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We assume zero-mean inputs and zero temporal input correlations
throughout this supplementary material. W.l.o.g. the covariance of the
input xt has full rank (otherwise there exists an equivalent dynamical system
with full rank). Equation references without prefix refer to the main text.

1 fixed points of autoencoder

The optimal synaptic connectivity that minimizes the reconstruction error
(14) is given by (cp. with eq. (15))

F∗Cx = D∗>, (S.1)

Ω∗ = D∗>C−1
x D∗, (S.2)

D∗ ∝
√

Cx U, (S.3)

where U ∈ RK×N is orthonormal. Here the last property ensures that the
signal is actively whitened before being encoded along the orthogonal axis.

Do the synaptic plasticity rules (20, 21) lead the network into this optimal
topology? Proving convergence is difficult for recurrent networks with
plastic synapses (but simulations converge robustly and reliably). We can,
however, determine the fixed points of the synaptic dynamics and analyse
their stability. To determine the fixed points, we note from (19-21) that the
synaptic weights remain stationary whenever the following conditions are
met,

αD =
〈

xr>
〉

,

αF = D>C−1
x , (S.4)

αΩ =
1
α

FD = D>C−1
x D. (S.5)

As is directly evident from these equations, the stationary synaptic weights
fulfil the first two optimality conditions (S.1) and (S.2). But are the columns
of D orthogonal (up to whitening)?

To solve for the fixed points of D, we replace the neural activities r with
their equilibrium state determined from the balance condition (17),

r = (Ω + µI)−1 Fx.

Then the fixed point of the decoder is given by,

αD =
〈

xx>
〉

F>
(

Ω> + µI
)−1

,

= CxF>
(

Ω> + µI
)−1

,

in which we can replace Ω and F with their converged states (S.4) and (S.5),

= D
(

D>C−1
x D + αµI

)−1
.
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To get rid of the matrix inverse, we multiply with
(

D>C−1
x D + αµI

)
from

the right and sort by products of D,

αDD>C−1
x D = (1− αµ)D. (S.6)

If D is of full rank, then (S.6) simplifies: If the dimension K of the signal is
less then the number N of neurons, then multiply (S.6) with D+ from the
right,

DD>C−1
x = (α−1 − µ)I.

If K ≥ N, multiply from the left,

DC−1
x D> = (α−1 − µ)I.

In both cases the solutions satisfy (S.3). As a result, if D is full rank then
all fixed points, to which the network could converge, fulfil the optimality
conditions (S.1)-(S.3). If D is not full rank, then all corresponding fixed points
are unstable, as one can see from the dynamics of small perturbations of the
fast connectivity. We work out the full proof in the more demanding setting
of a working memory network.

2 stable fixed points of working memory

For the autoencoder, the best network topology is fully determined by the
optimal decoder D. The working memory depends additionally on the
delayed projections M, which makes it harder to determine the optimal
network configurations.

As a proxy for optimality we rely on the amount of information stored
in the network state. For temporally independent inputs xt the maximum
effective number of steps the network can store is equal to the number of
neurons. In other words, the network is optimal if the covariance matrix Cr
is proportional to the identity. In this section, we prove that all stable fixed
points of the synaptic weights fulfil this property.

As for the autoencoder, the effective fixed points for the signal and history
decoder are given by αD =

〈
xtr>t

〉
and αM =

〈
rt−1r>t

〉
. The fixed points

of the synaptic weights can be directly determined from the learning rules
(30)-(32),

αFCx = 〈rtxt〉 = αD>, (S.7)

Ω f = FD + ΩdM,

αΩdCr =
〈

rt−1r>t
〉
= αM>. (S.8)

Note that Cr is not necessarily full rank. From the rate dynamics (25) we can
determine the equilibrium of the network state at each time t,

rt = Q
(

Fxt + Ωdrt−1

)
. (S.9)

where we defined Q =
(

Ω f + µI
)−1

for notational convenience. Plugging
(S.9) into the fixed points (S.7) and (S.8) yields two important properties,

QFCx = αFCx, (S.10)

QΩdCr = αΩdCr. (S.11)

These two properties are important to solve explicitly for the rate covariance
matrix Cr. To this end, we first note that the network state rt (S.9) at time t is
the result of the whole history of inputs,

rt =
∞

∑
k=0

(QΩd)kQFxt−k,
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and so

Cr =
〈

rtr>t
〉

,

=
∞

∑
k=0

(QΩd)kQFCxF>Q>(QΩd)k>,

= QFCxF>Q> +
∞

∑
k=1

(QΩd)kQFCxF>Q>(QΩd)k>,

= QFCxF>Q> + QΩd

(
∞

∑
k=0

(QΩd)kQFCxF>Q>(QΩd)k>
)

Ωd>Q>,

= QFCxF>Q> + QΩdCrΩd>Q>.

This expression can be substantially simplified by using the properties (S.10)
and (S.11),

= α2
(

FCxF> + ΩdCrΩd>
)

,

= α2
(

FD + ΩdM
)

,

= α2Ω f .

In other words, the fast synaptic weights directly reflect the pairwise rate
covariance! This special property, together with (S.10) and (S.11), yields an
important property of Cr,

QCr = α2Q(FD + ΩdM) = αCr,

and equally Q−1Cr = α−1Cr. This last property is the missing piece to prove
that Cr is proportional to a projection matrix,

C2
r = α2Ω f Cr,

= α2(Ω f + µI− µI)Cr,

= α2(Q−1 − µI)Cr,

= α(1− αµ)Cr.

If Cr is full rank, then
Cr ∝ I. (S.12)

But is the converged network full rank? If Cr is not full rank, then all
associated fixed points are unstable. To prove this, we need to show that a
small perturbation of the slow connections Ωd can lead to further changes
Ω̇

d that are oriented away from the fixed point.
For notation, let V be the matrix of eigenvectors of Cr with non-zero

eigenvalues, and let U be its orthogonal complement (i.e. U>V = 0). Let
v ∈ span V be in the subspace spanned by the firing rates, and u ∈ span U
in its complement. We want to prove that a small perturbation εuv> makes
the slow weights grow in the direction of that perturbation,〈

∂

∂t
(Ωd + εuv>)

〉
= ηuv> s.t. η > 0.

The perturbation εuv> has very simple consequences on the neural dynamics:
it projects neural activity from the direction v onto a direction u along which
the population was silent. In other words, this specific perturbation acts like
an additional input that projects into a yet completely uncovered subspace
of the neural dynamics.

How does the network dynamics, as described by Cr =
〈
rtr>t

〉
, M ∝〈

rt−1r>t
〉

and D ∝
〈
xtr>t

〉
, change? Notice that in the standard autoencoder

the fast recurrent connections scale with the covariance of the input and the
neural responses. If both are on the order of O(ε), then the change δΩ f in
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the fast synaptic weights is on the order of O(ε2). From the equilibrium state
(S.9) we can compute the change δrt of the neural responses,

rt + δrt = (Ω f + δΩ f + µI)−1
(

Fxt + (Ωd + εuv>)(rt−1 + δrt−1)
)

,

=
[
Q + QδΩ f Q

] (
Fxt + (Ωd + εuv>)(rt−1 + δrt−1)

)
+O(ε2),

= Q
(

Fxt + Ωdrt−1 + (Ωd + εuv>)rt−1 + Ωdδrt−1)
)
+O(ε2),

= rt + εQuv>rt−1 + QΩdδrt−1 +O(ε2).

The dynamics of the rates are thus very simple, as one can see by projecting
on u and a random orthogonal direction u⊥,

u>δrt ∝ v>rt−1,

and
u>⊥δrt ∝ u>⊥QΩdδrt−1 = µ−1u>⊥Ωdδrt−1 ⇒ u>⊥rt−1 = 0.

The last assertion comes from the fact that the network dynamics are stable,
and thus any perturbations will decay (as there are no inputs driving the
perturbation). In summary, the neural responses are unchanged except along
u. Therefore,

Cr → Cr + ε2γ2uu>,

M→M + εγvu>,

where γ > 0 represents the variance (S.12) projected from v. This allows us
to solve explicitly for the change in the slow synaptic weights using (32),〈

∂

∂t
(Ωd + εuv>)

〉
∝
〈
(rt + δrt − α(Ωd + εuv>)(rt−1 + δrt−1))(rt−1 + δrt−1)

>
〉

,

= αM> + εγuv> − α(Ωd + εuv>)(Cr + ε2γ2uu>),

= αM> + εγuv> − α(Ωd + εuv>)Cr +O(ε2).

Noticing from (S.8) that αM> = αΩdCr (since Ωd was at a fixed point), this
expression simplifies to

= εγuv> − αεuv>Cr,

= εγuv> − αεγuv>,

= (1− α)εγuv>.

For α < 1 the proportionality factor (1− α)εγ > 0 is always positive, and so
the weights grow along the perturbation.
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