
Dataset RoBiRank Identity Loss Robust Loss
TD 2003 0.9719 0.9704 0.9704
TD 2004 0.9708 0.9672 0.9674
HP 2003 0.9960 0.9947 0.9950
HP 2004 0.9967 0.9941 0.9943
MQ 2007 0.8903 0.8856 0.8783
MQ 2008 0.9221 0.8857 0.9205
MSD 30.93% 16.97% 16.83%

Table 1: Comparison of RoBiRank against Identity Loss and Robust Loss as described in Section A.
We report overall NDCG for experiments on small-medium datasets, while on the Million Song
Dataset (MSD) we report Precision@1.

A Experiments on Advantage of Using Robust Transformation

In this section, we evaluate the advantage of RoBiRank loss function (11) over simpler alternatives.
The first obvious baseline is the objective function of Buffoni et al. [7], which we introduced in (6):

Lidentity(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) ·
∑

y′∈Yx,y′ 6=y
σ0 (fω(x, y)− fω(x, y′)) , (18)

which has an advantage of being a convex objective function. While RoBiRank applies robust
transformation in the following way

LRoBiRank(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) · ρ1

 ∑
y′∈Yx,y′ 6=y

σ0 (fω(x, y)− fω(x, y′))

 (19)

a simpler alternative would be the following:

LRobust(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) ·
∑

y′∈Yx,y′ 6=y
ρ1 (σ0 (fω(x, y)− fω(x, y′))) , (20)

which simply applies robust transformation on each of the logistic losses, instead on the sum of
them as RoBiRank does. For convenience of reference, we will call (18) and (20) Identity loss and
Robust loss, respectively.

We followed the same experimental protocol as in Section 3.4 and Section 4.2, and results can be
seen in Table 1 and Figure 3. Identity loss and Robust loss had little difference between them; Ro-
BiRank shows clear advantages over other baselines on TD2004, HP2004 and Million Song Dataset
(MSD), and performs at least as well as others on rest of the datasets.

B Additional Results for Learning to Rank Experiments

In appendix A, we present results from additional experiments that could not be accommodated in
the main paper due to space constraints. Figure 5 shows how RoBiRank fares against InfNorm-
Push and IRPush on various datasets we used. Figure 6 shows a similar comparison against the 8
algorithms present in RankLib. Table 2 provides descriptive statistics of all the datasets we ran our
experiments, Overall NDCG values obtained and values of the corresponding regularization param-
eters. Overall NDCG values have been omitted for the RankLib algorithms as the library doesn’t
support its calculation directly.

B.1 Sensitivity to Initialization

We also investigated the sensitivity of parameter estimation to the choice of initial parameter. We
initialized ω randomly with 10 different seed values. Blue lines in Figure 4 show mean and standard
deviation of NDCG values at different levels of truncation; as can be seen, even though our objective
function is non-convex, L-BFGS reliably converges to solutions with similar test performance. This
conclusion is in line with the observation of Ding [10]. We also tried two more variants; initialization
by all-zeroes (red line) and the solution of RankSVM (black line). In most cases it did not affect
the quality of solution, but on TD 2003 and HP 2004 datasets, zero initialization gave slightly better
results.

10



5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

TD 2003

RoBiRank
Identity Loss
Robust Loss

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

TD 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2003

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2007

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2008

Figure 3: Comparison of RoBiRank with other baselines (Identity Loss and Robust Loss), see Sec-
tion A

11



N
am

e
|X
|

av
g.

M
ea

n
N

D
C

G
R

eg
ul

ar
iz

at
io

n
Pa

ra
m

et
er

|Y
x
|

R
oB

iR
an

k
R

an
kS

V
M

L
SR

an
k

In
fN

or
m

Pu
sh

IR
Pu

sh
R

oB
iR

an
k

R
an

kS
V

M
L

SR
an

k
In

fN
or

m
Pu

sh
IR

Pu
sh

T
D

20
03

50
98

1
0.

97
19

0.
92

19
0.

97
21

0.
95

14
0.

96
85

1
0
−

5
1
0−

3
1
0
−

1
1

1
0
−

4

T
D

20
04

75
98

9
0.

97
08

0.
90

84
0.

96
48

0.
95

21
0.

96
01

1
0
−

6
1
0−

1
1
0

4
1
0
−

2
1
0
−

4

Y
ah

oo
!

1
29

,9
21

24
0.

89
21

0.
79

60
0.

87
1

0.
86

92
0.

88
92

1
0
−

9
1
0

3
1
0

4
10

1
0
−

9

Y
ah

oo
!

2
6,

33
0

27
0.

90
67

0.
81

26
0.

86
24

0.
88

26
0.

90
68

1
0
−

9
1
0

5
1
0

4
10

1
0
−

7

H
P

20
03

15
0

98
4

0.
99

60
0.

99
27

0.
99

81
0.

98
32

0.
99

39
1
0
−

3
1
0−

1
1
0
−

4
1

1
0
−

2

H
P

20
04

75
99

2
0.

99
67

0.
99

18
0.

99
46

0.
98

63
0.

99
49

1
0
−

4
1
0−

1
1
0

2
1
0
−

2
1
0
−

2

O
H

SU
M

E
D

10
6

16
9

0.
82

29
0.

66
26

0.
81

84
0.

79
49

0.
84

17
1
0
−

3
1
0−

5
1
0

4
1

1
0
−

3

M
SL

R
30

K
31

,5
31

12
0

0.
78

12
0.

58
41

0.
72

7
-

-
1

1
0

3
1
0

4
-

-
M

Q
20

07
1,

69
2

41
0.

89
03

0.
79

50
0.

86
88

0.
87

17
0.

88
10

1
0
−

9
1
0−

3
1
0

4
10

1
0
−

6

M
Q

20
08

78
4

19
0.

92
21

0.
87

03
0.

91
33

0.
89

29
0.

90
52

1
0
−

5
1
0

3
1
0

4
10

1
0
−

5

Ta
bl

e
2:

D
es

cr
ip

tiv
e

St
at

is
tic

s
of

D
at

as
et

s
an

d
E

xp
er

im
en

ta
lR

es
ul

ts
in

Se
ct

io
n

3.
4.

12



5 10 15 20

0.55

0.6

0.65

k

N
D

C
G

@
k

TD 2003

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.55

0.6

0.65

0.7

0.75

0.8

k

N
D

C
G

@
k

TD 2004

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.74

0.76

0.78

0.8

0.82

0.84

0.86

k

N
D

C
G

@
k

Yahoo Learning to Rank - 1

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.76

0.78

0.8

0.82

0.84

0.86

k

N
D

C
G

@
k

Yahoo Learning to Rank - 2

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.75

0.8

0.85

0.9

0.95

k

N
D

C
G

@
k

HP 2003

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.75

0.8

0.85

0.9

0.95

k

N
D

C
G

@
k

HP 2004

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.46

0.48

0.5

0.52

k

N
D

C
G

@
k

OHSUMED

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.4

0.45

0.5

k

N
D

C
G

@
k

MSLR30K

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.7

0.75

0.8

k

N
D

C
G

@
k

MQ 2007

random initialization
zero initialization

initialization by RankSVM

5 10 15 20

0.75

0.8

0.85

0.9

k

N
D

C
G

@
k

MQ 2008

random initialization
zero initialization

initialization by RankSVM

Figure 4: Performance of RoBiRank based on different initialization methods

13



5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

TD 2003

RoBiRank
RankSVM
LSRank

InfNormPush
IRPush

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

TD 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

Yahoo Learning to Rank - 1

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

Yahoo Learning to Rank - 2

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2003

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

OHSUMED

5 10 15 20
0

0.2

0.4

0.6

0.8

1

k

N
D

C
G

@
k

MSLR30K

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2007

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2008

Figure 5: Comparison of RoBiRank, RankSVM, LSRank [14], Inf-Push and IR-Push

14



5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

TD 2003

RoBiRank
MART

RankNet
RankBoost
AdaRank

CoordAscent
LambdaMART

ListNet
RandomForests

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

TD 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

Yahoo Learning to Rank - 1

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

Yahoo Learning to Rank - 2

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2003

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

OHSUMED

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2007

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2008

Figure 6: Comparison of RoBiRank, MART, RankNet, RankBoost, AdaRank, CoordAscent, Lamb-
daMART, ListNet and RandomForests

15



C Pseudocode of the Serial Algorithm

Algorithm 1 Serial parameter estimation algorithm for latent collaborative retrieval
η: step size
repeat
// (U, V )-step
repeat

Sample (x, y) uniformly from Ω
Sample y′ uniformly from Y \ {y}
Ux ← Ux − η · ξxy · ∇Ux

σ0(f(Ux, Vy)− f(Ux, Vy′))
Vy ← Vy − η · ξxy · ∇Vy

σ0(f(Ux, Vy)− f(Ux, Vy′))
until convergence in U, V
// ξ-step
for (x, y) ∈ Ω do
ξxy ← 1∑

y′ 6=y σ0(f(Ux,Vy)−f(Ux,Vy′ ))+1

end for
until convergence in U, V and ξ

D Description of Parallel Algorithm

Suppose there are p number of machines. The set of contexts X is randomly partitioned into mu-
tually exclusive and exhaustive subsets X (1),X (2), . . . ,X (p) which are of approximately the same
size. This partitioning is fixed and does not change over time. The partition on X induces par-
titions on other variables as follows: U (q) := {Ux}x∈X (q) , Ω(q) :=

{
(x, y) ∈ Ω : x ∈ X (q)

}
,

ξ(q) := {ξxy}(x,y)∈Ω(q) , for 1 ≤ q ≤ p.

Each machine q stores variables U (q), ξ(q) and Ω(q). Since the partition onX is fixed, these variables
are local to each machine and are not communicated. Now we describe how to parallelize each step
of the algorithm: the pseudo-code can be found in Algorithm 2.

Algorithm 2 Multi-machine parameter estimation algorithm for latent collaborative retrieval
1: η: step size
2: repeat
3: // parallel (U, V )-step
4: repeat
5: Sample a partition

{
Y(1),Y(2), . . . ,Y(p)

}
for all machine q ∈ {1, 2, . . . , p} do in paral-

lel
6: Fetch all Vy ∈ V (q)

7: repeat
8: Sample (x, y) uniformly from

{
(x, y) ∈ Ω(q), y ∈ Y(q)

}
9: Sample y′ uniformly from Y(q) \ {y}

10: Ux ← Ux − η · ξxy · ∇Ux
σ0(f(Ux, Vy)− f(Ux, Vy′))

11: Vy ← Vy − η · ξxy · ∇Vyσ0(f(Ux, Vy)− f(Ux, Vy′))
12: until predefined time limit is exceeded
13: end for
14: until convergence in U, V
15: // parallel ξ-step

for all machine q ∈ {1, 2, . . . , p} do in parallel
16: Fetch all Vy ∈ V
17: for (x, y) ∈ Ω(q) do
18: ξxy ← 1∑

y′ 6=y σ0(f(Ux,Vy)−f(Ux,Vy′ ))+1

19: end for
20: end for
21: until convergence in U, V and ξ

16



(U, V )-step At the start of each (U, V )-step, a new partition on Y is sampled to divide Y into
Y(1),Y(2), . . . ,Y(p) which are also mutually exclusive, exhaustive and of approximately the same
size. The difference here is that unlike the partition on X , a new partition on Y is sampled for every
(U, V )-step. Let us define V (q) := {Vy}y∈Y(q) . After the partition on Y is sampled, each machine
q fetches Vy’s in V (q) from where it was previously stored; in the very first iteration which no
previous information exists, each machine generates and initializes these parameters instead. Now
let us define L(q)(U (q), V (q), ξ(q)) :=

∑
(x,y)∈Ω(q),y∈Y(q)

− log2 ξxy +
ξxy

(∑
y′∈Y(q),y′ 6=y σ0(f(Ux, Vy)− f(Ux, Vy′)) + 1

)
− 1

log 2
.

In parallel setting, each machine q runs stochastic gradient descent on L(q)(U (q), V (q), ξ(q)) instead
of the original function L(U, V, ξ). Since there is no overlap between machines on the parameters
they update and the data they access, every machine can progress independently of each other.
Although the algorithm takes only a fraction of data into consideration at a time, this procedure
is also guaranteed to converge to a local optimum of the original function L(U, V, ξ) according to
Stratified Stochastic Gradient Descent (SSGD) scheme of Gemulla et al. [12]. The intuition is as
follows: if we take expectation over the random partition on Y , we have ∇U,V L(U, V, ξ) =

q2 · E

 ∑
1≤q≤p

∇U,V L(q)(U (q), V (q), ξ(q))

 , (21)

while the expectation is over the selection of the partition
{
Y(1),Y(2), . . . ,Y(p)

}
. Therefore, al-

though there is some discrepancy between the function we take stochastic gradient on and the func-
tion we actually aim to minimize, in the long run the bias will be washed out and the algorithm
will converge to a local optimum of the objective function L(U, V, ξ). Specifically, (21) ensures that
Condition 7 of Theorem 1 in Gemulla et al. [12] is satisfied, while the rest of conditions can be
easily met by introducing an L2 regularizer and thus bounding the parameter space.

ξ-step In this step, all machines synchronize to retrieve every entry of V . Then, each machine can
update ξ(q) independently of each other. When the size of V is very large and cannot be fit into
the main memory of a single machine, V can be partitioned as in (U, V )-step and updates can be
calculated in a round-robin way.

Note that this parallelization scheme requires each machine to allocate only 1
p -fraction of memory

that would be required for a single-machine execution. Therefore, in terms of space complexity the
algorithm scales linearly with the number of machines.

17


