
6 Appendix

6.1 Block Lanczos algorithm

The block Lanczos algorithm is a widely used eigendecomposition method for computing the domi-
nant k eigenvalues and eigenvectors of a symmetric matrix A [21]. The basic idea of block Lanczos
is to use an n ⇥ b initial matrix V0 to construct the Krylov subspace of A. After j � 1 steps,
the algorithm generates an orthonormal basis ˆQj = [

Q1, Q2, · · · , Qj] of the j-th Krylov sub-
space of A as Kj(A, V0) = span{V0, AV0, · · · , Aj�1V0}, which satisfies the three-term recurrence
Qj+1Bj = AQj�QjAj�Qj�1BT

j�1. Simultaneously with the iteration, a sequence of block tridi-
agonal matrices ˆTj is obtained, each of which is an orthonormal projection of A onto Kj(A, V0):

ˆTj =
ˆQT
j A ˆQj =

2

66664

A1 BT
1 · · · 0

B1 A2
. . .

...
...

. BT
j

0 · · · Bj Aj+1

3

77775
.

Then, the governing equation for block Lanczos can be written as

A ˆQj � ˆQj
ˆTj = REj ,

where R is the residual matrix and Ej = [0, 0, · · · , Ib] (Ib is the identity matrix of size b). Sub-
sequently, the Rayleigh-Ritz procedure is applied by using the extreme eigenpairs (ˆ�i, ˆui) of ˆTj to
obtain the Ritz values ˆ�i and Ritz vectors ˆQjˆui as the approximate eigenpairs (¯�i, ¯ui) of A. If the
residuals kA¯ui � ¯�i¯uik are small enough, we stop the procedure and output (¯�i, ¯ui), i = 1, · · · , k,
as the approximate eigenpairs of A. The main procedure of block Lanczos is listed in Algorithm 3.

Algorithm 3: Block Lanczos
Input : n⇥ n symmetric sparse matrix A, rank k and initial matrix V0.
Output: The approximate dominant k eigenpairs (¯�i, ¯ui), i = 1, · · · , k, of A.

1 Initialize block Lanczos: B0 = 0; Q0 = 0; Q1 = V0
2 for j = 1, 2, · · · do
3 R = AQj �Qj�1BT

j�1 (Let R be orthogonal to Qj�1)
4 Aj = QT

j R (Obtain Aj by projecting R onto Qj)
5 R = R�QjAj (Let R be orthogonal to Qj)
6 Qj+1Bj = R (QR-factorization of R to obtain Qj+1 and Bj)
7 Form ˆTj and ˆQj and compute the top-k eigenpairs (ˆ�i, ˆui) of ˆTj to obtain the Ritz values

¯�i =
ˆ�i and Ritz vectors ¯ui =

ˆQjˆui of A.
8 If the residuals kA¯ui � ¯�i¯uik, i = 1, · · · , k, are sufficiently small, then stop and output

(

¯�i, ¯ui) as the approximate eigenpairs.
9 end

6.2 Proof of Theorem 3.1

Proof. The proof is based on the sin ✓ theorem in [4]. Let the eigenvectors of the n⇥ n symmetric
matrices D and D +� be E = [E0|E1] and F = [F0|F1], respectively, where E0, F0 2 Rn⇥k and
E1, F1 2 Rn⇥(n�k). Then

D = E

⌃

D
0 0

0 ⌃

D
1

�
ET ,

D +� = F

⌃

D+�
0 0

0 ⌃

D+�
1

�
FT ,

ET
0 F0 = U cos⇥V T ,

10

where ⇥ are the principal angles between E0 and F0. Assume that ⌃D
0 ✓ [a, b] and ⌃

D+�
1 ✓

(�1, a� �) [(b+ �,1). Then

kFT
1 E0k = kFT

0 E1k = k sin⇥k.

Assume that the eigenvalues ⌃

D
0 lie in some interval, while the eigenvalues ⌃

D+�
1 lie in some

distance ⌘ � 0 from that interval (possibly on both sides of it). Then

k sin(⇥(E0, F0))k2
k�E0k2

⌘
 k�k2

⌘
, k sin(⇥(E0, F0))kF

k�E0kF
⌘

p
k
k�kF
⌘

.

We can set ⌘ = min |�� ˆ�| with � 2 ⌃

D
0 and ˆ� 2 ⌃

D+�
1 .

6.3 Proof of Theorem 3.3

Proof. According to Lemma 6.1,

kA� ¯Uk
¯

⌃k
¯UT
k k2 = kA�QQTAQQT k2 2kA�QQTAk2.

where Q is an orthogonal basis for the Krylov subspace [⌦, A⌦, · · · , AqA⌦].

First, let Z = [⌦, A⌦, · · · , AqA⌦], QBQT
B is a projector for B = Aq+1 and QZQT

Z is a projector
for Z. Since we know that range(AqA⌦) ⇢ range([⌦, A⌦, · · · , AqA⌦]), by Lemma 6.4, we have

k(I �QZQ
T
Z)Ak k(I �QBQ

T
B)Ak.

Furthermore, by Lemma 6.2, we have

k(I �QBQ
T
B)Ak k(I �QBQ

T
B)Bk

1
(q+1) .

Next, we need to bound k(I �QBQT
B)Bk

1
(q+1) . According to Lemma 6.3, we have

k(I �QBQ
T
B)Bk

1
q+1

 (k⌃B
2 k2 + k⌃B

2 ⌦
B
2 (⌦

B
1)

†k2)
1

2(q+1)

 (k⌃B
2 k2(1 + k⌦B

2 k2k(⌦B
1)

†k2))
1

2(q+1)

= �k+1(1 + k⌦B
2 k2k(⌦B

1)
†k2))

1
2(q+1) ,

where �k+1 is the (k + 1)-th largest singular value of A.

Next, we show how to bound the error for both k⌦B
2 k and k(⌦B

1)
†k. We already know ⌦1 = UT

1 ⌦,
⌦2 = UT

2 ⌦ and ⌦ diag(U (1)
k1

, U (2)
k2

, . . . , U (c)
kc

), which shows that ⌦ is the top-k eigenvectors for
the (unperturbed) matrix D. With Theorem 3.1, we can now bound k⌦B

2 k and k(⌦B
1)

†k as

k⌦B
2 k = k sin⇥k

k�k
⌘

,

k(⌦B
1)

†k = k 1

cos⇥

k = 1p
1� k sin⇥k2

 1q
1� k�k2

⌘2

.

As a consequence, we have

kA� ¯Uk
¯

⌃k
¯UT
k k2 2kA�QZQ

T
ZAk

 2k(I �QBQ
T
B)Ak

 2k(I �QBQ
T
B)Bk

1
(q+1)

 2�k+1

✓
1 +

sin

2 ✓

1� sin

2 ✓

◆ 1
2(q+1)

,

where ✓ is the largest principal angle of ⇥.

11

Lemmas used in the above proof are listed as follows [7]:
Lemma 6.1. Suppose A is Hermitian and Q is an orthogonal basis, then

kA�QQ⇤AQQ⇤k 2kA�QQ⇤Ak = 2k(I �QQ⇤
)Ak.

Lemma 6.2. Let A be an m ⇥m matrix and ⌦ be an m ⇥ ` matrix. Fix a non-negative integer q,
from B = AqA, and compute the sample matrix Z = B⌦. For an orthogonal basis Q for Z,

k(I �QQ⇤
)Ak k(I �QQ⇤

)Bk
1

q+1 ,

where k · k represents unitary-invariant norm including the spectral norm and the Frobenius norm.
Lemma 6.3. Let A be an m⇥ n matrix with singular value decomposition

A = U⌃V ⇤
= U

⌃1

⌃2

�
V ⇤
1

V ⇤
2

�

and fix k � 0, where the size of V1 and V2 are n ⇥ k and n ⇥ (n � k), respectively. Choose a test
matrix ⌦ and construct the sample matrix Y = A⌦. Let ⌦1 = V ⇤

1 ⌦ and ⌦2 = V ⇤
2 ⌦. Assuming ⌦1

and ⌦2 has full column rank, the approximation error satisfies

k(I � PY)Ak2 k⌃2k2 + k⌃2⌦2⌦
†
1k2,

where k · k denotes either the spectral norm or the Frobenius norm and PY is the projector for Y .
Lemma 6.4. Suppose range(N) ⇢ range(M). Then, for a matrix A, it holds that kPNAk
kPMAk and k(I � PM)Ak k(I � PN)Ak, where PN and PM are projectors for range(N) and
range(M), respectively.

6.4 Performance of MSEIGS with varying cluster quality

To vary the clustering quality, we first cluster the CondMat graph into 4 clusters and then randomly
perturb clusters by moving a portion of vertices from their original cluster to another random cluster,
which reduces the number of within-cluster edges. Table 4 presents the performance of MSEIGS
with different percentages of vertices shuffled. We can see that (1) the quality of clustering influences
the performance of MSEIGS, i.e., better quality of clustering implies higher accuracy of MSEIGS;
(2) even with poor clustering structure, MSEIGS can still obtain reasonably good approximations.

Table 4: Performance of MSEIGS with varying cluster quality.
Percent of vertices shuffled 0% 20% 40% 60% 80% 100%

Percent of within-cluster edges 86.31% 64.57% 47.08% 35.43% 27.42% 24.92%
Avg. cosine of principal angles 0.9980 0.9757 0.9668 0.9475 0.9375 0.9268

6.5 Experimental settings

All experiments are conducted on computing nodes that have two Intel Xeon E5-2680 (v2) CPUs
with either 256 GB or 1 TB of main memory. Our algorithms are implemented in C++ with OpenMP
and all methods use Intel Math Kernel Library (MKL) as the underlying BLAS/LAPACK library.

6.6 Statistics of datasets used for label propagation

In the experiments, we use the RBF kernel Wij = exp(��kxi � xjk2) to measure the similarity
between samples i and j. In Table 5, we present statistics and parameters of the dataset used for
label propagation in Section 4.2. The parameters are chosen by cross-validation.

Table 5: Statistics of datasets used for label propagation.
Dataset # of training points # of test points # of classes/labels dimension � ↵

Delicious 12,920 3,185 983 500 10�1 0.99
Aloi 10,000 98,000 1,000 128 10�7 0.99

12

6.7 Statistics of datasets used for inductive matrix completion

In Table 6, we give a summary of the datasets used for inductive matrix completion in Section 4.3.
Note that r is the rank of W and H in IMC and we set the regularization parameter � = 0.1, which
are chosen by cross-validation. For the Amazon and LiveJournal datasets, we randomly sampled
items (affiliations) with at least 10 users.

Table 6: Statistics of datasets used for inductive matrix completion.
Dataset # of users # of items # of ratings in R # of links in A r

Flixster 1.0M 48.8K 8.2M 11.8M 100
Amazon 334.8K 73.2K 2.7M 1.9M 200

LiveJournal 4.0M 2.0K 2.4M 69.4M 100

13

