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1 Proof of the form of the extended likelihood

Consider the variational optimization problem

maximize Flp] (1)

P
subject to Gilp] <0 Vi € [1,m] 2
H;lp] = 0Vj € [1,n] 3)

where F, G;, H; are functionals /; (X) — R and [;(X) is the space of integrable functions over a
measurable space X. A solution p* € [;(X’) must satisfy the Karush-Kuhn-Tucker conditions.
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Determining the extended likelihood requires solving the problem

maximize — / dy p(y) log p(y) (10)
p y
subject to plx*,x) > [ dyp(y)log (p(y))
y a(y
= / dy p(y)
Y

This problem has the following functionals.

Flp) = —/ydyp(y)logp(y) (11)
= —p(z*, x og (Y
Hp] = —p(z”, )+/ydyp(y)1 g(q(y)>

Glpl =—1+/ydyp(y)



The stationarity condition is then

SFIp™) = > mibGilp*] + > A 0H;[p"] (12)
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The du Bois-Reymond lemma implies the bracketed term must be zero almost everywhere.

0=10gp+1+u(10g§+1)+)\ (15)
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To satisfy the complementary slackness condition, we have either 4 = 0 or G[p*] = 0. If u = 0,
stationarity implies

logp=A+1 (17)
It follows that either p(y) o< 1 or else p > 0.

If & > 0, then ﬁ € (0,1); moreover, the map fi, : @ — a* Va € R is subadditive for all

k € ]0,1). Consequently, since ¢ is measurable, ql%u is measurable, and 3\ € R < oo such that
p o< gt (18)

is a well-formed probability distribution with the same support as ¢. To ensure this solution does in
fact maximize the entropy, consider the second variation.

Flpl =—/ydyplogp (19)

1
F'lpl = — / dy - (20)
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Since p > 0, it follows that H"[p] < 0¥y > 0, and thus this is a maximizing solution.

2 The kernel function

Consider the extended likelihood function p based on q.

p(y) o q(y) =) 1)

If ¢(y) is a known distribution in the exponential family, we may rewrite this in terms of its natural
parameterization.

p(y) o< exp (k(z, ' )n" T(y)) (22)

The KL divergence between two distributions in the same exponential family can be written in terms

of the log-partition function A (@), as described by Nielsen and Nock [[].
Dx, (pllpo) :A(G) - A(H% 90/)9)

— (1= k(z,2"))n"VA(k(z,2')0) )

By construction k(x,x’) will be chosen to enforce a bound on the KL divergence; that is,
Dxr, (pllpo) = p(x,2’). This implicitly defines a constraint on k(, '), which must hold inde-
pendent of the particular choice of 6.

p(x,x') =A(0) — A(k(z,z')6)

— (1= k@, 2))n  VA(k(w,2')6) (24)



Consider the derivative of this expression with respect to k.
0
5‘72 = (k(z, ') — l)nTVVTA(k;(a:,w’)n)n (25)
Well-known properties of the log-partition function imply the Hessian of the log-partition function
is the covariance of the sufficient statistic T'(y), and is thus positive definite.

VV T A(n) = Cov[T(y)] ~ 0 (26)
This implies that p(x, ') is monotonically decreasing in k(z, ') in the interval [0, 1].
dp(z,x') ’
— 1 2
O, o) <0  Vk(z,z') €10,1] (27)

Note also that we may solve for k when p = 0, obtaining that k(x, ') = 1 and % = 0. Provided
the maximum entropy distribution is not the constant distribution, this allows us to write k(x, ') as
a line integral over some curve C connecting « and '

k(z,z') =1 +/ %Vp(:c x') " da’

dC
=1 TdC
+ [ 2y, s
Evaluating this expression for arbitrary p(x, x’) may be difficult; for many common distributions it

cannot be done in terms of elementary functions. However, a solution exists, and conversely, if a
function k(x, x’) € [0, 1] is specified, we may obtain an equivalent KL divergence bound.

plx,x') /akaa::I: Tda’

(28)

(29)

= ‘lw;( ,C(s ))ngs

o Ok ds
Note that the restriction on the range of k(+, -) is important to ensure that p(-, -) is positive and hence
a valid bound for the KL divergence. Because the computation of the posterior distribution for a
kernel process depend solely on the kernel function &(-, -) and not on the KL bound p(+, -), we may
choose any suitable k(-,-) and be satisfied that an equivalent p(-, ) exists, without ever explicitly
evaluating that p(-, -).

3 A closed-form relation for the normal distribution

Suppose the base distribution is a normal distribution N (u, 2); then the extended likelihood will
also be a normal distribution with the covariance scaled by k:

1
o (1)

The Kullback-Liebler divergence between these distributions is

1 1 1 det 13
Dk <./\/ (u, kE) N (e, 2)) =3 (tr (ZIkZ) —d- log< de.)etkE >) (31)

o d, 1 1

—(=—1-1 32
=505 0g 1) (32)
where d is the dimension of the distribution. If the divergence satisfies a bound p = p(x, '), we
have

d 1 1
ple,x’) = 2(k(wm)+10gm_l) (33)

This allows us to compute the equivalent bound p(+, -) for any valid kernel k(-, -), and illustrates why
it is important that k(-, -) € [0, 1], as kernel values outside that range result in negative or imaginary
divergence bounds. The inverse relationship cannot be solved in terms of elementary functions, but
has a solution in closed form in terms of the Lambert W function.

k(z,z') = —W_, ( — exp <Zp(a:, x') + 1) ) (34)

This function is normalizable, finite, and monotonically decreasing as p increases, just as the differ-
ential analysis above predicts.
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