ Rd} has a finite VC-dimension lower than NA(d+1).

To do so, we remark that F = {f = maxb∈A fb, where ∀b ∈ A, fb ∈ Fb}, thus by applying
property. 1 to F we obtain that its VC-dimension is lower than NA(d+1). Now, let define the
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set of functions F|.| = {fθ = |maxb∈A[
∑d
k=1 θkψ

b
k + R]|, θ ∈ Rd} = {|T ∗Qθ −Qθ|, θ ∈ Rd}.

We remark that, F|.| = {|f |, f ∈ F}, thus, by using property 2, the VC-dimension of F|.| is
lower than 2NA(d+1). Finally, we define the set Fp = {|T ∗Qθ−Qθ|p, θ ∈ Rd}, where p ≥ 1.
We have Fp = {f, f ∈ F|.|}, thus, by applying property 3, we have that the VC-dimension
of Fp is lower than 2NA(d+ 1). As Q̃ ⊂ Fp, we have v(Q̃) ≤ 2NA(d+ 1).

3 Proof of Th.4

Theorem 3. There exists explicit polyhedral decompositions of Jpp,µN when p = 1 and p = 2.
For p = 1:

J1,µN = G1,µN −H1,µN ,

where G1,µN = 1
N

∑N
i=1 2 max(gi, hi) and H1,µN = 1

N

∑N
i=1(gi+hi), with gi = 〈φ(Si, Ai), .〉+

R(Si, Ai) and hi = γ
∑
s′∈S P (s′|Si, Ai) maxa∈A〈φ(s′, a), .〉. For p = 2:

J2
2,µN = G2,µN −H2,µN ,

where G2,µN = 1
N

∑N
i=1[g2

i + h
2
i ] and H2,µN = 1

N

∑N
i=1[gi + hi]2 with:

gi = max(gi, hi) + gi −

(
〈φ(Si, Ai) + γ

∑
s′∈S

P (s′|Si, Ai)φ(s′, a1), .〉 −R(Si, Ai)
)
,

hi = max(gi, hi) + hi −

(
〈φ(Si, Ai) + γ

∑
s′∈S

P (s′|Si, Ai)φ(s′, a1), .〉 −R(Si, Ai)
)
.

Proof. When p = 1, it is sufficient to remark that for two functions g, h ∈ RE , |g − h| =
2 max(g, h)−(g+h). Thus, let G1,µN = 1

N

∑N
i=1 2 max(gi, hi) and H1,µN = 1

N

∑N
i=1(gi+hi)

which are convex and continuous (as a finite maximum of convex and continuous functions
and a positively weighted sum of convex and continuous functions are convex and continu-
ous), then J1,µN = G1,µN −H1,µN . When p = 2, the decomposition is less straightforward.
An important property that we use is the fact that f2 is a convex and continuous functions
if f is a positive and continuous convex function. The first thing to do is to find a decom-
position of fi = gi − hi such that gi and hi are positive and continuous convex functions.
To do so, it is sufficient to remark that:

gi = max(gi, hi) + gi −

(
〈φ(Si, Ai) + γ

∑
s′∈S

P (s′|Si, Ai)φ(s′, a1), .〉 −R(Si, Ai)
)
,

hi = max(gi, hi) + hi −

(
〈φ(Si, Ai) + γ

∑
s′∈S

P (s′|Si, Ai)φ(s′, a1), .〉 −R(Si, Ai)
)
.

are positive and continuous convex functions. Thus:

J2
2,µN = 1

N

N∑
i=1

[gi − hi]2 = 1
N

N∑
i=1

[g2
i + h

2
i ]−

1
N

N∑
i=1

[gi + hi]2.

As gi and hi are convex, continuous and positive then g2
i +h

2
i and [gi +hi]2 are convex and

continuous. So, if we note G2,µN = 1
N

∑N
i=1[g2

i + h
2
i ] and H2,µN = 1

N

∑N
i=1[gi + hi]2 which

are convex and continuous, we have J2
2,µN = G2,µN −H2,µN . We also remark that G2,µN ,

H2,µN , G1,µN and H2,µN are polyhedral and Jpp,µN is under bounded by 0, thus DCA has
better convergence properties than in the classical case.
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