Nonparametric Bayesian inference on multivariate exponential families

Supplementary material

William Vega-Brown, Marek Doniec, and Nicholas Roy Massachusetts Institute of Technology Cambridge, MA 02139 {wrvb, doniec, nickroy}@csail.mit.edu

1 Proof of the form of the extended likelihood

Consider the variational optimization problem

subject to $\mathcal{G}_i[p] \leq 0$ $\forall i \in [1, m]$ (2)

$$
\mathcal{H}_j[p] = 0 \forall j \in [1, n] \tag{3}
$$

where $\mathcal{F}, \mathcal{G}_i, \mathcal{H}_j$ are functionals $l_1(\mathcal{X}) \to \mathbb{R}$ and $l_1(\mathcal{X})$ is the space of integrable functions over a measurable space X. A solution $p^* \in l_1(\mathcal{X})$ must satisfy the Karush-Kuhn-Tucker conditions.

$$
\delta \mathcal{F}[p^*] = \sum_{i=1}^m \mu_i \delta \mathcal{G}_i[p^*] + \sum_{j=1}^n \lambda_j \delta \mathcal{H}_j[p^*]
$$
\n(4)

$$
\mathcal{G}_i[p^*] \le 0 \qquad \forall i \in [1, m] \tag{5}
$$

$$
\mathcal{H}_j[p^*] = 0 \forall j \in [1, n] \tag{6}
$$

$$
\mu_i \ge 0 \qquad \forall i \in [1, m] \tag{7}
$$

$$
\mu_i \mathcal{G}_i[p^*] = 0 \qquad \forall i \in [1, m] \tag{8}
$$

(9)

Determining the extended likelihood requires solving the problem

maximize
\n
$$
-\int_{\mathcal{Y}} dy p(y) \log p(y)
$$
\nsubject to
\n
$$
\rho(x^*, x) \ge \int_{\mathcal{Y}} dy p(y) \log \left(\frac{p(y)}{q(y)}\right)
$$
\n
$$
1 = \int_{\mathcal{Y}} dy p(y)
$$
\n(10)

This problem has the following functionals.

$$
\mathcal{F}[p] = -\int_{\mathcal{Y}} \mathrm{d}\mathbf{y} \, p(\mathbf{y}) \log p(\mathbf{y})
$$
\n
$$
\mathcal{H}[p] = -\rho(\mathbf{x}^*, \mathbf{x}) + \int_{\mathcal{Y}} \mathrm{d}\mathbf{y} \, p(\mathbf{y}) \log \left(\frac{p(\mathbf{y})}{q(\mathbf{y})}\right)
$$
\n
$$
\mathcal{G}[p] = -1 + \int_{\mathcal{Y}} \mathrm{d}\mathbf{y} \, p(\mathbf{y})
$$
\n(11)

The stationarity condition is then

$$
\delta \mathcal{F}[p^*] = \sum_{i=1}^m \mu_i \delta \mathcal{G}_i[p^*] + \sum_{j=1}^n \lambda_j \delta \mathcal{H}_j[p^*]
$$
\n(12)

$$
-\int_{\mathcal{Y}} d\mathbf{y} \,\delta p(\log p + 1) = \mu \int_{\mathcal{Y}} d\mathbf{y} \delta p \left(\log \frac{p}{q} + 1 \right) + \lambda \int_{\mathcal{Y}} d\mathbf{y} \,\delta p \tag{13}
$$

$$
0 = \int_{\mathcal{Y}} d\mathbf{y} \,\delta p \left[\log p + 1 + \mu (\log \frac{p}{q} + 1) + \lambda \right] \tag{14}
$$

The du Bois-Reymond lemma implies the bracketed term must be zero almost everywhere.

$$
0 = \log p + 1 + \mu(\log \frac{p}{q} + 1) + \lambda \tag{15}
$$

$$
\log p = \frac{\mu}{1+\mu} \log q + \frac{\mu+\lambda+1}{\mu+1}
$$
\n(16)

To satisfy the complementary slackness condition, we have either $\mu = 0$ or $\mathcal{G}[p^*] = 0$. If $\mu = 0$, stationarity implies

$$
\log p = \lambda + 1 \tag{17}
$$

It follows that either $p(y) \propto 1$ or else $\mu > 0$.

If $\mu > 0$, then $\frac{\mu}{\mu + 1} \in (0, 1)$; moreover, the map $f_k : a \to a^k \quad \forall a \in \mathbb{R}$ is subadditive for all $k \in [0, 1)$. Consequently, since q is measurable, $q^{\frac{\mu}{1+\mu}}$ is measurable, and $\exists \lambda \in \mathbb{R} < \infty$ such that

$$
p \propto q^{\frac{\mu}{1+\mu}} \tag{18}
$$

is a well-formed probability distribution with the same support as q . To ensure this solution does in fact maximize the entropy, consider the second variation.

$$
\mathcal{F}[p] = -\int_{\mathcal{Y}} \mathrm{d}\mathbf{y} \, p \log p \tag{19}
$$

$$
\mathcal{F}''[p] = -\int_{\mathcal{Y}} \mathrm{d}\mathbf{y} \, \frac{1}{p} \tag{20}
$$

Since $p \ge 0$, it follows that $\mathcal{H}''[p] < 0 \forall \mu \ge 0$, and thus this is a maximizing solution.

2 The kernel function

Consider the extended likelihood function p based on q .

$$
p(\mathbf{y}) \propto q(\mathbf{y})^{k(\mathbf{x}, \mathbf{x}')} \tag{21}
$$

If $q(y)$ is a known distribution in the exponential family, we may rewrite this in terms of its natural parameterization.

$$
p(\mathbf{y}) \propto \exp\left(k(\mathbf{x}, \mathbf{x}')\boldsymbol{\eta}^\top \boldsymbol{T}(\mathbf{y})\right) \tag{22}
$$

The KL divergence between two distributions in the same exponential family can be written in terms of the log-partition function $A(\theta)$, as described by Nielsen and Nock [\[1\]](#page-3-0).

$$
D_{\text{KL}}\left(p\|p_0\right) = A\left(\boldsymbol{\theta}\right) - A\left(k(\boldsymbol{x}, \boldsymbol{x}')\boldsymbol{\theta}\right) - \left(1 - k(\boldsymbol{x}, \boldsymbol{x}')\right)\boldsymbol{\eta}^\top \nabla A\left(k(\boldsymbol{x}, \boldsymbol{x}')\boldsymbol{\theta}\right)
$$
(23)

By construction $k(x, x')$ will be chosen to enforce a bound on the KL divergence; that is, $D_{\text{KL}}(p||p_0) = \rho(\mathbf{x}, \mathbf{x}')$. This implicitly defines a constraint on $k(\mathbf{x}, \mathbf{x}')$, which must hold independent of the particular choice of θ .

$$
\rho(\mathbf{x}, \mathbf{x}') = A(\boldsymbol{\theta}) - A(k(\mathbf{x}, \mathbf{x}')\boldsymbol{\theta}) - (1 - k(\mathbf{x}, \mathbf{x}'))\boldsymbol{\eta}^\top \nabla A(k(\mathbf{x}, \mathbf{x}')\boldsymbol{\theta})
$$
\n(24)

Consider the derivative of this expression with respect to k .

$$
\frac{\partial \rho}{\partial k} = (k(\boldsymbol{x}, \boldsymbol{x}') - 1) \boldsymbol{\eta}^\top \nabla \nabla^\top A (k(\boldsymbol{x}, \boldsymbol{x}') \boldsymbol{\eta}) \boldsymbol{\eta}
$$
(25)

Well-known properties of the log-partition function imply the Hessian of the log-partition function is the covariance of the sufficient statistic $T(y)$, and is thus positive definite.

$$
\nabla \nabla^{\top} A(\boldsymbol{\eta}) = \text{Cov}[\boldsymbol{T}(\boldsymbol{y})] \succ \mathbf{0}
$$
 (26)

This implies that $\rho(\mathbf{x}, \mathbf{x}')$ is monotonically decreasing in $k(\mathbf{x}, \mathbf{x}')$ in the interval [0, 1].

$$
\frac{\partial \rho(\mathbf{x}, \mathbf{x}')}{\partial k(\mathbf{x}, \mathbf{x}')} < 0 \qquad \forall k(\mathbf{x}, \mathbf{x}') \in [0, 1] \tag{27}
$$

Note also that we may solve for k when $\rho = 0$, obtaining that $k(\mathbf{x}, \mathbf{x}') = 1$ and $\frac{\partial \rho}{\partial k} = 0$. Provided the maximum entropy distribution is not the constant distribution, this allows us to write $k(x, x')$ as a line integral over some curve C connecting x and x' .

$$
k(\mathbf{x}, \mathbf{x}') = 1 + \int_C \frac{\partial k}{\partial \rho} \nabla \rho(\mathbf{x}, \mathbf{x}')^\top d\mathbf{x}'
$$

= $1 + \int_0^1 \frac{\partial k}{\partial \rho} \nabla \rho(\mathbf{x}, \mathbf{C}(s))^\top \frac{d\mathbf{C}}{ds} ds$ (28)

Evaluating this expression for arbitrary $\rho(x, x')$ may be difficult; for many common distributions it cannot be done in terms of elementary functions. However, a solution exists, and conversely, if a function $k(x, x') \in [0, 1]$ is specified, we may obtain an equivalent KL divergence bound.

$$
\rho(\mathbf{x}, \mathbf{x}') = \int_C \frac{\partial \rho}{\partial k} \nabla k(\mathbf{x}, \mathbf{x}')^\top \mathrm{d}\mathbf{x}'
$$

=
$$
\int_0^1 \frac{\partial \rho}{\partial k} \nabla k(\mathbf{x}, \mathbf{C}(s))^\top \frac{\mathrm{d}\mathbf{C}}{\mathrm{d}s} \mathrm{d}s
$$
 (29)

Note that the restriction on the range of $k(\cdot, \cdot)$ is important to ensure that $\rho(\cdot, \cdot)$ is positive and hence a valid bound for the KL divergence. Because the computation of the posterior distribution for a kernel process depend solely on the kernel function $k(\cdot, \cdot)$ and not on the KL bound $\rho(\cdot, \cdot)$, we may choose any suitable $k(\cdot, \cdot)$ and be satisfied that an equivalent $\rho(\cdot, \cdot)$ exists, without ever explicitly evaluating that $\rho(\cdot, \cdot)$.

3 A closed-form relation for the normal distribution

Suppose the base distribution is a normal distribution $\mathcal{N}(\mu, \Sigma)$; then the extended likelihood will also be a normal distribution with the covariance scaled by k :

$$
p = \mathcal{N}\left(\boldsymbol{\mu}, \frac{1}{k}\boldsymbol{\Sigma}\right)
$$
 (30)

The Kullback-Liebler divergence between these distributions is

$$
D_{\text{KL}}\left(\mathcal{N}\left(\boldsymbol{\mu}, \frac{1}{k}\boldsymbol{\Sigma}\right) \|\mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)\right) = \frac{1}{2} \left(\text{tr}\left(\boldsymbol{\Sigma}^{-1} \frac{1}{k}\boldsymbol{\Sigma}\right) - d - \log\left(\frac{\det\frac{1}{k}\boldsymbol{\Sigma}}{\det\boldsymbol{\Sigma}}\right) \right) \tag{31}
$$

$$
= \frac{d}{2}(\frac{1}{k} - 1 - \log \frac{1}{k})
$$
\n(32)

where d is the dimension of the distribution. If the divergence satisfies a bound $\rho = \rho(x, x')$, we have

$$
\rho(\mathbf{x}, \mathbf{x}') = \frac{d}{2} \left(\frac{1}{k(\mathbf{x}, \mathbf{x}')} + \log \frac{1}{k(\mathbf{x}, \mathbf{x}')} - 1 \right)
$$
(33)

This allows us to compute the equivalent bound $\rho(\cdot, \cdot)$ for any valid kernel $k(\cdot, \cdot)$, and illustrates why it is important that $k(\cdot, \cdot) \in [0, 1]$, as kernel values outside that range result in negative or imaginary divergence bounds. The inverse relationship cannot be solved in terms of elementary functions, but has a solution in closed form in terms of the Lambert W function.

$$
k(\boldsymbol{x}, \boldsymbol{x}') = -W_{-1}\left(-\exp\left(\frac{2}{d}\rho(\boldsymbol{x}, \boldsymbol{x}') + 1\right)\right)
$$
(34)

This function is normalizable, finite, and monotonically decreasing as ρ increases, just as the differential analysis above predicts.

References

[1] F. Nielsen and R. Nock, "Entropies and cross-entropies of exponential families," in *Image Processing (ICIP), 2010 17th IEEE International Conference on*. IEEE, 2010, pp. 3621–3624.