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1 Introduction

This document contains additional content such as explanations, proofs and tables that had to be removed from the
main paper to meet the space requirements. The goal of this work is to develop methods that search for a DAG
structure G∗ such that

G∗ = arg max
G∈GN,k

∑
i∈N

si(Gi) , (1)

where GN,k is the set of all DAGs with node set N and treewidth at most k.

2 Graph-Theoretic Concepts

We say that a cycle in an undirected graph has a chord if there are two nodes in the cycle which are connected by
an edge outside the cycle. A chordal graph is an undirected graph in which all cycles of length four or more have
a chord. Any graph can be made chordal by inserting edges, a process called chordalization [1, 3]. The treewidth
of a chordal graph is the size of its largest clique (a fully connected subgraph) minus one. The treewidth of an
arbitrary undirected graph is the minimum treewidth over all chordalizations of it. The moral graph of a DAG is the
undirected graph obtained by connecting any two nodes with a common child and dropping arc directions, a process
known as moralization. The treewidth of a DAG is the treewidth of its corresponding moral graph. The treewidth
of a Bayesian network is the treewidth of its underlying DAG.
An elimination order is a linear ordering of the nodes in a graph. We say that an elimination order is perfect if for
every node in the order its higher-ordered neighbors form a clique (i.e., are pairwise connected). A graph admits a
perfect elimination order if and only if it is chordal. Perfect elimination orders can be computed in linear time if they
exist. The elimination of a node according to an elimination order is the process of pairwise connecting all of its
higher-ordered neighbors. Thus, the elimination of all nodes produces a chordal graph for which the elimination order
used is perfect. The edges inserted by the elimination process are called fill-in edges. Given a perfect elimination
order, the treewidth of the graph can be computed as the maximum number of higher ordered neighbors in the graph.
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3 Omitted Proofs

3.1 MILP Approach

Maximize: ∑
it

pit · si(Pit) (2)

Subject to: ∑
j∈N yij ≤ w, ∀i ∈ N, (3a)

(n+ 1) · yij ≤ n+ zj − zi, ∀i, j ∈ N, (3b)

yij + yik − yjk − ykj ≤ 1, ∀i, j, k ∈ N, (3c)∑
t pit = 1, ∀i ∈ N, (4a)

(n+ 1)pit ≤ n+ vj − vi, ∀i ∈ N, ∀t ∈ {1, . . . , ri}, ∀j ∈ Pit, (4b)

pit ≤ yij + yji, ∀i ∈ N, ∀t ∈ {1, . . . , ri}, ∀j ∈ Pit, (4c)

pit ≤ yjk + ykj , ∀i ∈ N, ∀t ∈ {1, . . . , ri}, ∀j, k ∈ Pit, (4d)

zi ∈ [0, n], vi ∈ [0, n], yij ∈ {0, 1}, pit ∈ {0, 1} ∀i, j ∈ N, ∀t ∈ {1, . . . , ri}. (5)

Lemma 1. Let zi, yij, i, j ∈ N , be variables satisfying Constraints (4) and (5). Then the undirected graph M =
(N,E), where E = {ij ∈ N × N : yij = 1 or yji = 1}, is chordal and has treewidth at most w. Moreover, any
elimination order that extends the partial order induced by zi is perfect for M .

Proof. The variables zi, i ∈ N , partially define an elimination order of the nodes: a node i is eliminated before node
j if zi < zj (the specification is partial since its allows for two nodes i and j with zi = zj). This order need not
be linear because there are cases where multiple linearizations of the partial order are equally good in building a
chordalization (i.e., in minimizing the maximum clique size of M). In such cases, two nodes i and j might be assigned
the same value zi = zj indicating that eliminating zi before zj or the converse results in chordal graphs of the same
treewidth. The variables yij , i, j ∈ N denote whether node i precedes j in the order (i.e., whether zi < zj) and an
edge exists among them in M (recall that an elimination process always produces a chordal graph). Constraint (3a)
ensures M has treewidth at most w by bounding the number of higher-ordered neighbors of every node i (which is
an alternative way of defining the treewidth of chordal graphs). Constraint (3b) allows yij to be 1 only if j appears
after i in the order (it in fact requires that zj ≥ zi + 1 to allow yij to be one). Constraint (3c) guarantees that any
elimination ordering induced by zi, i ∈ N , is perfect for M : if j and k are higher ordered neighbors of i in M , then
j and k are also neighbors in M , that is, either yjk or ykj must be 1.

Lemma 2. Let vi, pit, i ∈ N, t = 1, . . . , ri, be variables satisfying Constraints (4) and (5). Then the directed graph
G = (N,A), where Gi = {j : pit = 1 and j ∈ Pit}, is acyclic and valid. Moreover the moral graph of G is a subgraph
of the graph M defined in the previous lemma.

Proof. The variables vi, i ∈ N partially specify a topological order of the nodes in G: if vi > vj then j is not an
ancestor of i. The variables pit, i ∈ N , t = 1, . . . , ri, are represent whether the t-th parent set Pit in Pi was chosen
for node i. Constraint (4a) enforces that exactly one parent set is chosen for each node. Constraint (4b) forces those
parent set choices to be acyclic, that is, to respect the topological order induced by the variables vi (with ties broken
arbitrarily for nodes i, j with vi = vj). That order need not be linear, as only the relative orders of nodes that are
connected in M are relevant because Constraints (4c) and (4d) ensure that arcs appear in G only if the corresponding
edges in the moral graph of G exist in M (Constraint (4d) is responsible for having the moralization of the graph
falling inside M).

Theorem 1. Any solution to the MILP can be decoded into a valid DAG of treewidth less than w. In particular, the
decoding of an optimum solution solves (1).

Proof. According to Lemma 2, any solution can be decoded into a valid DAG G whose moral graph is a subgraph of
the M , which by Lemma 1 has treewidth at most w. If the solution is optimal, the corresponding DAG G maximizes
the score function by construction (as it maximizes (2)), hence solving (1).
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3.2 Sampling Based Approach

Theorem 2. The sampling space of S+k&P is less than en log(nk). Each of its iterations runs in linear time in n
(but exponential in k).

Proof. The follow equality holds [2]:

|Tn,k| =
(
n

k

)
(k(n− k) + 1)

n−k−2
.

It is not hard to see that the maximum happens for k ≤ n/2 (because of the symmetry of
(
n
k

)
and of k(n − k)

around n/2, while n− k − 2 decreases with the increase of k). By manipulating this number and applying Stirling’s
approximation for the factorials, we obtain:

|Tn,k| ≤
√
nen logn+1−n(

n−k
e

)n−k (k
e

)k kn−k−2(n− k)n−k−2

≤ e
√
n

(n− k)2
en lognkn−2k−2 ≤ en logn+(n−2k) log k ,

which is less than en log(nk). The decoding algorithm has complexity linear in n, as well as the method to uniformly
sample a Dandelion code and the method to find the best DAG consistent with a k-tree.

Theorem 3. S2 samples DAGs σ on a sample space of size k! · (k + 1)n−k, and runs in linear time in n and k.

Proof. The sampling of the k + 1 nodes in the root clique takes time O(k) by sampling one of the (k + 1)! ways
to permute the nodes. Step 2a can be done in constant time if the clique-tree structure is implemented as a
dictionary. For each iteration of Step 2c, we take O(k) time to decide on one of the k + 1 possible relative orderings
for node i (a position between 0 and k) and produce a sorted array of nodes (assuming partial orders are thus
represented). Since the clique-tree has n + k − 1 nodes, the total time is O(k · n) and the sampling space is
(k + 1)! · (k + 1)n−k−1 = k! · (k + 1)n−k.

4 Experiments

Table 1 contains more details about the data sets used in the experiments in the paper.

Table 1: Dimensions of data sets.

DATASET VAR. SAMPLES

nursery 9 12960
breast 10 699
housing 14 506
adult 15 32561
zoo 17 101
letter 17 20000
mushroom 22 8124
wdbc 31 569
audio 62 200
hill 100 606
community 100 1994

Figure 1 reproduces Figure 1 of the paper at a higher scale. Tables 2–5 show the values used to produce the plots in
the Figure.
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Table 2: Performance of integer programming methods with treewidth limit of 4. Values have been subtracted
from the minimum score (i.e., the empty DAG score). Maximum, median and minimum are taken with respect to 10
runs with different seeds. A symbol – indicates the method was not able to produce a solution within the time limit.

DATASET MILP10m TWILP10m MILP10m−TWILP10m

MILP10m−EMPTY
MILP3h TWILP3h MILP3h−TWILP3h

MILP3h−EMPTY

nursery 4.5986·103 4.5986·103 0.000001 4.5986·103 4.5986·103 0.000001
breast 1.8692·103 1.8692·103 0.000004 1.8692·103 1.8692·103 0.000004
housing 1.5030·103 1.3934·103 0.072919 1.5030·103 1.4573·103 0.030393
adult 1.4949·104 1.4508·104 0.029517 1.4949·104 1.4674·104 0.018381
zoo 4.5319·102 4.3946·102 0.030292 4.5533·102 4.3946·102 0.034850
letter 3.9106·104 3.4710·104 0.112419 4.1134·104 3.7078·104 0.098605
mushroom 4.5241·104 3.7941·104 0.161368 4.6391·104 4.0413·104 0.128860
wdbc 4.6128·103 4.4821·103 0.028352 5.3182·103 4.5254·103 0.149077
audio 0.0000·100 2.8728·102 −∞ 0.0000·100 3.8026·102 −∞
hill – – – 0.0000·100 – –
community – – – – – –

Table 3: Performance of sampling methods within 10 minutes of time limit and treewidth limit of 4. Values have
been subtracted from the minimum score (i.e., the empty DAG score). Maximum, median and minimum are taken
with respect to 10 runs with different seeds. A symbol – indicates the method was not able to produce a solution
within the time limit.

DATASET S+K&Pmin S+K&Pmedian S+K&Pmax S2min S2median S2max

nursery 4.4303·103 4.5185·103 4.5222·103 4.5986·103 4.5986·103 4.5986·103
breast 1.7840·103 1.8400·103 1.8578·103 1.8675·103 1.8684·103 1.8692·103
housing 1.1912·103 1.2032·103 1.2317·103 1.4125·103 1.4657·103 1.4751·103
adult 9.1653·103 1.0367·104 1.1311·104 1.4097·104 1.4425·104 1.4604·104
zoo 2.8054·102 3.4147·102 3.7312·102 4.2878·102 4.3510·102 4.4109·102
letter 2.2752·104 2.7387·104 2.8510·104 3.6022·104 3.7541·104 3.8888·104
mushroom 1.9236·104 2.4802·104 2.7787·104 4.1472·104 4.3787·104 4.5070·104
wdbc 2.5026·103 3.4056·103 3.4878·103 5.0381·103 5.1117·103 5.1548·103
audio 6.7275·101 8.3067·101 1.9602·102 3.9170·102 4.1005·102 4.1892·102
hill 4.0837·104 4.0936·104 4.1073·104 4.1197·104 4.1211·104 4.1236·104
community 2.2018·104 2.2935·104 2.4053·104 4.0662·104 4.2544·104 4.3411·104
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Table 4: Performance of integer programming methods with treewidth limit of 10. Values have been subtracted
from the minimum score (i.e., the empty DAG score). Maximum, median and minimum are taken with respect to 10
runs with different seeds. A symbol – indicates the method was not able to produce a solution within the time limit.

DATASET MILP10m TWILP10m MILP10m−TWILP10m

MILP10m−EMPTY
MILP3h TWILP3h MILP3h−TWILP3h

MILP3h−EMPTY

nursery 4.5986·103 4.5986·103 0.000001 4.5986·103 4.5986·103 0.000001
breast 1.8692·103 1.8692·103 0.000004 1.8692·103 1.8692·103 0.000004
housing 1.5030·103 1.5022·103 0.000499 1.5030·103 1.5030·103 0.000005
adult 1.5013·104 1.4902·104 0.007376 1.5013·104 1.5009·104 0.000222
zoo 4.5560·102 4.3528·102 0.044598 4.5614·102 4.5554·102 0.001308
letter 4.1411·104 3.6960·104 0.107495 4.1469·104 3.9949·104 0.036655
mushroom 4.6230·104 4.3962·104 0.049069 4.8656·104 4.4924·104 0.076695
wdbc 1.0000·10−2 4.4262·103 −442,615.000000 5.4195·103 4.8336·103 0.108100
audio 0.0000·100 – – 0.0000·100 – –
hill – – – 0.0000·100 – –
community – – – 0.0000·100 – –

Table 5: Performance of sampling methods within 10 minutes of time limit and treewidth limit of 10. Values have
been subtracted from the minimum score (i.e., the empty DAG score). Maximum, median and minimum are taken
with respect to 10 runs with different seeds. A symbol – indicates the method was not able to produce a solution
within the time limit.

DATASET S2min S2median S2max

nursery 4.5986·103 4.5986·103 4.5986·103
breast 1.8692·103 1.8692·103 1.8692·103
housing 1.4814·103 1.4905·103 1.5024·103
adult 1.4862·104 1.4955·104 1.4976·104
zoo 4.4555·102 4.4991·102 4.5343·102
letter 4.0601·104 4.0889·104 4.1364·104
mushroom 4.7268·104 4.8102·104 4.8614·104
wdbc 5.3285·103 5.3545·103 5.3691·103
audio 3.9449·102 4.1907·102 4.4649·102
hill 4.1238·104 4.1349·104 4.1368·104
community 4.3188·104 4.4135·104 4.6289·104
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Figure 1: Normalized scores. Missing results indicate failure to provide a solution.
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