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This supplementary material provides the proofs of the results given in the main paper.

1 Proofof Th. 1

Theorem 1. Let v € Agxa, pt € Asxa, # € A% and Cy(v, pu, 7)) € [1, +oo[U{+00} the
smallest constant verifying (1 —~y)v >, 7' PL < Ci(v, u, ), then:
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where w is greedy with respect to Q and 7 any optimal policy.

¥Q € RS, Q" = Q7w < 7 ) 1= Gl

Proof. This proof is widely inspired by the proof of a similar result for value functions
(Th. 5.3 in [I]). First, we show that, componentwise:

VQ € R, Q" — QT < [(I —vPr) ™' + (I —vPx)MIT*Q - Q). (2)

To do so, we use principally the fact that 7*Q > T™ Q and T7Q = T*Q as 7 is greedy with
respect to Q. Thus:

Q* o Q7r (j) TT{‘*Q* o T*Q +T*Q o Tﬂ'Qﬂ"

STTQ -TTQ+T7Q-T7Q",

(b)

=P (Q" — Q) +vPr(Q — Q7),

= 7P (Q" = Q"+ Q" — Q) +7P-(Q - Q7),
where equality (a) comes from the fact that Q* = T Q* and Q™ = T™Q™ and inequality
(b) from the fact that T7*Q > T™ Q and T™Q = T*Q. Hence (I — 7P )(Q* — Q™) <
Y(Pre — Pr)(Q™ — Q). In addition as (I — yPr-)"" = 35,57 Py is a matrix with only
positive elements, we can multiply by (I —~vPy+)~! on each side of the matricial inequality
and conserve the order:

(Q"—=Q") <~ — ’YPﬂ*)il(Pﬂ* - P)(Q" - Q).
Moreover, we have:

(I =7Pr)(Q" - Q) =7P(Q-Q") + Q" - @,
:T”Q*T”Q“rQ”*Q(j)T*Q*Q,



where equality (c¢) comes from the fact that Q™ = T7Q™ and T"Q = T*(Q. Therefore, we
have:

(Q* - QW) < 'Y(I - ”YPTr*)il(Pﬂ* - Pﬂ)(QW - Q)a

Now, as it is mentioned in [I}, in order to obtain an L, , bound, we remark that if u € RS*A

and v € R4 are two vectors with positive elements and N is stochastic matrix of size
NgN4 x NgN4 such that w < Nv and if v € Agya and p € Agxa are two distributions
such that vN < Cp where C is a constant greater to 1, then :

lullp,, < C7[ollp,p- (3)
Indeed:
p
lullp,, = > [uls,a)]Pv(s,a) < Y . N(s,a) (s, a)v(s',a') | vis,a)
(s,a)eESxA (d) (s,a)ESxA \(s,a’)ESXA

< Y Y N((sa).(s )l a)Pu(sa),

(e) (s,a)€ESXA (s',a’)ESXA

<C Z M(S/a a/)[v(s/7 a/)]p = CHUH%H’

() (s',a")ESXA
where inequality (d) is true because © < Nw, inequality (e) is true using Jensen’s Inequality

and inequality (f) comes from vN < Cp.

To establish our bound (Eq. )7 it is sufficient to remark that the inequality Eq. can
be written:

2
Q -Q <AT—[T"Q-Ql,
Y

where A = 352 [(I — yPp-)~! + (I — vP;)~!] is a stochastic matrix. Moreover by definition
of C1(v, p,7) and Cy(v, u, 7*) we have:

VAS (Cl(l/,,u77r>+201(l/,,u,7r )),U

Thus, if we rewrite Eq. , where Q* — Q™ plays the role of u, % |T*Q — Q| plays the role

of v, A plays the role of N, and Cl(”’”’”)gcl("’“’”*) plays the role of C, then we have:

* T 2 Cl(yvﬂv’fr) + Cl(l/v 12 77*)
— <
||Q Q ||P7V - 1= 5y < 2
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2 Proof of Th. 2

Theorem 2. Let n €]0,1[ and M be a finite deterministic MDP, with probability at least
1 —n, we have:

VQ e Q[ T°Q-Ql, < [T°Q - Q|

2||Rlloc /v
£7MN+ 17,)/ E(N)a



n(2N n(d
where e(N) = M );1)+l G gnd b = 2N4(d + 1). Moreover, with probability at least

1—2n:

OBRM ||T QN QN”p,p, < ||R||OO (F ))7

where €8 = mingeq |T*Q — Qlb . is the error due to the choice of features.

Proof. Here, we work with finite deterministic MDPs. This means that for each state-action
couple (s, a), there exists a unique next state s’. Let us note [ € S5*4 the function that
maps each state-action couple (s,a) to its next state s’. Then, we have:

VQ € RSXA7V(87G) €5 x A,T*Q(s,a) = R(s,a) +7?eaj(@(l(s7a)vb)'

The result is based on Th 5.3 of [2], briefly recalled here. Let § C R¥ be a set of measurable
bounded real-valued functions where X is a measurable set. In particular, we have Vf €
3,Vr € X,a < f(z) < b where (a,b) € R% Let (z;)Y.; be N independent and identically
distributed random variables taking their values in X and such that x; ~ F where F is
a distribution over X. If § has a finite VC-dimension (Vapnik-Chervonenkis dimension)
v(F) < h and 7 €]0, 1] then with probability at least 1 — 7, we have:

ers/ fa fol — )V,

n 2N n
where e(N) = Min Gy );1)—” () . And with probability at least 1 — 2n:

gpeg(/ e )s%(gﬂm) b—a(ﬁ )>-
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Our result has exactly the same form where X = S x A, the random variables (x;)X,
are replaced by (S;, 4;)Y,, the distribution F = p € Agyx4, the space § is replaced by
Q= {|T*Q — QJ", where Q € Q}, a =0 and b = QHR”"O The only thing left to prove our
result is to show that the VC-dimension of , v(D), is such that v(Q) < 2Na(d +1).

First, let recall some definitions relative to the VC-dimension of a set of functions. Let

fe RX be a real-valued function where X is a set and (75, 1), € (X x R)V a sequence
of couples of one element of X and one real value, m(f,x;,t;) = 1{f(,)>¢,} is a boolean
which says if f(z;) is greater than t; or not. Moreover, M(f, (z;,t;)N1) = (m(f, xi, t;))Y,
can be seen as a boolean vector of size N and we call it the message relative to both the
function f and the sequence (z;,t;)Y,. Let § C RX, M(F, (z4,t;)Y,) is the number of
possible messages M (f, (x;,t;)]Y.,) obtained when f € S

(57 (mlﬂ ) ) Card({M( (xi,ti)izl)vfeg})7

where Card denotes the cardinal of a given set. As M(f, (x;,t;)Y,) is a boolean vec-
tor of size N, we have (T, (z;,t;)Y ;) < 2N. In addition, we define N(F,N) =
SUD(p, 1) | e(x x®)N N, (@i, b )Y ) the maximum number of possible messages when f € §

that a given sequence (7;,¢;))Y.; can produce. Finally, the VC-dimension of § is defined by:
_ N
o(§) = inf {N(F,N) <2V},

In our proof, the followings properties relative to VC-dimensions of functions sets are needed.

Property 1. Let (§x)i&_, be a sequence of set of functions where Fr C RX and v(Fy) is
finite. Then, the set of functions § = {maxpeq1.k] fr, where Vk € [[1: K], fv € i} has a

finite VC-dimension lower that Zszl (Fk).



Let (z;,t)N, € (X xRN, (fx € )i, and f = maXpe(|1:x|] fr, then:

2

M(f, (i, t:)y) = M(f1, (i, ta)isy) V M (fa, (@i, t)10) -V M(fx, (i, t)is),

where V is the boolean disjunction (the inclusive or). Thus, the number of possible messages
N(F, (@i, t:)Y,) is such that:

=

N, (@i, t) 1) < [ 90Gw, (i, 1)),

<
Il
-

This implies that:

N(E,N) < | | NSk, N).

s

Il
-

?

Now, if we choose N such that N > maxye(1:x() v(Sx), we have:

K
N(E,N) < [ 276 = 2220 760,
i=1
So, § has a finite VC-dimension lower that Zszl v(Fk). A second interesting result is a

corollary of the previous proposition.

Property 2. Let § C RX be a set of functions with a finite VO-dimension, then the set of
functions §).| = {|f|, f € §} has a VC-dimension lower than 2v(F).

Indeed, to prove the result, we remark that | f| = max(f, —f) and as the set F_ = {—f, f €
5} has the same VC-dimension than §, we apply the previous result to conclude. The last
result needed is the following.

Property 3. Let § C Rf be a set of functions with a finite VC-dimension, then the set
Sp = {f?, f € §}, where p > 1, has the same VC-dimension.

To show this property, let f € § and (2, ;)Y ; € (X x R)V, then:

M(f, (i, ti)ily) = M(f7, (zi, sgn(t)[t:l") L)),
where sgn is the sign function, thus M(F, (2, t:)N1) = N(Fp, (2, sgn(ts)[6:[P)Y,). As the
function ¢ — sgn(¢)[t|? is a bijection, then:

sup N(Fps (w4, ti)1y) = sup N(Fp, (w4, sgn(ts) |t:[P)iLy).
(i,t:) ], E(X XR)N (i, ti) ], €(XxR)N

So, N(F, N) = N(Fp, N) which implies that v(F) = v(Fp).

Now, let show that the VC-dimension of 9 is such that v(Q) < 2Na(d + 1). To do so, we
are going to proceed in several steps. The first step is to remark that:

d
T*Q9(57 a) - QG(Sﬂ a) = rl?eaf}l( (Z ekhqsk(l(&a)ﬂ b) - ¢k(87 a)] + R(S, a)) :
k=1

Thus, if we note Vb € A,Vk € [|1: d|],¢%(s,a) = véx(l(s,a),b) — ¢x(s,a), we have:

d
T*QG(Sa a) - Qb‘(sa a) = Igleaj([; 91&/’2(8, a) + HOR(Sa a)]

where 6y = 1. Let b € A, the set of functions §, = {fy = ZZ=1 0kl + OoR, 0 € R}
has a finite VC-dimension lower than d + 1 as the functions fy € §p depends linearly on
d + 1 parameters [2] where one of them () is fixed. Now, we want to show that the set
S={fo= maXbGA[ZZ:1 Oxb?+R), 0 € R} has a finite VC-dimension lower than N4 (d+1).
To do so, we remark that § = {f = maxpea fp, where Vb € A, f, € Fp}, thus by applying
property. to F we obtain that its VC-dimension is lower than N4(d+1). Now, let define the



set of functions §|,| = {fo = |maxb€A[ZZ:1 0xb? + R]|,0 € R} = {|T*Qp — Qql,0 € R}.
We remark that, §| = {|f|, f € §}, thus, by using property [2 the VC-dimension of § | is
lower than 2N 4(d+1). Finally, we define the set §, = {|T Qo —Qol?,0 € R}, where p > 1.
We have §, = {f, f € §|,}, thus, by applying property we have that the VC-dimension

of §, is lower than 2N4(d +1). As Q C F,, we have v(Q) < 2Na(d + 1). O

3 Proof of Th.4

Theorem 3. There exists explicit polyhedral decompositions of JP
Forp=1:

D whenp=1andp=2.

JLMN = GLHN - Hl,m\”

where Gy, = + Zﬁil 2max(g;, hi) and Hy .y = + Zfil(gﬁ-hi), with g; = (¢(Si, Ai), )+
R(S“Al) and hz = ’YZS/ES P(Sl‘Si, Az) maxaeA<¢(s’, CL), > F()Tp =2:

2 _
J27HN - G27MN - HQ;HN7

-2 — .
where Gauy = Zzlil[gf +h;] and Hyp = Zil\il[gi + hy]? with:

9; = max(g;, h;) + g — <<¢(Si7Ai) +9 Y PSS, A)(s' an), ) — R(SiaAi)> ,

s'eS

hi = max(gi, hi) + hi — <<¢>(Sw4i) +9 ) P18, A)(s ar), ) — R(SivAi)> :

s'esS

Proof. When p = 1, it is sufficient to remark that for two functions g,h € R¥ |g — h| =
2max(g, h)—(g+h). Thus, let Gy, = + Zfil 2max(g;, h;) and Hy 1 = = Zivzl(gi—i-hi)

which are convex and continuous (as a finite maximum of convex and continuous functions
and a positively weighted sum of convex and continuous functions are convex and continu-
ous), then Ji .y = G1,uy — H1,y. When p = 2, the decomposition is less straightforward.
An important property that we use is the fact that f2 is a convex and continuous functions
if f is a positive and continuous convex function. The first thing to do is to find a decom-
position of f; = g; — h; such that g, and h; are positive and continuous convex functions.
To do so, it is sufficient to remark that:

g; = max(gi, hi) + gi — <<¢(Si,Ai) +7 Z P(s'[Si, Ai)p(s',a1),.) — R(SivAi)> ,

s'eS

Ei = maX(gi, hz) + h; — <<¢(S“Az) + v Z P(S’|Si, Ai)¢(s’7a1), > — R(Si,Ai)> .
s'eS
are positive and continuous convex functions. Thus:

1 _ 1 1Y
Ty = NZ[@ — hi)* = NZ[§§+ Nzgz—i—h
i=1 =1 i=1

As g, and h; are convex, continuous and positive then g7 + hi and [g; + h;]? are convex and
-2 —

continuous. So, if we note G,y = + Ef\il[gf + h;] and Hy = + Zil[gi + h;i]? which

are convex and continuous, we have J3 , = Ga,, — Ha . We also remark that G\,

Hs .y, Gi,uy and Hy,, are polyhedraf and JP = is under bounded by 0, thus DCA has
better convergence properties than in the classical case. O
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