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1 Proof of the form of the extended likelihood

Consider the variational optimization problem

maximize
p

F [p] (1)

subject to Gi[p] ≤ 0 ∀i ∈ [1,m] (2)
Hj [p] = 0∀j ∈ [1, n] (3)

where F ,Gi,Hj are functionals l1(X ) → R and l1(X ) is the space of integrable functions over a
measurable space X . A solution p∗ ∈ l1(X ) must satisfy the Karush-Kuhn-Tucker conditions.

δF [p∗] =
m∑
i=1

µiδGi[p∗] +
n∑
j=1

λjδHj [p∗] (4)

Gi[p∗] ≤ 0 ∀i ∈ [1,m] (5)
Hj [p∗] = 0∀j ∈ [1, n] (6)

µi ≥ 0 ∀i ∈ [1,m] (7)
µiGi[p∗] = 0 ∀i ∈ [1,m] (8)

(9)

Determining the extended likelihood requires solving the problem

maximize
p

−
∫
Y
dy p(y) log p(y) (10)

subject to ρ(x∗,x) ≥
∫
Y
dy p(y) log

(
p(y)

q(y)

)
1 =

∫
Y
dy p(y)

This problem has the following functionals.

F [p] = −
∫
Y
dy p(y) log p(y) (11)

H[p] = −ρ(x∗,x) +
∫
Y
dy p(y) log

(
p(y)

q(y)

)
G[p] = −1 +

∫
Y
dy p(y)
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The stationarity condition is then

δF [p∗] =
m∑
i=1

µiδGi[p∗] +
n∑
j=1

λjδHj [p∗] (12)

−
∫
Y
dy δp(log p+ 1) = µ

∫
Y
dyδp

(
log

p

q
+ 1

)
+ λ

∫
Y
dy δp (13)

0 =

∫
Y
dy δp

[
log p+ 1 + µ(log

p

q
+ 1) + λ

]
(14)

The du Bois-Reymond lemma implies the bracketed term must be zero almost everywhere.

0 = log p+ 1 + µ(log
p

q
+ 1) + λ (15)

log p =
µ

1 + µ
log q +

µ+ λ+ 1

µ+ 1
(16)

To satisfy the complementary slackness condition, we have either µ = 0 or G[p∗] = 0. If µ = 0,
stationarity implies

log p = λ+ 1 (17)

It follows that either p(y) ∝ 1 or else µ > 0.

If µ > 0, then µ
µ+1 ∈ (0, 1); moreover, the map fk : a → ak ∀a ∈ R is subadditive for all

k ∈ [0, 1). Consequently, since q is measurable, q
µ

1+µ is measurable, and ∃λ ∈ R <∞ such that

p ∝ q
µ

1+µ (18)

is a well-formed probability distribution with the same support as q. To ensure this solution does in
fact maximize the entropy, consider the second variation.

F [p] = −
∫
Y
dy p log p (19)

F ′′[p] = −
∫
Y
dy

1

p
(20)

Since p ≥ 0, it follows thatH′′[p] < 0∀µ ≥ 0, and thus this is a maximizing solution.

2 The kernel function

Consider the extended likelihood function p based on q.

p(y) ∝ q(y)k(x,x
′) (21)

If q(y) is a known distribution in the exponential family, we may rewrite this in terms of its natural
parameterization.

p(y) ∝ exp
(
k(x,x′)η>T (y)

)
(22)

The KL divergence between two distributions in the same exponential family can be written in terms
of the log-partition function A(θ), as described by Nielsen and Nock [1].

DKL (p‖p0) =A
(
θ
)
−A

(
k(x,x′)θ

)
−
(
1− k(x,x′)

)
η>∇A

(
k(x,x′)θ

) (23)

By construction k(x,x′) will be chosen to enforce a bound on the KL divergence; that is,
DKL (p‖p0) = ρ(x,x′). This implicitly defines a constraint on k(x,x′), which must hold inde-
pendent of the particular choice of θ.

ρ(x,x′) =A
(
θ
)
−A

(
k(x,x′)θ

)
−
(
1− k(x,x′)

)
η>∇A

(
k(x,x′)θ

) (24)
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Consider the derivative of this expression with respect to k.
∂ρ

∂k
=
(
k(x,x′)− 1

)
η>∇∇>A

(
k(x,x′)η

)
η (25)

Well-known properties of the log-partition function imply the Hessian of the log-partition function
is the covariance of the sufficient statistic T (y), and is thus positive definite.

∇∇>A(η) = Cov[T (y)] � 0 (26)
This implies that ρ(x,x′) is monotonically decreasing in k(x,x′) in the interval [0, 1].

∂ρ(x,x′)

∂k(x,x′)
< 0 ∀k(x,x′) ∈ [0, 1] (27)

Note also that we may solve for k when ρ = 0, obtaining that k(x,x′) = 1 and ∂ρ
∂k = 0. Provided

the maximum entropy distribution is not the constant distribution, this allows us to write k(x,x′) as
a line integral over some curve C connecting x and x′.

k(x,x′) =1 +

∫
C

∂k

∂ρ
∇ρ(x,x′)>dx′

=1 +

∫ 1

0

∂k

∂ρ
∇ρ(x,C(s))>

dC

ds
ds

(28)

Evaluating this expression for arbitrary ρ(x,x′) may be difficult; for many common distributions it
cannot be done in terms of elementary functions. However, a solution exists, and conversely, if a
function k(x,x′) ∈ [0, 1] is specified, we may obtain an equivalent KL divergence bound.

ρ(x,x′) =

∫
C

∂ρ

∂k
∇k(x,x′)>dx′

=

∫ 1

0

∂ρ

∂k
∇k(x,C(s))>

dC

ds
ds

(29)

Note that the restriction on the range of k(·, ·) is important to ensure that ρ(·, ·) is positive and hence
a valid bound for the KL divergence. Because the computation of the posterior distribution for a
kernel process depend solely on the kernel function k(·, ·) and not on the KL bound ρ(·, ·), we may
choose any suitable k(·, ·) and be satisfied that an equivalent ρ(·, ·) exists, without ever explicitly
evaluating that ρ(·, ·).

3 A closed-form relation for the normal distribution

Suppose the base distribution is a normal distribution N (µ,Σ); then the extended likelihood will
also be a normal distribution with the covariance scaled by k:

p = N
(
µ,

1

k
Σ

)
(30)

The Kullback-Liebler divergence between these distributions is

DKL

(
N
(
µ,

1

k
Σ

)
‖N (µ,Σ)

)
=

1

2

(
tr

(
Σ−1

1

k
Σ

)
− d− log

(
det 1

kΣ

detΣ

))
(31)

=
d

2
(
1

k
− 1− log

1

k
) (32)

where d is the dimension of the distribution. If the divergence satisfies a bound ρ = ρ(x,x′), we
have

ρ(x,x′) =
d

2
(

1

k(x,x′)
+ log

1

k(x,x′)
− 1) (33)

This allows us to compute the equivalent bound ρ(·, ·) for any valid kernel k(·, ·), and illustrates why
it is important that k(·, ·) ∈ [0, 1], as kernel values outside that range result in negative or imaginary
divergence bounds. The inverse relationship cannot be solved in terms of elementary functions, but
has a solution in closed form in terms of the Lambert W function.

k(x,x′) = −W−1

(
− exp

(
2

d
ρ(x,x′) + 1

))
(34)

This function is normalizable, finite, and monotonically decreasing as ρ increases, just as the differ-
ential analysis above predicts.
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