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Abstract

We consider the problem of finding clusters in an unweighted graph, when the
graph is partially observed. We analyze two programs, one which works for dense
graphs and one which works for both sparse and dense graphs, but requires some a
priori knowledge of the total cluster size, that are based on the convex optimization
approach for low-rank matrix recovery using nuclear norm minimization. For
the commonly used Stochastic Block Model, we obtain explicit bounds on the
parameters of the problem (size and sparsity of clusters, the amount of observed
data) and the regularization parameter characterize the success and failure of the
programs. We corroborate our theoretical findings through extensive simulations.
We also run our algorithm on a real data set obtained from crowdsourcing an
image classification task on the Amazon Mechanical Turk, and observe significant
performance improvement over traditional methods such as k-means.

1 Introduction

Clustering [1] broadly refers to the problem of identifying data points that are similar to each other.
It has applications in various problems in machine learning, data mining [2, 3], social networks [4–
6], bioinformatics [7, 8], etc. In this paper we focus on graph clustering [9] problems where the data
is in the form of an unweighted graph. Clearly, to observe the entire graph on n nodes requires

(
n
2

)
measurements. In most practical scenarios this is infeasible and we can only expect to have partial
observations. That is, for some node pairs we know whether there exists an edge between them
or not, whereas for the rest of the node pairs we do not have this knowledge. This leads us to the
problem of clustering graphs with missing data.

Given the adjacency matrix of an unweighted graph, a cluster is defined as a set of nodes that are
densely connected to each other when compared to the rest of the nodes. We consider the problem of
identifying such clusters when the input is a partially observed adjacency matrix. We use the popular
Stochastic Block Model (SBM) [10] or Planted Partition Model [11] to analyze the performance of
the proposed algorithms. SBM is a random graph model where the edge probability depends on
whether the pair of nodes being considered belong to the same cluster or not. More specifically, the
edge probability is higher when both nodes belong to the same cluster. Further, we assume that each
entry of the adjacency matrix of the graph is observed independently with probability r. We will
define the model in detail in Section 2.1.

1.1 Clustering by Low-Rank Matrix Recovery and Completion

The idea of using convex optimization for clustering has been proposed in [12–21]. While each of
these works differ in certain ways, and we will comment on their relation to the current paper in
Section 1.3, the common approach they use for clustering is inspired by recent work on low-rank
matrix recovery and completion via regularized nuclear norm (trace norm) minimization [22–26].
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In the case of unweighted graphs, an ideal clustered graph is a union of disjoint cliques. Given
the adjacency matrix of an unweighted graph with clusters (denser connectivity inside the clusters
compared to outside), we can interpret it as an ideal clustered graph with missing edges inside the
clusters and erroneous edges in between clusters. Recovering the low-rank matrix corresponding to
the disjoint cliques is equivalent to finding the clusters.

We will look at the following well known convex program which aims to recover and complete the
low-rank matrix (L) from the partially observed adjacency matrix (Aobs):

Simple Convex Program:
minimize

L,S
‖L‖? + λ‖S‖1 (1.1)

subject to
1 ≥ Li,j ≥ 0 for all i, j ∈ {1, 2, . . . n} (1.2)

Lobs + Sobs = Aobs (1.3)

where λ ≥ 0 is the regularization parameter, ‖.‖? is the nuclear norm (sum of the singular values
of the matrix), and ‖.‖1 is the l1-norm (sum of absolute values of the entries of the matrix). S is
the sparse error matrix that accounts for the missing edges inside the clusters and erroneous edges
outside the clusters on the observed entries. Lobs and Sobs denote entries of L and S that correspond
to the observed part of the adjacency matrix.

Program 1.1 is very simple and intuitive. Further, it does not require any information other than
the observed part of the adjacency matrix. In [13], the authors analyze Program 1.1 without the
constraint (1.2). While dropping (1.2) makes the convex program less effective, it does allow [13] to
make use of low-rank matrix completion results for its analysis. In [16] and [21], the authors analyze
Program 1.1 when the entire adjacency matrix is observed. In [17], the authors study a slightly more
general program, where the regularization parameter is different for the extra edges and the missing
edges. However, the adjacency matrix is completely observed.

It is not difficult to see that, when the edge probability inside the cluster is p < 1/2, that (as n→∞)
Program 1.1 will return L0 = 0 as the optimal solution (since if the cluster is not dense enough it is
more costly to complete the missing edges). As a result our analysis of Program 1.1, and the main
result of Theorem 1, assumes p > 1/2. Clearly, there are many instances of graphs we would like
to cluster where p < 1/2. If the total size of the cluster region (i.e, the total number of edges in
the cluster, denoted by |R|) is known, then the following convex program can be used, and can be
shown to work for p < 1/2 (see Theorem 2).

Improved Convex Program:
minimize

L,S
‖L‖? + λ‖S‖1 (1.4)

subject to
1 ≥ Li,j ≥ Si,j ≥ 0 for all i, j ∈ {1, 2, . . . n} (1.5)

Li,j = Si,j whenever Aobs
i,j = 0 (1.6)

sum(L) ≥ |R| (1.7)

As before, L is the low-rank matrix corresponding to the ideal cluster structure and λ ≥ 0 is the
regularization parameter. However, S is now the sparse error matrix that accounts only for the
missing edges inside the clusters on the observed part of adjacency matrix. [16] and [19] study
programs similar to Program 1.4 for the case of a completely observed adjacency matrix. In [19],
the constraint 1.7 is a strict equality. In [15] the authors analyze a program close to Program 1.4 but
without the l1 penalty.

If R is not known, it is possible to solve Problem 1.4 for several values of R until the desired
performance is obtained. Our empirical results reported in Section 3, suggest that the solution is not
very sensitive to the choice ofR.

1.2 Our Contributions

• We analyze the Simple Convex Program 1.1 for the SBM with partial observations. We provide
explicit bounds on the regularization parameter as a function of the parameters of the SBM, that
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characterizes the success and failure conditions of Program 1.1 (see results in Section 2.2). We
show that clusters that are either too small or too sparse constitute the bottleneck. Our analysis is
helpful in understanding the phase transition from failure to success for the simple approach.

• We also analyze the Improved Convex Program 1.4. We explicitly characterize the conditions on
the parameters of the SBM and the regularization parameter for successfully recovering clusters
using this approach (see results in Section 2.3).

• Apart from providing theoretical guarantees and corroborating them with simulation results (Sec-
tion 3), we also apply Programs 1.1 and 1.4 on a real data set (Section 3.3) obtained by crowd-
sourcing an image labeling task on Amazon Mechanical Turk.

1.3 Related Work

In [13], the authors consider the problem of identifying clusters from partially observed un-
weighted graphs. For the SBM with partial observations, they analyze Program 1.1 without con-
straint (1.2), and show that under certain conditions, the minimum cluster size must be at least
O(
√
n(log(n))4/r) for successful recovery of the clusters. Unlike our analysis, the exact require-

ment on the cluster size is not known (since the constant of proportionality is not known). Also
they do not provide conditions under which the approach fails to identify the clusters. Finding the
explicit bounds on the constant of proportionality is critical to understanding the phase transition
from failure to successfully identifying clusters.

In [14–19], analyze convex programs similar to the Programs 1.1 and 1.4 for the SBM and show
that the minimum cluster size should be at least O(

√
n) for successfully recovering the clusters.

However, the exact requirement on the cluster size is not known. Also, they do not provide explicit
conditions for failure, and except for [16] they do not address the case when the data is missing.

In contrast, we consider the problem of clustering with missing data. We explicitly characterize
the constants by providing bounds on the model parameters that decide if Programs 1.1 and 1.4
can successfully identify clusters. Furthermore, for Program 1.1, we also explicitly characterize the
conditions under which the program fails.

In [16], the authors extend their results to partial observations by scaling the edge probabilities by r
(observation probability), which will not work for r < 1/2 or 1/2 < p < 1/2r in Program 1.1 . [21]
analyzes Program 1.1 for the SBM and provides conditions for success and failure of the program
when the entire adjacency matrix is observed. The dependence on the number of observed entries
emerges non-trivially in our analysis. Further, [21] does not address the drawback of Program 1.1,
which is p > 1/2, whereas in our work we analyze Program 1.4 that overcomes this drawback.

2 Partially Observed Unweighted Graph

2.1 Model

Definition 2.1 (Stochastic Block Model). Let A = AT be the adjacency matrix of a graph on n
nodes with K disjoint clusters of size ni each, i = 1, 2, · · · ,K. Let 1 ≥ pi ≥ 0, i = 1, · · · ,K and
1 ≥ q ≥ 0. For l > m,

Al,m =

{
1 w.p. pi, if both nodes l,m are in the same cluster i.
1 w.p. q, if nodes l,m are not in the same cluster.

(2.1)

If pi > q for each i, then we expect the density of edges to be higher inside the clusters compared to
outside. We will say the random variable Y has a Φ(r, δ) distribution, for 0 ≤ δ, r ≤ 1, written as
Y ∼ Φ(r, δ), if

Y =


1, w.p. rδ
0, w.p. r(1− δ)
∗, w.p. (1− r)

where ∗ denotes unknown.
Definition 2.2 (Partial Observation Model). Let A be the adjacency matrix of a random graph
generated according to the Stochastic Block Model of Definition 2.1. Let 0 < r ≤ 1. Each entry of
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the adjacency matrix A is observed independently with probability r. Let Aobs denote the observed
adjacency matrix. Then for l > m: (Aobs)l,m ∼ Φ(r, pi) if both the nodes l and m belong to the
same cluster i. Otherwise, (Aobs)l,m ∼ Φ(r, q).

2.2 Results : Simple Convex Program

Let [n] = {1, 2, · · · , n}. LetR be the union of regions induced by the clusters andRc = [n]× [n]−
R its complement. Note that |R| =

∑K
i=1 n

2
i and |Rc| = n2 −

∑K
i=1 n

2
i . Let nmin := min

1≤i≤K
ni,

pmin := min
1≤i≤K

pi and nmax := max
1≤i≤K

ni.

The following definitions are important to describe our results.

• Define Di := ni r (2pi − 1) as the effective density of cluster i and Dmin = min
1≤i≤K

Di.

• γsucc := max
1≤i≤K

2r
√
ni

√
2( 1
r − 1) + 4 (q(1− q) + pi(1− pi)) and γfail :=

∑K
i=1

n2
i

n

• Λ−1
succ := 2r

√
n
√

1
r − 1 + 4q(1− q) + γsucc and Λ−1

fail :=
√
rq(n− γfail).

We note that the thresholds, Λsucc and Λfail depend only the parameters of the model. Some simple
algebra shows that Λsucc < Λfail.

Theorem 1 (Simple Program). Consider a random graph generated according to the Partial Obser-
vation Model of Definition (2.2) with K disjoint clusters of sizes {ni}Ki=1, and probabilities {pi}Ki=1

and q, such that pmin > 1
2 > q > 0. Given ε > 0, there exists positive constants c′1, c

′
2 such that,

1. If λ ≥ (1 + ε)Λfail, then Program 1.1 fails to correctly recover the clusters with probability
1− c′1 exp(−c′2|Rc|).

2. If 0 < λ ≤ (1− ε)Λsucc,

• If Dmin ≥ (1 + ε) 1
λ , then Program 1.1 succeeds in correctly recovering the clusters with

probability 1− c′1n2 exp(−c′2nmin).
• If Dmin ≤ (1− ε) 1

λ , then Program 1.1 fails to correctly recover the clusters with probability
1− c′1 exp(−c′2nmin).

Discussion:
1. Theorem 1 characterizes the success and failure of Program 1.1 as a function of the regularization

parameter λ. In particular, if λ > Λfail, Program 1.1 fails with high probability. If λ < Λsucc,
Program 1.1 succeeds with high probability if and only if Dmin >

1
λ . However, Theorem 1 has

nothing to say about Λsucc < λ < Λfail.

2. Small Cluster Regime: When nmax = o(n), we have Λ−1
succ = 2r

√
n
√(

1
r − 1 + 4q(1− q)

)
.

For simplicity let pi = p, ∀ i, which yields Dmin = nminr(2p−1). Then Dmin > Λ−1
succ implies,

nmin >
2
√
n

2p− 1

√(
1

r
− 1 + 4q(1− q)

)
, (2.2)

giving a lower bound on the minimum cluster size that is sufficient for success.

2.3 Results: Improved Convex Program

The following definitions are critical to describe our results.

• Define D̃i := ni r (pi − q) as the effective density of cluster i and D̃min = min
1≤i≤K

D̃i.

• γ̃succ := 2 max
1≤i≤K

r
√
ni

√
(1− pi)( 1

r − 1 + pi) + (1− q)( 1
r − 1 + q)
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Figure 1: Region of success (white region) and failure (black region) of Program 1.1 with λ =
1.01D−1

min. The solid red curve is the threshold for success (λ < Λsucc) and the dashed green line
which is the threshold for failure (λ > Λfail) as predicted by Theorem 1.

• Λ̃−1
succ := 2r

√
n
√

( 1
r − 1 + q)(1− q) + γ̃succ.

We note that the threshold, Λ̃succ depends only on the parameters of the model.

Theorem 2 (Improved Program). Consider a random graph generated according to the Partial
Observation Model of Definition 2.2, with K disjoint clusters of sizes {ni}Ki=1, and probabilities
{pi}Ki=1 and q, such that pmin > q > 0. Given ε > 0, there exists positive constants c′1, c

′
2 such

that: If 0 < λ ≤ (1− ε)Λ̃succ and D̃min ≥ (1 + ε) 1
λ , then Program 1.4 succeeds in recovering the

clusters with probability 1− c′1n2 exp(−c′2nmin).

Discussion:1

1. Theorem 2 gives a sufficient condition for the success of Program 1.4 as a function of λ. In
particular, for any λ > 0, we succeed if D̃−1

min < λ < Λ̃succ.

2. Small Cluster Regime: When nmax = o(n), we have Λ̃−1
succ = 2r

√
n
√(

1
r − 1 + q

)
(1− q). For

simplicity let pi = p, ∀ i, which yields D̃min = nminr(p− q). Then D̃min > Λ̃−1
succ implies,

nmin >
2
√
n

p− q

√(
1

r
− 1 + q

)
(1− q), (2.3)

which gives a lower bound on the minimum cluster size that is sufficient for success.

3. (p, q) as a function of n: We now briefly discuss the regime in which cluster sizes are large
(i.e. O(n)) and we are interested in the parameters (p, q) as a function of n that allows proposed
approaches to be successful. Critical to Program 1.4 is the constraint (1.6): Li,j = Si,j when
Aobs
i,j = 0 (which is the only constraint involving the adjacency Aobs). With missing data,

Aobs
i,j = 0 with probability r(1−p) inside the clusters and r(1− q) outside the clusters. Defining

p̂ = rp + 1 − r and q̂ = rq + 1 − r, the number of constraints in (1.6) becomes statistically
equivalent to those of a fully observed graph where p and q are replaced by p̂ and q̂. Consequently,
for a fixed r > 0, from (2.3), we require p ≥ p − q & O( 1√

n
) for success. However, setting

the unobserved entries to 0, yields Ai,j = 0 with probability 1 − rp inside the clusters and
1 − rq outside the clusters. This is equivalent to a fully observed graph where p and q are
replaced by rp and rq. In this case, we can allow p ≈ O( 1

n ) for success which is order-wise
better, and matches the results in McSherry [27]. Intuitively, clustering a fully observed graph
with parameters p̂ = rp + 1 − r and q̂ = rq + 1 − r is much more difficult than one with rp
and rq, since the links are more noisy in the former case. Hence, while it is beneficial to leave
the unobserved entries blank in Program 1.1, for Program 1.4 it is in fact beneficial to set the
unobserved entries to 0.

1The proofs for Theorems 1 and 2 are provided in the supplementary material.
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Figure 2: Simulation results for Improved Program.

3 Experimental Results

We implement Program 1.1 and 1.4 using the inexact augmented Lagrange method of multipli-
ers [28]. Note that this method solves the Program 1.1 and 1.4 approximately. Further, the numerical
imprecisions will prevent the entries of the output of the algorithms from being strictly equal to 0 or
1. We use the mean of all the entries of the output as a hard threshold to round each entry. That is,
if an entry is less than the threshold, it is rounded to 0 and to 1 otherwise. We compare the output
of the algorithm after rounding to the optimal solution (L0), and declare success if the number of
wrong entries is less than 0.1%.

Set Up: We consider at an unweighted graph on n = 600 nodes with 3 disjoint clusters. For
simplicity the clusters are of equal size n1 = n2 = n3, and the edge probability inside the clusters
are same p1 = p2 = p3 = p. The edge probability outside the clusters is fixed, q = 0.1. We generate
the adjacency matrix randomly according to the Stochastic Block Model 2.1 and Partial Observation
Model 2.2. All the results are an average over 20 experiments.

3.1 Simulations for Simple Convex Program

Dependence between r and p: In the first set of experiments we keep n1 = n2 = n3 = 200, and
vary p from 0.55 to 1 and r from 0.05 to 1 in steps of 0.05.

Dependence between nmin and r: In the second set of experiments we keep the edge probability
inside the clusters fixed, p = 0.85. The cluster size is varied from nmin = 20 to nmin = 200 in steps
of 20 and r is varied from 0.05 to 1 in steps of 0.05.

In both the experiments, we set the regularization parameter λ = 1.01D−1
min, ensuring that Dmin >

1/λ, enabling us to focus on observing the transition around Λsucc and Λfail. The outcome of the
experiments are shown in the Figures 1a and 1b. The experimental region of success is shown in
white and the region of failure is shown in black. The theoretical region of success is about the solid
red curve (λ < Λsucc) and the region of failure is below dashed green curve (λ > Λfail). As we can
see the transition indeed occurs between the two thresholds Λsucc and Λfail.

3.2 Simulations for Improved Convex Program

We keep the cluster size, n1 = n2 = n3 = 200 and vary p from 0.15 to 1 and r from 0.05 to 1 in
steps of 0.05. We set the regularization parameter, λ = 0.49Λ̃succ, ensuring that λ < Λ̃succ, enabling
us to focus on observing the condition of success around D̃min. The outcome of this experiment is
shown in the Figure 2a. The experimental region of success is shown in white and region of failure
is shown in black. The theoretical region of success is above solid red curve.

Comparison with the Simple Convex Program: In this experiment, we are interested in observing
the range of p for which the Programs 1.1 and 1.4 work. Keeping the cluster size n1 = n2 = n3 =

6



Matrix Recovered by Simple Program

100 200 300 400

50

100

150

200

250

300

350

400

450

(a)

Matrix Recovered by Improved Program

100 200 300 400

50

100

150

200

250

300

350

400

450

(b)

Ideal Clusters

50 100 150 200 250 300 350 400 450

0.5

1

1.5

Clusters identifyed by k−means on A

50 100 150 200 250 300 350 400 450

0.5

1

1.5

Clusters Identified from Simple Program

50 100 150 200 250 300 350 400 450

0.5

1

1.5

Clusters Identified from Improved Program

50 100 150 200 250 300 350 400 450

0.5

1

1.5

(c) Comparing with k-means clustering.

Figure 3: Result of using (a) Program 1.1 (Simple) and (b) Program 1.4 (Improved) on the real data
set. (c) Comparing the clustering output after running Program 1.1 and Program 1.4 with the output
of applying k-means clustering directly on A (with unknown entries set to 0).

200 and r = 1, we vary the edge probability inside the clusters from p = 0.15 to p = 1 in steps
of 0.05. For each instance of the adjacency matrix, we run both Program 1.1 and 1.4. We plot the
probability of success of both the algorithms in Figure 2b. As we can observe, Program 1.1 starts
succeeding only after p > 1/2, whereas for Program 1.4 it starts at p ≈ 0.35.

3.3 Labeling Images: Amazon MTurk Experiment

Creating a training dataset by labeling images is a tedious task. It would be useful to crowdsource
this task instead. Consider a specific example of a set of images of dogs of different breeds. We want
to cluster them such that the images of dogs of the same breed are in the same cluster. One could
show a set of images to each worker, and ask him/her to identify the breed of dog in each of those
images. But such a task would require the workers to be experts in identifying the dog breeds. A
relatively reasonable task is to ask the workers to compare pairs of images, and for each pair, answer
whether they think the dogs in the images are of the same breed or not. If we have n images, then
there are

(
n
2

)
distinct pairs of images, and it will pretty quickly become unreasonable to compare all

possible pairs. This is an example where we could obtain a subset of the data and try to cluster the
images based on the partial observations.

Image Data Set: We used images of 3 different breeds of dogs : Norfolk Terrier (172 images), Toy
Poodle (151 images) and Bouvier des Flandres (150 images) from the Standford Dogs Dataset [29].
We uploaded all the 473 images of dogs on an image hosting server (we used imgur.com).

MTurk Task: We used Amazon Mechanical Turk [30] as the platform for crowdsourcing. For
each worker, we showed 30 pairs of images chosen randomly from the

(
n
2

)
possible pairs. The task

assigned to the worker was to compare each pair of images, and answer whether they think the dogs
belong to the same breed or not. If the worker’s response is a “yes”, then there we fill the entry of
the adjacency matrix corresponding to the pair as 1, and 0 if the answer is a “no”.

Collected Data: We recorded around 608 responses. We were able to fill 16, 750 out of 111, 628
entries in A. That is, we observed 15% of the total number of entries. Compared with true answers
(which we know a priori), the answers given by the workers had around 23.53% errors (3941 out of
16750). The empirical parameters for the partially observed graph thus obtained is shown Table 1.

We ran Program 1.1 and Program 1.4 with regularization parameter, λ = 1/
√
n. Further, for Pro-

gram 1.4, we set the size of the cluster region,R to 0.125 times
(
n
2

)
. Figure 3a shows the recovered

matrices. Entries with value 1 are depicted by white and 0 is depicted by black. In Figure 3c we
compare the clusters output by running the k-means algorithm directly on the adjacency matrix
A (with unknown entries set to 0) to that obtained by running k-means algorithm on the matrices
recovered after running Program 1.1 (Simple Program) and Program 1.4 (Improved Program) re-
spectively. The overall error with k-means was 40.8% whereas the error significantly reduced to
15.86% and 7.19% respectively when we used the matrices recoverd from Programs 1.1 and 1.4
respectively (see Table 2). Further, note that for running the k-means algorithm we need to know
the exact number of clusters. A common heuristic is to identify the top K eigenvalues that are much
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Table 1: Empirical Parameters from the real data.

Params Value Params Value
n 473 r 0.1500
K 3 q 0.1929
n1 172 p1 0.7587
n2 151 p2 0.6444
n3 150 p3 0.7687

Table 2: Number of miss-classified images

Clusters→ 1 2 3 Total
K-means 39 150 4 193
Simple 9 57 8 74
Improved 1 29 4 34

larger than the rest. In Figure 4 we plot the sorted eigenvalues for the adjacency matrix A and the
recovered matrices. We can see that the top 3 eigen values are very easily distinguished from the
rest for the matrix recovered after running Program 1.4.

A sample of the data is shown in Figure 5. We observe that factors such as color, grooming, posture,
face visibility etc. can result in confusion while comparing image pairs. Also, note that the ability
of the workers to distinguish the dog breeds is neither guaranteed nor uniform. Thus, the edge
probability inside and outside clusters are not uniform. Nonetheless, Programs 1.1 and Program 1.4,
especially Program 1.4, are quite successful in clustering the data with only 15% observations.
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Figure 4: Plot of sorted eigen values for (1) Adjacency matrix with unknown entries filled by 0, (2)
Recovered adjacency matrix from Program 1.1, (3) Recovered adjacency matrix from Program 1.4

Norfolk Terrier Toy Poodle Bouvier des Flandres 

Figure 5: Sample images of three breeds of dogs that were used in the MTurk experiment.
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4 Proof of Results for Simple Convex Program

Let 1 ≥ pmin > 1
2 > q > 0 and 0 ≤ r ≤ 1. G be a random graph generated according to the

stochastic block model 2.1 with cluster sizes {ni}Ki=1. Let the observation model be as defined in
(Defn 2.2). Theorem 1 is based on the following lemmas:

Lemma 4.1. If λ > Λfail, then
(
L0,S0

)
is not an optimal solution to the Program 1.1 with high

probability.

Lemma 4.2. If λ < Λsucc and Dmin > 1
λ , then

(
L0,S0

)
is the unique optimal solution to Pro-

gram 1.1 with high probability.

Before we proceed, we need some additional notations. Let Ri,j = Ci × Cj for 1 ≤ i, j ≤ K + 1.
One can see that {Ri,j} divides [n] × [n] into (K + 1)2 disjoint regions similar to a grid which is
illustrated in the Figure 6. Thus,Ri,i is the region induced by i’th cluster for any 1 ≤ i ≤ K.

Let Γout be the set of entries of adjacency matrix that are not observed. Let A ⊆ [n] × [n] be the
set of observed coordinates of Aobs. Let A1 ⊆ [n]× [n] be the set of nonzero coordinates of Aobs,
and A0 ⊆ [n]× [n] be the set of coordinates of Aobs that are zero. Then the sets,

1. A1 ∩R corresponds to the edges inside the clusters that are observed.

2. A1 ∩Rc corresponds to the set of edges outside the clusters that are observed.

3. A0 ∩R corresponds to the missing edges inside the clusters, that are observed (that is, we know
that the edge does not exist).

Let c and d be positive integers. Consider a matrix, X ∈ Rc×d. Let β be a subset of [c]× [d]. Then,
let Xβ denote the matrix induced by the entries of X on β i.e.,

(Xβ)i,j =

{
Xi,j if (i, j) ∈ β
0 otherwise .

In other words, Xβ is a matrix whose entries match those of X in the positions (i, j) ∈ β and zero
otherwise. For example, 1n×nAobs = Aobs. Given a matrix X, sum(X) will denote the sum of all
entries of X. Finally, we introduce the following parameter which will be useful for the subsequent
analysis. Given q, {pi}Ki=1, let,

DA =
1

2
min

{
r(1− 2q),

{
r(2pi − 1)− 1

λni

}K
i=1

}
(4.1)

=
1

2
min

{
r(1− 2q),

Di − λ−1

ni

}
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For our proofs, we will make use of the following Big O notation. f(n) = Ω(n) will mean there
exists a positive constant c such that for sufficiently large n, f(n) ≥ cn. f(n) = O(n) will mean
there exists a positive constant c such that for sufficiently large n, f(n) ≤ cn.

4.1 Proof of Lemma 4.1

Lagrange for the problem (1.1) can be written as follows

L (L,S; M,N) = ‖L‖? + λ‖Sobs‖1 + trace(M(L− 11T ))− trace(NL). (4.2)

where M and N are dual variables corresponding to the inequality constraints (1.2).

For L0 to be an optimal solution to (1.1), it has to satisfy the KKT conditions. Therefore, the
subgradient of (4.2) at L0 has to be 0, i.e.,

∂‖L0‖? + λ ∂‖Aobs − Lobs
0‖1 + M0 −N0 = 0. (4.3)

where M0 and N0 are optimal dual variables, and ∂‖L0‖? and ∂‖S0‖1 are subgradients of nuclear
norm and `1-norm respectively at the points

(
L0,S0

)
. Note that in the standard notation, ∂‖x‖∗

denotes the set of all subgradients, i.e., the subdifferential. We have slightly abused the notation by
denoting a subgradient of a norm ‖ · ‖∗ at the point x by ∂‖x‖∗.
Also, by complementary slackness,

trace(M0(L0 − 11T )) = 0, (4.4)

and
trace(N0L0) = 0. (4.5)

From (5.1) and (4.4), (4.5), we have (M0)R ≥ 0, (M0)Rc = 0, (N0)R = 0 and (N0)Rc ≥ 0.
Hence (M0 −N0)R ≥ 0 and (M0 −N0)Rc ≤ 0.

Let L0 = UΛUT , where Λ = diag{n1, n2, . . . , nK}U = [u1 . . . uK ] ∈ Rn×K ,

ul,i =

{
1√
nl

if i ∈ Cl
0 else.

(4.6)

Then the subgradient ∂‖L0‖? is of the form UUT + W such that W ∈ {X : XU = UTX =
0, ‖X‖ ≤ 1}. The subgradient ∂‖S0‖1 is of the form sign(S0) + Q where Qi,j = 0 if Si,j 6= 0
and ‖Q‖∞ ≤ 1. Further, note that the subgradient of S0 over unobserved entries is zero. That is,
∂‖S0

unobs‖1 = 0 since S0
unobs = 0.

From (4.3), we have

UUT + W − λ
(
sign(S0) + Q

)
+ (M0 −N0) = 0. (4.7)

Consider the sum of the entires corresponding to the cluster i (Ri,i), i.e.,

sum
(
L0
)
Ri,i︸ ︷︷ ︸

ni

−sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
+ sum

(
M0 −N0

)
Ri,i︸ ︷︷ ︸

≥0

= 0 (4.8)

Since each entry of the adjacency matrix is observed with probability r, and the probability of
missing edge inside cluster i is 1 − pi, we note that (S0

Ri,i
)l,m 6= 0 with probability r(1 − pi).

Recall that Ql,m = 0 if S0
l,m 6= 0.

Then by Bernstein’s inequality and using ‖Q‖∞ ≤ 1, with probability 1− exp
(
−Ω(n2

i )
)

we have
sum

(
sign(S0)

)
= −n2

i r(1− pi) and sum (Q) ≤ n2
i rpi .

Thus,

−sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
≥ λn2

i r(1− pi)− λn2
i rpi

= λn2
i r (1− 2pi) . (4.9)
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and hence LHS of equation (4.8) can be lower bounded as ,

ni − sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
+ sum

(
M0 −N0

)
Ri,i︸ ︷︷ ︸

≥0

≥ ni + λn2
i r (1− 2pi) . (4.10)

We see that nir (2pi − 1) < 1
λ would imply ni + λn2

i r (1− 2pi) > 0, in which case, the equa-
tion (4.3) does not hold. Hence L0 cannot be an optimal solution to the Program 1.1. (Note that,
pi >

1
2 and hence 2pi − 1 > 0.)

Notice that
(
UUT

)
Rc = 0 and the entries of −

(
sign(S0) + Q

)
and M0 −N0 over Rc ∩ A1 are

negative. Hence from the equation (4.7),

‖W‖2F ≥ ‖
(
UUT + W

)
(Rc∩A1)

‖2F ≥ ‖λ
(
sign(S0) + Q

)
(Rc∩A1)

‖2F . (4.11)

Recall that S0
(Rc∩A1) 6= 0 and hence Q(Rc∩A1) = 0. Further, recall that by the Stochastic

Block Model, each entry of A over Rc is non-zero with probability q and by observation model
(Defn 2.2), each entry of A is observed with probability r. Hence with probability at least
1− exp (−Ω(|Rc|)), |Rc ∩ A1| = rq(n2 −

∑K
i=1 n

2
i ). Thus from equation (4.11) we have,

‖W‖2F ≥ λ2rq(n2 −
K∑
i=1

n2
i ), (4.12)

Recall that ‖W‖ ≤ 1 should hold true for
(
L0,S0

)
to be an optimal solution to Program 1.1.

‖W‖ = |σmax(W)| ≥ ‖W‖F√
n

, which on combining with equation (4.12) gives us,

‖W‖ ≥ λ

√√√√rq
(
n2 −

∑K
i=1 n

2
i

)
n

.

So, if λ
√
rq
(
n2 −

∑K
i=1 n

2
i

)
/n > 1 then,

(
L0,S0

)
cannot be an optimal solution to Program 1.1.

This gives us the result in Lemma 4.1.

4.2 Proof of Lemma 4.2

In order to show that (L0,S0) is the unique optimal solution to the Program 1.1, we need to prove
that for all feasible perturbations (EL,ES),

(‖L0 + EL‖? + λ ‖S0 + ES‖1)− (‖L0‖? + λ ‖S0‖1) > 0. (4.13)

We note that S can be split as S = Sobs+Srest, where Srest denotes the entries of S other than those
corresponding to the observed entries of A. Furthermore, we claim that at the optimal, Srest = 0,
since if otherwise, the objective can be strictly decreased by setting Srest = 0. Hence, S = Sobs.

We can lower bound the LHS of the equation (4.13) using the subgradients as follows,

(‖L0 +EL‖?+λ ‖S0 +ES‖1)−
(
‖L0‖? + λ ‖S0‖1

)
≥ 〈∂‖L0‖?,EL〉+λ〈∂‖S0‖1,ES〉, (4.14)

where ∂‖L0‖? and ∂‖S0‖1 are subgradients of nuclear norm and `1-norm respectively at the points(
L0,S0

)
. Note that in the standard notation, ∂‖x‖∗ denotes the set of all subgradients, i.e., the

subdifferential. We have slightly abused the notation by denoting a subgradient of a norm ‖ · ‖∗ at
the point x by ∂‖x‖∗.
To make use of (4.14), it is very important to choose good subgradients. In the following section we
will focus on construction of such subgradients.
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4.2.1 Subgradient construction

Recall that, L0 = UΛUT , where Λ = diag{n1, n2, . . . , nK} and U = [u1 . . . uK ] ∈ Rn×K ,
with ul as defined before. Then the subgradient ∂‖L0‖? is of the form UUT + W such that
W ∈ MU := {X : XU = UTX = 0, ‖X‖ ≤ 1}. ‖.‖ is spectral norm (maximum singular value).
The subgradient ∂‖S0‖1 is of the form sign(S0) + Q where Qi,j = 0 if S0

i,j 6= 0 and ‖Q‖∞ ≤ 1.

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1) ≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,ES〉
= 〈UUT + W,EL〉+ λ〈sign(S0) + Q,ES〉

Note that, due to the condition Lobs + Sobs = Aobs, we have ES = Eobs
L. Further, note that

sign(S0) = 1
n×n
A1∩Rc − 1n×nA0∩R. Choosing Q = 1

n×n
A1∩R − 1

n×n
A0∩Rc , we get,

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1) ≥
〈
W,EL

〉
+

K∑
i=1

1

ni
sum(ERi,i

) + λ
(
sum(EL

A0
)− sum(EL

A1
)
)

︸ ︷︷ ︸
:=g(EL)

(4.15)

From this point onward, for simplicity we will ignore the superscript L on EL and just use E.

Define,

g(E) :=

K∑
i=1

1

ni
sum(ERi,i) + λ (sum(EA0)− sum(EA1)) . (4.16)

Also, define f (E,W) := g (E) + 〈W,E〉. Our aim is to show that for all feasible perturbations E,
there exists W such that,

f (E,W) = g(E) + 〈W,E〉 > 0. (4.17)
Note that g(E) does not depend on W.

Lemma 4.3. Given E, assume there exists W ∈ MU with ‖W‖ < 1 such that f(E,W) ≥ 0.
Then at least one of the followings holds:

• There exists W∗ ∈MU with ‖W∗‖ ≤ 1 and f(E,W∗) > 0.

• For all W ∈MU, 〈E,W〉 = 0.

Proof. Let c = 1 − ‖W‖. Assume 〈E,W′〉 6= 0 for some W′ ∈ MU. If 〈E,W′〉 > 0, choose
W∗ = W + cW′. Otherwise, choose W∗ = W − cW′. Since ‖W′‖ ≤ 1, we have, ‖W∗‖ ≤ 1
and W∗ ∈MU. Consequently,

f(E,W∗) = f(E,W) + 〈E, cW′〉 > f(E,W) ≥ 0 (4.18)

Notice that, for all W ∈ MU, 〈E,W〉 = 0 is equivalent to E ∈ M⊥U which is the orthogonal
complement ofMU in Rn×n.M⊥U has the following characterization:

M⊥U = {X ∈ Rn×n : X = UMT + NUT for some M,N ∈ Rn×K}. (4.19)

Now we have broken down our aim into two steps.

1. Construct W ∈MU with ‖W‖ < 1, such that f(E,W) ≥ 0 for all feasible perturbations E.
2. For all non-zero feasible E ∈M⊥U, show that g(E) > 0.

As a first step, in Section 4.3, we will argue that, under certain conditions, there exists a W ∈ MU

with ‖W‖ < 1 such that with high probability, f(E,W) ≥ 0 for all feasible E. This W is called
the dual certificate. Secondly, in Section 4.4, we will show that, under certain conditions, for all
E ∈ M⊥U with high probability, g(E) > 0. Finally, combining these two arguments, and using
Lemma 4.3 we will conclude that (L0,S0) is the unique optimal with high probability.
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4.3 Showing existence of the dual certificate

Recall that

f(E,W) =

K∑
i=1

1

ni
sum(ERi,i) + 〈E,W〉+ λ (sum (EA0)− sum (EA1))

W will be constructed from the candidate W0, which is given as follows.

4.3.1 Candidate W0

Based on Program 1.1, we propose the following,

W0 =

K∑
i=1

ci1
n×n
Ri,i

+ c1n×nRc + λ
(
1
n×n
A1
− 1n×nA0

)
, (4.20)

where {ci}Ki=1, c are real numbers to be determined.

f(E,W0) =

K∑
i=1

(
1

ni
+ ci) sum(ERi,i) + c sum(ERc)

Note that W0 is a random matrix where randomness is due to Aobs. In order to ensure a small
spectral norm, we will set its expectation to 0, i.e., we will choose c, {ci}′s to ensure that E[W0] =
0.

Following from the partially observed Stochastic Block Model (Defn 2.1 and 2.2), the expectation
of an entry of W0 onRi,i (region corresponding to cluster i) andRc (region outside the clusters) is
ci + λr(2pi − 1) and c+ λr(2q − 1) respectively. Hence, we set,

ci = −λr(2pi − 1) and c = −λr(2q − 1),

With these, choices, the candidate W0 and f(E,W0) take the following forms,

W0 = λ

[
K∑
i=1

(1 + r(1− 2pi)) 1
n×n
Ri,i∩A1

+ (−1 + r(1− 2pi)) 1
n×n
Ri,i∩A0

+ r(1− 2pi)1
n×n
Ri,i∩Γout

]
+λ
[
(1 + r(1− 2q)) 1n×nRc∩A1

+ (−1 + r(1− 2q)) 1n×nRc∩A0
+ r(1− 2q)1n×nRc∩Γout

]
(4.21)

f(E,W0) = λ [r(1− 2q) sum(ERc)]− λ

[
K∑
i=1

(
r(2pi − 1)− 1

λni

)
sum(ERi,i

)

]

From L0 and the constraint 1 ≥ Li,j ≥ 0, it follows that,

ERc is (entrywise) nonnegative. (4.22)
ER is (entrywise) nonpositive.

Thus, sum(ERc) ≤ 0 and sum(ERi,i
) ≥ 0. When λ(2pi− 1)− 1

ni
≥ 0 and λ(2q− 1) ≤ 0; we will

have f(E,W0) ≥ 0 for all feasible E. This indeed holds due to the assumptions of Theorem 1 (see
(4.1)), as we assumed r(2pi − 1) > 1

λni
for i = 1, 2 · · · ,K and 1 > 2q.

We will now proceed to find a tight bound on the spectral norm of W0. We will say that random
variable X has a ∆(ζ, δ) distribution for 0 ≤ ζ, δ ≤ 1, written as X ∼ ∆(ζ, δ) if,

X =


1 + ζ(1− 2δ) w.p. ζδ
−1 + ζ(1− 2δ) w.p. ζ(1− δ)
ζ(1− 2δ) w.p. 1− ζ

Variance of the above distribution is

Var(X) = ζ(1− ζ + 4 ζ δ (1− δ)). (4.23)
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Theorem 3. Assume A ∈ Rn×n obeys the Stochastic Block Model (2.1) and let M ∈ Rn×n. Let
entries of M be as follows.

Mi,j ∼
{

∆(r, pk) if (i, j) ∈ Rk,k
∆(r, q) if (i, j) ∈ Rc

Then, for a constant ε′ (to be determined) each of the following holds with probability 1 −
exp(−Ω(n)).

• ‖M‖ ≤ 2
√
nr
√

1− r + 4rq(1− q)
+ max

1≤i≤K
2
√
nir
√

2(1− r) + 4r(q(1− q) + pi(1− pi)) + ε′
√
n.

• Assume max
1≤i≤K

ni = o(n). Then, for sufficiently large n,

‖M‖ ≤ (2
√
r(1− r + 4rq(1− q)) + ε′)

√
n.

Proof. For the first statement, let M1 be a random matrix with independent entries distributed as:
M1(i, j) ∼ ∆(r, q).

From standard results on random matrix theory [31], it follows that,

‖M1‖ ≤ (2
√
r(1− r + 4rq(1− q)) + ε′)

√
n

with the desired probability.

Also let M2 = M −M1. We note that M2 is a block diagonal random matrix. Observe that M2

overRi,i, M2,Ri,i is sum of two independent random variables MRi,i ∼ ∆(r, pi) and−M1,Ri,i ∼
∆(r, q). So, the variance is 2r(1− r) + 4r2(q(1− q) + pi(1− pi)). This similarly gives,

‖M2,Ri,i‖ ≤ 2
√

2r(1− r) + 4r2(q(1− q) + pi(1− pi))
√
ni + ε′

√
n

Now, observing, ‖M2‖ = sup
1≤i≤K

‖M2,Ri,i
‖ and using a union bound over i ≤ K we have,

‖M2‖ ≤ max
1≤i≤K

2
√

2r(1− r) + 4r2(q(1− q) + pi(1− pi))
√
ni + ε′

√
n

Finally, we use the triangle inequality ‖M‖ ≤ ‖M1‖+ ‖M2‖ to conclude.

The following lemma gives a bound on ‖W0‖.
Lemma 4.4. Recall that, W0 is a random matrix; where randomness is on the partially observed
stochastic block model Aobs and it is given by,

W0 = λ

[
K∑
i=1

(1 + r(1− 2pi)) 1
n×n
Ri,i∩A1

+ (1− r(1− 2pi)) 1
n×n
Ri,i∩A0

+ r(1− 2pi)1
n×n
Ri,i∩Γout

]
+λ
[
(1 + r(1− 2q)) 1n×nRc∩A1

+ (−1 + r(1− 2q)) 1n×nRc∩A0
+ r(1− 2q)1n×nRc∩Γout

]
Then, for any ε′ > 0, with probability 1− exp (−Ω(n)), we have

‖ 1

λ
W0‖ ≤ 2

√
nr
√

1− r + 4rq(1− q) + max
1≤i≤K

2
√
nir
√

2(1− r) + 4r(q(1− q) + pi(1− pi)) + ε′
√
n

Further, if max
1≤i≤K

ni = o(n). Then, for sufficiently large n, with the same probability,

‖W0‖ ≤ 2λ
√
nr
√

1− r + 4rq(1− q) + ε′λ
√
n.

Proof. 1
λW0 is a random matrix whose entries are i.i.d. and distributed as ∆(r, pi) on Ri,i and

∆(r, q) onRc. Consequently, using Theorem 3 we obtain the result.

Lemma 4.4 verifies that asymptotically with high probability we can make ‖W0‖ < 1 as long as
λ is sufficiently small. However, W0 itself is not sufficient for construction of the desired W,
since we do not have any guarantee that W0 ∈ MU. In order to achieve this, we will correct W0

by projecting it onto MU. Following lemma suggests that W0 does not change much by such a
correction.
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4.3.2 Correcting the candidate W0

Lemma 4.5. W0 is as described previously in (4.21). Let WH be the projection of W0 onMU.
Then

• ‖WH‖ ≤ ‖W0‖

• For any ε′′ > 0 (constant to be determined), with probability 1− 6n2 exp(−2ε′′2nmin) we have

‖W0 −WH‖∞ ≤ 3λε′′

Proof. Choose arbitrary vectors {ui}ni=K+1 to make {ui}ni=1 an orthonormal basis in Rn. Call
U2 = [uK+1 . . . un] and P = UUT , P2 = U2U

T
2 . Now notice that for any matrix X ∈ Rn×n,

P2XP2 is inMU since UTU2 = 0. Let I denote the identity matrix. Then,

X−P2XP2 = X− (I−P)X(I−P)

= PX + XP−PXP ∈M⊥U (4.24)

Hence, P2XP2 is the orthogonal projection onMU. Clearly,

‖WH‖ = ‖P2W0P2‖ ≤ ‖P2‖2‖W0‖ ≤ ‖W0‖

For analysis of ‖W0−WH‖∞ we can consider terms on the right hand side of (4.24) separately as
we have:

‖W0 −WH‖∞ ≤ ‖PW0‖∞ + ‖W0P‖∞ + ‖PW0P‖∞

Clearly P =
∑K
i=1

1
ni
1
n×n
Ri,i

. Then, each entry of 1
λPW0 is either a summation of ni i.i.d. ∆(r, pi)

or ∆(r, q) mean zero random variables scaled by n−1
i for some i ≤ K or 0. Hence any c, d ∈ [n]

and ε′′ > 0

P[|(PW0)c,d| ≥ λε′′] ≤ 2 exp(−2ε′′2nmin)

Same (or better) bounds holds for entries of W0P and PW0P. Then a union bound over all entries
of the three matrices will give with probability 1−6n2 exp(−2ε′′2nmin), we have ‖W0−WH‖∞ ≤
3λε′′.

Recall that, γsucc := max
1≤i≤K

2r
√
ni

√
2( 1
r − 1) + 4 (q(1− q) + pi(1− pi)) , and

Λ−1
succ := 2r

√
n
√

1
r − 1 + 4q(1− q) + γsucc.

We can summarize our discussion so far in the following lemma,

Lemma 4.6. W0 is as described previously in (4.21). Choose W to be projection of W0 onMU.
Also suppose λ ≤ (1 − δ)Λsucc. Then, with probability 1 − 6n2 exp(−Ω(nmin)) − 4 exp(−Ω(n))
we have,

• ‖W‖ < 1

• For all feasible E, f(E,W) ≥ 0.

Proof. To begin with, observe that Λ−1
succ is Ω(

√
n). Since λ ≤ Λsucc, λ

√
n = O(1). Consequently,

using λΛ−1
succ < 1 and applying Lemma 4.4, and choosing a sufficiently small ε′ > 0, we conclude

with,
‖W‖ ≤ ‖W0‖ < 1

with probability 1−exp(−Ω(n)) where the constant in the exponent depends on the constant ε′ > 0.
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Next, from Lemma 4.5 with probability 1 − 6n2 exp(− 2
9ε
′′2nmin) we have ‖W0 −W‖∞ ≤ λε′′.

Then based on (5.10) for all E, we have that,

f(E,W) = f(E,W0)− 〈W0 −W,E〉
≥ f(E,W0)− λε′′ (sum(ER)− sum(ERc))

= λ [(r(1− 2q)− ε′′)sum(ERc)]

−λ
K∑
i=1

[(
r(2pi − 1)− 1

λni
− ε′′

)
sum(ERi,i

)

]
≥ 0

where we chose ε′′ to be a sufficiently small constant. In particular, we set ε′′ < DA, i.e., set
ε′′ < r(1− 2q) and ε′′ < r(2pi − 1)− 1

λni
for all 1 ≤ i ≤ K.

Hence, by using a union bound W satisfies both of the desired conditions.

Summary so far: Combining the last lemma with Lemma 4.3, with high probability, either there
exists a dual vector W∗ which ensures f(E,W∗) > 0 or E ∈M⊥U. If former, we are done. Hence,
we need to focus on the latter case and show that for all perturbations E ∈ M⊥U, the objective will
strictly increase at (L0,S0) with high probability.

4.4 Solving for EL ∈M⊥U case

Recall that,

g (E) =

K∑
i=1

1

ni
sum(ERi,i) + λ (sum(EA0)− sum(EA1))

Let us define,

g1(X) :=

K∑
i=1

1

ni
sum(XRi,i),

g2(X) := sum(XA0)− sum(XA1),

so that, g (X) = g1(X) + λg2(X). Also let V = [v1 . . . vK ] where vi =
√
niui. Thus, V is

basically obtained by, normalizing columns of U to make its nonzero entries 1. Assume E ∈ M⊥U.
Then, by definition ofM⊥U, we can write,

E = VMT + NVT .

Let mi,ni denote i’th columns of M,N respectively. From L0 and (1.3) it follows that

ERc is (entrywise) nonnegative
ER is (entrywise) nonpositive

Now, we list some simple observations regarding structure of E. We can write

E =

K∑
i=1

(vim
T
i + niv

T
i ) =

K+1∑
i=1

K+1∑
j=1

ERi,j
(4.25)

Notice that only two components : vim
T
i and njv

T
j , contribute to the term ERi,j

.

Let Ei,j ∈ Rni×nj which is E induced by entries on Ri,j . Basically, Ei,j is same as ERi,j
when

we get rid of trivial zero rows and zero columns. Then

Ei,j = 1
ni(m

Cj
i )T + nCij 1

njT (4.26)

where m
Cj
i is the vector corresponding to the entries of Cj in mi. Similarly, nCij is the vector

corresponding to the entries of Ci in nj .
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Clearly, given {Ei,j}1≤i,j≤n, E is uniquely determined. Now, assume we fix sum(Ei,j) for all i, j
and we would like to find the worst E subject to these constraints. Variables in such an optimization
are mi,ni. Basically we are interested in,

min g(E) (4.27)
subject to

sum(Ei,j) = ci,j for all i, j

Ei,j

{
nonnegative if i 6= j

nonpositive if i = j
(4.28)

where {ci,j} are constants. Constraint (4.28) follows from (5.10).
Remark: For the special case of i = j = K + 1, notice that Ei,j = 0.

In (4.27), g1(E) is fixed and is equal to
∑K
i=1

1
ni
ci,i. Consequently, we just need to do the optimiza-

tion with the objective g2(E) = sum(EA0)− sum(EA1).

Let βi,j ⊆ [ni]× [nj ] be a set of coordinates defined as follows. For any (c, d) ∈ [ni]× [nj ]

(c, d) ∈ βi,j iff (ai,c, aj,d) ∈ A

For (i1, j1) 6= (i2, j2), (m
Cj1
i1
,n
Ci1
j1

) and (m
Cj2
i2
,n
Ci2
j2

) are independent variables. Consequently, due
to (4.26), we can partition problem (4.27) into the following smaller disjoint problems.

min
mj

i ,n
i
j

sum(Ei,j
βc
i,j

)− sum(Ei,j
βi,j

) (4.29)

subject to

sum(Ei,j) = ci,j

Ei,j is
{

nonnegative if i 6= j

nonpositive if i = j

Then, we can solve these problems locally (for each i, j) to finally obtain,

g2(EL,∗) =
∑
i,j

sum(Ei,j,∗
βc
i,j

)−
∑
i,j

sum(Ei,j,∗
βi,j

)

to find the overall result of problem (4.27), where ∗ denotes the optimal solutions in problems (4.27)
and (4.29). The following lemma will be useful for analysis of these local optimizations.

Lemma 4.7. Let a ∈ Rc, b ∈ Rd and X = 1
cbT + a1d

T
be variables and C0 ≥ 0 be a constant.

Also let β ⊆ [c]× [d]. Consider the following optimization problem

min
a,b

sum(Xβ)

subject to
Xi,j ≥ 0 for all i, j
sum(X) = C0

For this problem there exists a (entrywise) nonnegative minimizer (a0,b0).

Proof. Let xi denotes i’th entry of vector x. Assume (a∗,b∗) is a minimizer. Without loss of
generality assume b∗1 = mini,j{a∗i ,b∗j}. If b∗1 ≥ 0 we are done. Otherwise, since Xi,j ≥ 0 we
have a∗i ≥ −b∗1 for all i ≤ c. Then set a0 = a∗ + 1

cb∗1 and b0 = b∗ − 1
db∗1. Clearly, (a0,b0) is

nonnegative. On the other hand, we have:

X∗ = 1
cb∗T + a∗1d

T
= 1

cb0T + a0
1
dT = X0,

which implies,

sum(X∗β) = sum(X0
β) = optimal value
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Lemma 4.8. A direct consequence of Lemma 4.7 is the fact that in the local optimizations (4.29),
Without loss of generality, we can assume (m

Cj
i ,n

Ci
j ) entrywise nonnegative whenever i 6= j and

entrywise nonpositive when i = j. This follows from the structure of Ei,j given in (4.26) and (5.10).

The following lemma will help us characterize the relationship between sum(Ei,j) and sum(Ei,j
βc
i,j

).

Lemma 4.9. Let β be a random set generated by choosing elements of [c]× [d] independently with
probability 0 ≤ η ≤ 1. Then for any ε′ > 0 with probability 1− d exp(−2ε′2c) for all nonzero and
entrywise nonnegative a ∈ Rd we’ll have:

sum(Xβ) > (η − ε′)sum(X) (4.30)

where X = 1
caT . Similarly, with the same probability, for all such a, we’ll have sum(Xβ) <

(η + ε′)sum(X)

Proof. We’ll only prove the first statement (4.30) as the proofs are identical. For each i ≤ d, ai
occurs exactly c times in X as i’th column of X is 1cai. By using a Chernoff bound, we can
estimate the number of coordinates of i’th column which are element of β (call this number Ci) as
we can view this number as a sum of c i.i.d. Bernoulli(η) random variables. Then

P(Ci ≤ c(η − ε′)) ≤ exp(−2ε′2c)

Now, we can use a union bound over all columns to make sure for all i, Ci > c(η − ε′)
P(Ci > c(r − ε′) for all i ≤ d) ≥ 1− d exp(−2ε′2c)

On the other hand if each Ci > c(η − ε′) then for any nonnegative a 6= 0,

sum(Xβ) =
∑

(i,j)∈β

Xi,j =

d∑
i=

Ciai > c(η − ε′)
d∑
i=1

ai = (η − ε′)sum(X)

Using Lemma 4.9, we can calculate a lower bound for g(E) with high probability as long as the
cluster sizes are sufficiently large. Due to (4.25) and the linearity of g(E), we can focus on con-
tributions due to specific clusters i.e. vim

T
i + niv

T
i for the i’th cluster. We additionally know the

simple structure of mi,ni from Lemma 4.8. In particular, subvectors mCii and nCii of mi,ni can be
assumed to be nonpositive and rest of the entries are nonnegative.
Lemma 4.10. Assume, 1 ≤ l ≤ K, DA > 0. Then, with probability 1 − n exp(−2D2

A(nl − 1)),
we have g(vlm

T
l ) ≥ 0 for all ml. Also, if ml 6= 0 then inequality is strict.

Proof. Recall that ml satisfies mCil is nonpositive/nonnegative when i = l/i 6= l for all i. Define

Xi := 1
nlmCil

T
. We can write

g(vlm
T
l ) =

1

nl
sum(Xl) +

K∑
i=1

λh(Xi, βcl,i)

where h(Xi, βcl,i) = sum(Xi
βc
l,i

)− sum(Xi
βl,i

). Now assume i 6= l. Using Lemma 4.9 and the fact

that βl,i is a randomly generated subset (with parameter q), with probability 1 − ni exp(−2ε′2nl),
for all Xi, we have,

h(Xi, βcl,i) ≥ (r(1− q)− ε′)sum(Xi)− (rq + ε′)sum(Xi)

= (r(1− 2q)− 2ε′)sum(Xi)

where inequality is strict if Xi 6= 0. Similarly, when i = l with probability at least 1 −
nl exp(−2ε′2(nl − 1)), we have,

1

λnl
sum(Xl) + h(Xl, βcl,l) ≥

(
r(1− pl) + ε′ +

1

λnl

)
sum(Xl)− (rpl − ε′) sum(Xl)

= −
(
r(2pl − 1)− 1

λnl
− 2ε′

)
sum(Xl)
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Choosing ε′ = DA
2 and using the facts that r(1 − 2q) − 2DA ≥ 0, r(2pl − 1) − 1

λnl
− 2DA ≥ 0

and using a union bound, with probability 1 − n exp(−2D2
A(nl − 1)), we have g(vlm

T
l ) ≥ 0 and

the inequality is strict when ml 6= 0 as at least one of the Xi’s will be nonzero.

The following lemma immediately follows from Lemma 4.10 and summarizes the main result of the
section.
Lemma 4.11. Let DA be as defined in (4.1) and assume DA > 0. Then with probability 1 −
2nK exp(−2D2

A(nmin − 1)) we have g(EL) > 0 for all nonzero feasible EL ∈M⊥U .

4.5 The Final Step

Lemma 4.12. Let pmin > 1
2 > q and G be a random graph generated ac-

cording to Model 2.1 and 2.2 with cluster sizes {ni}Ki=1. If λ ≤ (1− ε)Λsucc and
Dmin = min

1≤i≤n
r (2pi − 1)ni ≥ (1 + ε) 1

λ , then
(
L0,S0

)
is the unique optimal solution to Pro-

gram 1.1 with probability 1− exp(−Ω(n))− 6n2 exp(−Ω(nmin)).

Proof. Based on Lemma 4.6 and Lemma 4.11,
with probability 1− cn2 exp(−C (min{r(1− 2q), r(2pmin − 1)})2

nmin),

• There exists W ∈MU with ‖W‖ < 1 such that for all feasible EL, f(EL,W) ≥ 0.

• For all nonzero EL ∈M⊥U we have g(EL) > 0.

Consequently based on Lemma 4.3, (L0,S0) is the unique optimal of Problem 1.1.

5 Proof of Results for Improved Convex Program

This section will show that, the optimal solution of Problem 1.4 is the pair (L0,S0) under reasonable
conditions, where,

L0 = 1
n×n
R , S0 = S0

obs = 1
n×n
R∩A0

(5.1)

Also denote the true optimal pair by (L∗,S∗). Let 1 ≥ pmin > q > 0 and 0 ≤ r ≤ 1. G be a
random graph generated according to the stochastic block model 2.1 with cluster sizes {ni}Ki=1. Let
the observation model be as defined in (2.2). Theorem 2 is based on the following lemma:

Lemma 5.1. If λ < Λ̃succ and D̃min > 1
λ , then

(
L0,S0

)
is the unique optimal solution to Pro-

gram 1.4 with high probability.

Given q, {pi}Ki=1, define the following parameter which will be useful for the subsequent analysis.
This parameter can be seen as a measure of distinctness of the “worst” cluster from the “background
noise”. Here, by background noise we mean the edges overRc.

D̃A =
1

2
min

{
r(1− q),

{
r(pi − q)−

1

λni

}K
i=1

}
(5.2)

=
1

2
min

{
r(1− q), D̃i − λ−1

ni

}

5.1 Perturbation Analysis

Our aim is to show that
(
L0,S0

)
defined in (5.1) is unique optimal solution to Problem 1.4.

Lemma 5.2. Let (EL,ES) be a feasible perturbation. Then, the objective will increase by at least,

f(EL,W) =

K∑
i=1

1

ni
sum(EL

Ri,i
) + 〈EL,W〉+ λsum(EL

A0
) (5.3)

for any W ∈M, ‖W‖ ≤ 1.
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Proof. From constraint (1.6), we have Li,j = Si,j whenever Aobs
i,j = 0. So, L∗A0

= S∗A0
. Further,

recall that S can be split as S = Sobs + Srest, where Srest denotes the entries of S other than those
corresponding to the observed entries of A. Furthermore, we claim that at the optimal, Srest = 0,
since if otherwise, the objective can be strictly decreased by setting Srest = 0. So, without loss of
generality,

S∗ = L∗A0
. (5.4)

Recall that,

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1) ≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,ES〉
= 〈UUT + W,EL〉+ λ〈sign(S0) + Q,ES〉

Using sign(S0) = 1
n×n
A0∩R, and choosing Q = 1

n×n
A0−(A0∩R), we get,

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1) ≥
〈
W,EL

〉
+

K∑
i=1

1

ni
sum(EL

Ri,i
) + λ

(
sum(EL

A0
)
)

︸ ︷︷ ︸
:=g(EL)

(5.5)

for any W ∈M.

From this point onward, for simplicity we will ignore the superscript L on EL and just use E.

Define,

g(E) :=

K∑
i=1

1

ni
sum(ERi,i

) + λsum(EA0
)). (5.6)

Also, define f (E,W) := g (E) + 〈W,E〉. Our aim is to show that for all feasible perturbations E,
there exists W such that,

f (E,W) = g(E) + 〈W,E〉 > 0. (5.7)

Note that g(E) does not depend on W.

We can directly use Lemma 4.3. So, as in the previous section, we have broken down our aim into
two steps.

1. Construct W ∈MU with ‖W‖ < 1, such that f(E,W) ≥ 0 for all feasible perturbations E.

2. For all non-zero feasible E ∈M⊥U, show that g(E) > 0.

As a first step, in Section 5.2, we will argue that, under certain conditions, there exists a W ∈ MU

with ‖W‖ < 1 such that with high probability, f(E,W) ≥ 0 for all feasible E. Recall that such a
W is called the dual certificate. Secondly, in Section 5.3, we will show that, under certain conditions,
for all E ∈ M⊥U with high probability, g(E) > 0. Finally, combining these two arguments, and
using Lemma 4.3 we will conclude that (L0,S0) is the unique optimal with high probability.

5.2 Showing existence of the dual certificate

Recall that

f(E,W) =

K∑
i=1

1

ni
sum(ERi,i

) + 〈E,W〉+ λsum (EA0
)

W will be constructed from the candidate W0, which is given as follows.
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5.2.1 Candidate W0

Based on Program 1.4, we propose the following,

W0 =

K∑
i=1

ci1
n×n
Ri,i

+ c1n×n − λ1n×nA0
, (5.8)

where {ci}Ki=1, c are real numbers to be determined.

f(E,W0) =

K∑
i=1

(
1

ni
+ ci) sum(ERi,i

) + c sum(E)

Note that W0 is a random matrix where randomness is due to Aobs. In order to ensure a small
spectral norm, we will set its expectation to 0, i.e., we will choose c, {ci}′s to ensure that E[W0] =
0.

Following from the partially observed Stochastic Block Model (Definition 2.1 and Definition 2.2),
the expectation of an entry of W0 onRi,i (region corresponding to cluster i) andRc (region outside
the clusters) is ci + λr(pi − q) and c+ λr(q − 1) respectively. Hence, we set,

ci = −λr(pi − q) and c = λr(1− q),

With these, choices, the candidate W0 and f(E,W0) take the following forms,

W0 = λ

[
K∑
i=1

−(1− r(1− pi)) 1n×nRi,i∩A0
+ r(1− p)

(
1
n×n
Ri,i∩A1

+ 1
n×n
Ri,i∩Γout

)]
+λ
[
−(1− r(1− q))1n×nRc∩A0

+ r(1− q)
(
1
n×n
Rc∩A1

+ 1
n×n
Rc∩Γout

)]
(5.9)

f(E,W0) = λ [r(1− q) sum(E)]− λ

[
K∑
i=1

(
r(pi − q)−

1

λni

)
sum(ERi,i)

]

From L0 and the constraint 1 ≥ Li,j ≥ 0, it follows that,

ERc is (entrywise) nonnegative. (5.10)
ER is (entrywise) nonpositive.

Thus, sum(ERc) ≤ 0 and sum(ERi,i) ≥ 0. When λr(pi − q)− 1
ni
≥ 0 and λ(1− q) ≥ 0; we will

have f(E,W0) ≥ 0 for all feasible E. This indeed holds due to the assumptions of Theorem 2 (see
(5.2)), as we assumed r(pi − q) > 1

λni
for i = 1, 2 · · · ,K and 1 > q.

Using the same technique as in Theorem 3, we can bound the spectral norm of W0 as follows
Lemma 5.3. Recall that, W0 is a random matrix; where randomness is on the partially observed
stochastic block model Aobs and it is given by,

W0 = λ

[
K∑
i=1

−(1− r(1− pi)) 1n×nRi,i∩A0
+ r(1− p)

(
1
n×n
Ri,i∩A1

+ 1
n×n
Ri,i∩Γout

)]
+λ
[
−(1− r(1− q))1n×nRc∩A0

+ r(1− q)
(
1
n×n
Rc∩A1

+ 1
n×n
Rc∩Γout

)]
Then, for any ε′ > 0, with probability 1− exp (−Ω(n)), we have

‖ 1

λ
W0‖ ≤ 2

√
nr
√

(1− q)(1− r + rq) + max
1≤i≤K

2
√
nir
√

(1− pi)(1− r + rpi) + (1− q)(1− r + rq) + ε′
√
n

Further, if max
1≤i≤K

ni = o(n). Then, for sufficiently large n, with the same probability,

‖W0‖ ≤ 2λ
√
nr
√

(1− q)(1− r + rq) + ε′λ
√
n.
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Lemma 5.3 verifies that asymptotically with high probability we can make ‖W0‖ < 1 as long as λ
is sufficiently small. However, W0 itself is not sufficient for construction of the desired W, since
we do not have any guarantee that W0 ∈ MU. In order to achieve this, we will correct W0 by
projecting it ontoMU. Lemma 4.5 can be used to here.

Recall that, γ̃succ := 2 max
1≤i≤K

r
√
ni

√
(1− pi)( 1

r − 1 + pi) + (1− q)( 1
r − 1 + q) and

Λ̃−1
succ := 2r

√
n
√

( 1
r − 1 + q)(1− q) + γ̃succ.

We can summarize our discussion so far in the following lemma,

Lemma 5.4. W0 is as described previously in (5.9). Choose W to be projection of W0 onMU.
Also suppose λ ≤ (1 − δ)Λ̃succ. Then, with probability 1 − 6n2 exp(−Ω(nmin)) − 4 exp(−Ω(n))
we have,

• ‖W‖ < 1

• For all feasible E, f(E,W) ≥ 0.

Proof. To begin with, observe that Λ̃−1
succ is Ω(

√
n). Since λ ≤ Λ̃succ, λ

√
n = O(1). Consequently,

using λΛ̃−1
succ < 1 and applying Lemma 5.3, and choosing a sufficiently small ε′ > 0, we conclude

with,
‖W‖ ≤ ‖W0‖ < 1

with probability 1−exp(−Ω(n)) where the constant in the exponent depends on the constant ε′ > 0.

Next, from Lemma 4.5 with probability 1 − 6n2 exp(− 2
9ε
′′2nmin) we have ‖W0 −W‖∞ ≤ λε′′.

Then based on (5.10) for all E, we have that,

f(E,W) = f(E,W0)− 〈W0 −W,E〉
≥ f(E,W0)− λε′′ (sum(ER)− sum(ERc))

= λ [(r(1− q)− ε′′)sum(ERc)]

−λ
K∑
i=1

[(
r(pi − q)−

1

λni
− ε′′

)
sum(ERi,i

)

]
≥ 0

where we chose ε′′ to be a sufficiently small constant. In particular, we set ε′′ < D̃A, i.e., set
ε′′ < r(1− q) and ε′′ < r(pi − q)− 1

λni
for all 1 ≤ i ≤ K.

Hence, by using a union bound W satisfies both of the desired conditions.

Summary so far: Combining the last lemma with Lemma 4.3, with high probability, either there
exists a dual vector W∗ which ensures f(E,W∗) > 0 or E ∈M⊥U. If former, we are done. Hence,
we need to focus on the latter case and show that for all perturbations E ∈ M⊥U, the objective will
strictly increase at (L0,S0) with high probability.

5.3 Solving for EL ∈M⊥U case

Recall that,

g (E) =

K∑
i=1

1

ni
sum(ERi,i) + λsum(EA0)

Let us define,

g1(X) :=

K∑
i=1

1

ni
sum(XRi,i

),

g2(X) := sum(XA0),

23



so that, g (X) = g1(X) + λg2(X). Also let V = [v1 . . . vK ] where vi =
√
niui. Thus, V is

basically obtained by, normalizing columns of U to make its nonzero entries 1. Assume E ∈ M⊥U.
Then, by definition ofM⊥U, we can write,

E = VMT + NVT .

Let mi,ni denote i’th columns of M,N respectively.

Again as in previous section 4.4, we consider optimization problem 4.27. Since g1(E) is fixed, we
just need to optimize over g2(E). This optimization can be reduced to local optimizations 4.29.
Since L0 = 1

n×n
R and the condition (1.3),

ERc is (entrywise) nonnegative
ER is (entrywise) nonpositive

We can make use of Lemma 4.8 and assume mCil is nonpositive/nonnegative when i = l/i 6= l for
all i. Hence using Lemma 4.30 we lower bound g(vlm

T
l ) as described in the following section.

5.3.1 Lower bounding g(E)

Lemma 5.5. Assume, 1 ≤ l ≤ K, D̃A > 0. Then, with probability 1− n exp(−2D̃2
A(nl − 1)), we

have g(vlm
T
l ) ≥ λ(1− q − D̃A)sum(vlm

T
l ) for all ml. Also, if ml 6= 0 then inequality is strict.

Proof. Recall that ml satisfies mCil is nonpositive/nonnegative when i = l/i 6= l for all i. Define

Xi := 1
nlmCil

T
. We can write

g(vlm
T
l ) =

1

nl
sum(Xl) +

K∑
i=1

λsum(Xi
βc
l,i

)

Now assume i 6= l. Using Lemma 4.9 and the fact that βl,i is a randomly generated subset (with
parameter q), with probability 1− ni exp(−2ε′2nl), for all Xi, we have,

sum(Xi
βc
l,i

) ≥ (r(1− q)− ε′)sum(Xi) (5.11)

where inequality is strict if Xi 6= 0. Similarly, when i = l with probability at least 1 −
nl exp(−2ε′2(nl − 1)), we have,

1

λnl
sum(Xl) + sum(Xl

βc
l,l

) ≥
(

1

λnl
+ r(1− pl) + ε′

)
sum(Xl)

Together,

g(vlm
T
l ) ≥ λ

∑
i 6=l

(r(1− q)− ε′)sum(Xi) +

(
1

λnl
+ r(1− pl) + ε′

)
sum(Xl)

≥ λ(r(1− q)− ε′)
K∑
i=1

sum(Xi) = λ(r(1− q)− ε′)sum(vlm
T
l ) (5.12)

Choosing ε′ = D̃A
2 and using the facts that r(1− q)− 2D̃A ≥ 0, r(pl − q)− 1

λnl
− 2D̃A ≥ 0 and

using a union bound, with probability 1 − n exp(−2D̃2
A(nl − 1)), we have g(vlm

T
l ) ≥ 0 and the

inequality is strict when ml 6= 0 as at least one of the Xi’s will be nonzero.

The following lemma immediately follows from Lemma 5.5 and summarizes the main result of the
section.
Lemma 5.6. Let D̃A be as defined in (4.1) and assume D̃A > 0. Then with probability 1 −
2nK exp(−2D̃2

A(nmin − 1)) we have g(EL) > 0 for all nonzero feasible EL ∈M⊥U .
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5.4 The Final Step

Lemma 5.7. Let pmin > q and G be a random graph generated according to Model 2.1 and 2.2
with cluster sizes {ni}Ki=1. If λ ≤ (1− ε)Λ̃succ and Dmin = min

1≤i≤n
r (pi − q)ni ≥ (1 + ε) 1

λ ,

then
(
L0,S0

)
is the unique optimal solution to Program 1.1 with probability

1− exp(−Ω(n))− 6n2 exp(−Ω(nmin)).

Proof. Based on Lemma 5.4 and Lemma 5.6,
with probability 1− cn2 exp(−C(r(pmin − q))2nmin),

• There exists W ∈MU with ‖W‖ < 1 such that for all feasible EL, f(EL,W) ≥ 0.

• For all nonzero EL ∈M⊥U we have g(EL) > 0.

Consequently based on Lemma 4.3, (L0,S0) is the unique optimal of Problem 1.4.
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