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This document contains supplementary material for the paper “Adaptive Step–Size for Policy Gra-
dient Methods”, submitted to the Neural Information Processing Systems (NIPS) 2013. It follows
the same structure of the main article. For each section we report the complete set of proofs and
some additional details. Concerning the numerical simulation, we add some figures that help in
understanding the behavior of the proposed approach.

1 Policy Gradient Formulation

Lemma 3.2. Let the update of the policy parameters be θ′ = θ + α∇θJµ(θ). Then

π(a|s,θ′)− π(a|s,θ) ≥α∇θπ(a|s,θ)T∇θJµ(θ) + α2 inf
c∈(0,1)

(
m∑

i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

)
,

where ∆θ = α∇θJµ(θ).

Proof. The adjustment in the parameter vector θ is ∆θ = α∇θJµ(θ). As a consequence, the first
order approximation of the improved policy π(a|s,θ′) is:

π(a|s,θ′) = π(a|s,θ) +∇θ′π(a|s,θ′)T
∣∣∣
θ
∆θ +R1(∆θ)

= π(a|s,θ) + α∇θπ(a|s,θ)
T∇θJµ(θ) +R1(∆θ) ∀s ∈ S, ∀a ∈ A

The remainder is given in multi–index Lagrange form by:

R1(∆θ) =
∑
|β|=2

Dβπ(a|s,θ + c∆θ)
∆θβ

β!
for some c ∈ (0, 1)

where β is a multi–index, |β| = β1 + β2 + · · · + βm and β! = β1!β2! . . . βm!. A lower bound is
easily derived by minimizing the remainder along the line connecting the current parameterization
θ and the value θ + ∆θ:

R1(∆θ) =

m∑
i=1

m∑
j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

for some c ∈ (0, 1)

≥ inf
c∈(0,1)

 m∑
i=1

m∑
j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)


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The proof follows from the application of the bound to Taylor’s expansion.

Theorem 3.3. Let the update of the parameters be θ′ = θ + α∇θJµ(θ). Then for any stationary
policy π(a|s,θ) and any starting state distribution µ, the difference in performance between πθ and
πθ′ is lower bounded by:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22

+
α2

1− γ

∫
S
dπθ
µ (s)

∫
A

inf
c∈(0,1)

(
m∑

i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

)
Qπθ (s, a)dads

−
γ ‖Qπθ‖∞
2(1− γ)2

(
α sup
s∈S

∫
A

∣∣∇θπ(a|s,θ)T∇θJµ(θ)
∣∣ da

+α2 sup
s∈S

∫
A

∣∣∣∣∣ sup
c∈(0,1)

(
m∑

i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

)∣∣∣∣∣ da
)2

.

Proof. The first part of the proof is devoted to the derivation of the inequality reported in the theo-
rem. Then, the positiveness and uniqueness of the optimal learning step is proved. Exploiting simple
algebraic relationships and result in Lemma 3.2, Lemma 3.1 can be restated as:

Jµ(θ′)− Jµ(θ) ≥ 1

1− γ

∫
S
dπµ(s)

∫
A

(
α∇θπ(a|s,θ)

T∇θJµ(θ) +R1(∆θ)
)
Qπ(s, a)dads

− γ

2(1− γ)2
‖πθ′ − πθ‖2∞ ‖Q

πθ‖∞

= α ‖∇θJµ(θ)‖22 +
1

1− γ

∫
S
dπµ(s)

∫
A
R1(∆θ)Qπ(s, a)dads

− γ

2(1− γ)2
‖πθ′ − πθ‖2∞ ‖Q

πθ‖∞ ,

where last equality follows from the manipulation of the first–order approximation of the policy:
α

1− γ

∫
S
dπµ(s)

∫
A
∇θπ(a|s,θ)

T∇θJµ(θ) Qπ(s, a)dads

=
α

1− γ

∫
S
dπµ(s)

∫
A

m∑
i=1

∂π(a|s,θ)

∂θi

∂Jµ(θ)

∂θi
Qπ(s, a)dads

=
α

1− γ

m∑
i=1

∫
S
dπµ(s)

∫
A

∂π(a|s,θ)

∂θi

∂Jµ(θ)

∂θi
Qπ(s, a)dads

=
α

1− γ

m∑
i=1

[∫
S
dπµ(s)

∫
A

∂π(a|s,θ)

∂θi
Qπ(s, a)dads

]
∂Jµ(θ)

∂θi

= α

m∑
i=1

(
∂Jµ(θ)

∂θi

)2

= α ‖∇θJµ(θ)‖22

To complete the derivation of the bound it is sufficient to notice that the difference between two
policies can be upper bounded taking the maximum of the Lagrange remainder (as done in Lemma
3.2 for the lower bound):

‖πθ′ − πθ‖∞ = sup
s∈S

∫
A

∣∣π(·|s,θ′)− π(·|s,θ)
∣∣da

≤ α sup
s∈S

∫
A

∣∣∇θπ(a|s,θ)
T∇θJµ(θ)

∣∣ da
+ α2 sup

s∈S

∫
A

∣∣∣∣∣∣ sup
c∈(0,1)

 m∑
i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

∣∣∣∣∣∣ da
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Finally:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22

+
α2

1− γ

∫
S
dπθ
µ (s)

∫
A

inf
c∈(0,1)

 m∑
i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

 Qπθ (s, a)dads

−
γ ‖Qπθ‖∞
2(1− γ)2

(
α sup
s∈S

∫
A

∣∣∇θπ(a|s,θ)
T∇θJµ(θ)

∣∣ da
+α2 sup

s∈S

∫
A

∣∣∣∣∣∣ sup
c∈(0,1)

 m∑
i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

∣∣∣∣∣∣da
2

It is worth to show that exist only one positive value that maximize the previous bound. The bound
stated in Theorem 3.3 is a fourth–order polynomial of step size α whose stationary points, i.e., the
roots of a third–order polynomial ax3 + bx2 + cx + d, can be compute in closed form. If the
product a · d is negative, the existence of at least one real positive solution is guaranteed. It is easy
to evaluate the sign of the coefficient of degree zero, two and three of the third–order polynomial
that are positive, negative and negative, respectively. Thus, the existence of a positive real solution
is guaranteed. In order to demonstrate the uniqueness of the real positive solution it is possible to
exploit the Descartes’ rule of sign. According to that, given a polynomial with real coefficients order
by descending degree, the number of positives roots equals the number of sign changes, or a value
less than that by some multiple of 2. The sign of the coefficient c cannot be determined a priori.
However, for any value c, the number of sign changes is equal to 1 (recall that a, b ≤ 0 and d ≥ 0.
Thus, the existence and uniqueness of the real positive root is proved.

2 The Gaussian Policy Model

Lemma 4.1. For any Gaussian policy π(a|s,θ) ∼ N(θTφ(s), σ2), the second order derivative of
the policy can be bounded as follows:∣∣∣∣∂π(a|s,θ)

∂θi∂θj

∣∣∣∣ ≤ |φi(s)φj(s)|√
2πσ3

, ∀θ ∈ Rm,∀a ∈ A.

This result allows to restate Lemma 3.2 in the case of Gaussian policies:

π(a|s,θ′)− π(a|s,θ) ≥ α∇θπ(a|s,θ)
T∇θJµ(θ)− α2

√
2πσ3

(
|∇θJµ(θ)|T|φ(s)|

)2
.

Proof. The second order derivative of a Gaussian function is explicitly given by:

∂2π(a|s,θ)

∂θi∂θj
=
π(a|s,θ)

σ2

((
a− θTφ(s)

)2
σ2

− 1

)
φi(s)φj(s), (1)

It is easy to verify that the stationary point of the second–order derivative of a Gaussian distribution
with mean µ and standard deviation σ are µ = 0 and µ = a ± σ

√
3. Plugging these results into

Equation (1), we get:

−φi(s)φj(s)√
2πσ3

,
2e−

3
2φi(s)φj(s)√

2πσ3
.

The nature (maximum or minimum) of each point depends on the sign of the product φi(s)φj(s) in
each state s. As a consequence, we can state that the second order derivative is uniformly bounded
by the maximum absolute value, i.e., |φi(s)φj(s)|√

2πσ3
.

The second part of the proof follows directly from the application of this result to Lemma 3.2, notice
that |

∑
i xi| ≤

∑
i |xi|, for any i, xi.
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Theorem 4.3. For any starting state distribution µ, and any pair of stationary Gaussian policies
πθ ∼ N(θTφ(s), σ2) and πθ′ ∼ N(θ′

T
φ(s), σ2), so that θ′ = θ + α∇θJµ(θ) and under Assump-

tion 4.1, the difference between the performance of πθ′ and πθ can be lower bounded by:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22

− α2

(
1

(1− γ)
√

2πσ3

∫
S
dπθ
µ (s)

(
|∇θJµ(θ)|T |φ(s)|

)2 ∫
A
Qπθ (s, a)dads

+
γM2

φ

2(1− γ)2σ2
‖∇θJµ(θ)‖21 ‖Q

πθ‖∞

)
.

Proof. For any state s ∈ S, it is possible to use the Kullback–Liebler divergence

H(P‖Q) =

∫
X

P (x) log
P (x)

Q(x)
dx,

to express the difference between policy π(a|s,θ′) and policy π(a|s,θ):

H
(
π(·|s,θ′)

∥∥π(·|s,θ)
)

=
1

2σ2

(
(θ + α∇θJµ(θ))

T
φ(s)− θTφ(s)

)2
=

1

2
α2

(
∇θJµ(θ)

T
φ(s)

σ

)2

∀s ∈ S.

In order to make explicit the dependence on α in Lemma 3.1 we need to manipulate the L∞–
norm between two policies. Recall that, for any distribution P and Q on an arbitrary set, the
Pinsker’s inequality (sometimes known as Pinsker–Csiszár–Kullback [1, 2, 3]) relates the Kullback–
Liebler divergence H(P‖Q) and the variational divergence V (P,Q) = ‖P −Q‖1 by H(P‖Q) ≥
1
2 [V (P,Q)]

2. Exploiting the Pinsker’s inequality we can bound the L∞–norm between the current
policy π(a|s,θ) and the improved policy π(a|s,θ′) as:

‖πθ′ − πθ‖2∞ = sup
s∈S

∥∥π(·|s,θ′)− π(·|s,θ)
∥∥2

1

≤ sup
s∈S

(
2H
(
π(·|s,θ′)

∥∥π(·|s,θ)
))

=
α2

σ2
sup
s∈S

(
∇θJµ(θ)

T
φ(s)

)2
.

As a consequence of Assumption 4.1, we can state that:

sup
s∈S

(
∇θJµ(θ)

T
φ(s)

)2
= sup

s∈S

(∑
i

∂Jµ(θ)

∂θi
φi(s)

)2

≤M2
φ ‖∇θJµ(θ)‖21 .

The proof follows from the manipulation of Lemma 3.1 through the bound on the L∞–norm and the
result in Lemma 4.1.

Corollary 4.4. The performance lower bound provided in Theorem 4.3 is maximized by choosing
the following step size:

α∗ =
(1− γ)2

√
2πσ3 ‖∇θJµ(θ)‖22

γ
√

2πσM2
φ ‖∇θJµ(θ)‖21 ‖Qπθ‖∞ + 2(1− γ)

∫
S d

πθ
µ (s)

(
|∇θJµ(θ)|T |φ(s)|

)2 ∫
AQ

πθ (s, a)dads
,

that guarantees the following policy performance improvement

Jµ(θ′)− Jµ(θ) ≥ 1

2
α∗ ‖∇θJµ(θ)‖22 .
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Proof. Consider the bound stated in Theorem 3.3. The term α∗ is the value of α that maximizes this
bound, i.e., the value that sets the partial derivative w.r.t. α to zero:

∂B

∂α
= ‖∇θJµ(θ)‖22

− 2α

(
1

(1− γ)
√

2πσ3

∫
S
dπθ
µ (s)

(
|∇θJµ(θ)|T |φ(s)|

)2 ∫
A
Qπθ (s, a)dads

+
γM2

φ

2(1− γ)2σ2
‖∇θJµ(θ)‖21 ‖Q

πθ‖∞

)
.

that leads to:

α∗ =
(1− γ)2

√
2πσ3 ‖∇θJµ(θ)‖22

γ
√

2πσM2
φ ‖∇θJµ(θ)‖21 ‖Qπθ‖∞ + 2 (1− γ)

∫
S d

πθ
µ (s)

(
|∇θJµ(θ)|T |φ(s)|

)2 ∫
AQ

πθ (s, a)dads

By replacing the value α∗ in the bound, we can derive the guaranteed policy improvement:

Jµ(θ′)− Jµ(θ) ≥ 1

2
α∗ ‖∇θJµ(θ)‖22 .

3 Approximate Framework

Corollary 5.1. For any starting state distribution µ, and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′

T
φ(s), σ2), so that θ′ = θ +α∇θJµ(θ) and under Assump-

tion 4.1, the difference between the performance of πθ′ and πθ can be lower bounded by:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22 − α
2
RM2

φ ‖∇θJµ(θ)‖21
(1− γ)

2
σ2

(
|A|√
2πσ

+
γ

2(1− γ)

)
,

that is maximized by the following step size value:

α̂∗ =
(1− γ)3

√
2πσ3 ‖∇θJµ(θ)‖22(

γ
√

2πσ + 2(1− γ)|A|
)
RM2

φ ‖∇θJµ(θ)‖21
.

Proof. Under the assumption of positive reward, for every state s ∈ S and every action a ∈ A,
the Q–function belongs to

[
0, R

1−γ

]
. As a consequence, the integral of the Q–function over the

action space and the L∞–norm of theQ–function are upper bounded by |A|R1−γ and R
1−γ , respectively.

Furthermore, exploiting Assumption 4.1, we can restate the policy performance improvement as:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22

− α2

(
|A|R

(1− γ)
2√

2πσ3

∫
S
dπθ
µ (s)

(
|∇θJµ(θ)|T |φ(s)|

)2
ds

+
γRM2

φ

2(1− γ)3σ2
‖∇θJµ(θ)‖21

)

≥ α ‖∇θJµ(θ)‖22 − α
2
RM2

φ ‖∇θJµ(θ)‖21
(1− γ)

2
σ2

(
|A|√
2πσ

+
γ

2(1− γ)

)
.

(2)

The new optimal learning step is derived by setting the partial derivative w.r.t. α of previous inequal-
ity to zero:

α̂∗ =
(1− γ)3

√
2πσ3 ‖∇θJµ(θ)‖22(

γ
√

2πσ + 2 (1− γ) |A|
)
RM2

φ ‖∇θJµ(θ)‖21
It is easy to observe that the guaranteed policy performance is again at least 1

2 α̂
∗ ‖∇θJµ(θ)‖22.
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Theorem 5.2. Under the same assumptions of Corollary 5.1, and provided that it is available a
policy gradient estimate ∇̂θJµ(θ), so that P

(∣∣∣∇θiJµ(θ)− ∇̂θiJµ(θ)
∣∣∣ ≥ εi) ≤ δ, the difference

between the performance of πθ′ and πθ can be lower bounded at least with probability (1− δ)m:

Jµ(θ′)− Jµ(θ) ≥ α
∥∥∥∇̂θJµ(θ)

∥∥∥2

2
− α2

RM2
φ

∥∥∥∇̂θJµ(θ)
∥∥∥2

1

(1− γ)
2
σ2

(
|A|√
2πσ

+
γ

2(1− γ)

)
,

that is maximized by the following step size value:

α̂∗ =
(1− γ)3

√
2πσ3

∥∥∥∇̂θJµ(θ)
∥∥∥2

2(
γ
√

2πσ + 2(1− γ)|A|
)
RM2

φ

∥∥∥∇̂θJµ(θ)
∥∥∥2

1

.

Proof. We have access to an ε–accurate estimation of the gradient. In order to preserve the sign of
the inequality in Corollary 5.1 and take into account the approximation error, we need to decrease
the L2–norm of the gradient and increment the L1–norm in the penalization term. If we treat the two
terms in a separate way, we cannot do worse than suppose to have an over estimate of the positive
term and an under estimate of the penalization term (both of an amount ε). Under this worst case
scenario, the correction term of each gradient component ∇θiJµ(θ) is −εi and εi for the over and
under estimate case, respectively. Then,

‖∇θJµ(θ)‖22 ≥
∑
i

(max (|∇θiJµ(θ)| − εi, 0))
2

=
∥∥∥∇̂θJµ(θ)

∥∥∥2

2

‖∇θJµ(θ)‖21 ≤
∑
i

|∇θiJµ(θ)|+ εi =
∥∥∥∇̂θJµ(θ)

∥∥∥2

1

Notice that a saturation to 0 is necessary in order to preserve the correctness of the inequality.
The new bound on the policy performance improvement is obtained by substituting the corrected
gradients in place of the original ones in Theorem 5.1. Such bound holds at least with probability
(1 − δ)m that is the probability, assuming independent events, that all the approximation errors
of the different gradient components are smaller than their respective ε value. If some correlation
exists in the approximation errors, the actual probability will be higher. The optimal learning step is
computed by maximizing the new bound.

Lemma 5.3. [Adapted from Theorem 2 in [4]] Given a Gaussian policy π(a|s,θ) ∼
N
(
θTφ(s), σ2

)
, under the assumption of uniformly bounded rewards and basis functions (Assump-

tion 4.1), we have the following upper bound to the variance of the i–th component of the episodic
REINFORCE gradient estimate ∇̂θiJRFµ (θ):

V ar
(
∇̂θiJRFµ (θ)

)
≤
R2M2

φH
(
1− γH

)2
Nσ2 (1− γ)

2 .

Proof. The proof follows from the result in [4] by notice that for any time t, ‖φ(st)‖22 ≤ mM2
φ w.p.

1.

Theorem 5.4. Given a Gaussian policy π(a|s,θ) ∼ N
(
θTφ(s), σ2

)
, under the assumption of

uniformly bounded rewards and basis functions (Assumption 4.1), using the following number of
H–step trajectories:

N =
R2M2

φH
(
1− γH

)2
δε2iσ

2 (1− γ)
2 ,

the gradient estimate ∇̂θiJRFµ (θ) generated by REINFORCE is such that with probability 1− δ:∣∣∣∇̂θiJRFµ (θ)−∇θiJµ(θ)
∣∣∣ ≤ εi.
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Proof. Chebyshev’s inequality implies that

P
(∣∣∣∇̂θiJRFµ (θ)−∇θiJµ(θ)

∣∣∣ ≥ εi) ≤ σ2

ε2i
=
R2M2

φH
(
1− γH

)2
ε2Nσ2 (1− γ)

2 = δ.

Solving the equation for N , we obtain

N =
R2M2

φH
(
1− γH

)2
δε2iσ

2 (1− γ)
2 .

Hence, with probability of 1 − δ, the maximum deviation of the estimation of the i–th component
of the gradient from the true mean is εi.

Lemma 5.5. Given a Gaussian policy π(a|s,θ) ∼ N
(
θTφ(s), σ2

)
, under the assumption of uni-

formly bounded rewards and basis functions (Assumption 4.1), we have the following upper bound
to the variance of the i–th component of the PGT gradient estimate ∇̂θiJPGTµ (θ):

V ar
(
∇̂θiJPGTµ (θ)

)
≤

R2M2
φ

N (1− γ)
2
σ2

[
1− γ2H

1− γ2
+Hγ2H − 2γH

1− γH

1− γ

]
.

Proof. Let f(t) = ∇θ log π (at; st,θ), if the policy is Gaussian the i–th component of f(·) at time
t is given by:

fi(t) = ∇θi log π (at; st,θ) =
a− θTφ(st)

σ2
φi(st).

Before to focus on the derivation of an upper bound to the variance of the i–th component, we need
to introduce the term T that denotes the space of all the trajectories of length H generated from the
system. Since

V ar
(
∇̂θiJPGTµ (θ)

)
=

1

N
V ar

(
H∑
t=1

fi(t)

H∑
l=t

γl−1rl

)
(3)

we can just focus on the derivation of the variance of the i–th element for a single trajectory:

V ar

(
H∑
t=1

fi(t)

H∑
l=t

γl−1rl

)
≤ ET

( H∑
t=1

fi(t)

H∑
l=t

γl−1rl

)2


= R2 ET

( H∑
t=1

fi(t)

(
H∑
l=1

γl−1 −
t−1∑
l=1

γl−1

))2
 =

R2

(1− γ)2 ET

( H∑
t=1

fi(t)
(
γt−1 − γH

))2


=
R2

(1− γ)2 ET

( H∑
t=1

γt−1fi(t)

)2

+ γ2H

(
H∑
t=1

fi(t)

)2

− 2γH
H∑
t=1

γt−1fi(t)

H∑
t=1

fi(t)

 (4)

Let ηi,t = at−θTφ(st)
σ for t = 1, . . . ,H . Note that ηi,1, . . . , ηi,H are independent stan-

dard normal variables. Moreover, given the entire history of basis functions {φi(st)}Ht=1,
ηi,1φi(s1), . . . , ηi,Hφi(sH) are independent normal variables with zero mean, i.e., E [ηi,tφi(st)] =
0. Then, exploiting the relationship ηi,t = σ

φi(st)
· fi(t), we can state that:

ET

( H∑
t=1

γt−1fi(t)

)2
 = ET

[
H∑
t=1

H∑
t′=1

γt−1γt
′−1fi(t)fi(t

′)

]

=
1

σ2
ET

[
H∑
t=1

H∑
t′=1

γt−1γt
′−1ηi,tηi,t′φi(st)φi(st′)

]

=
1

σ2

H∑
t=1

ET

[
γ2(t−1)ηi,t

2φi(st)
2
]

+
1

σ2

H∑
t=1

H∑
t′=1;t′ 6=t

γt−1γt
′−1E [ηi,tφi(st)]E [ηi,t′φi(st′)]

=
1

σ2

H∑
t=1

γ2(t−1)φi(st)
2
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Note that last equality follows from the consideration that ηi,t2 ∼ χ2(1) and E
[
ηi,t

2
]

= 1. Per-
forming the same consideration for all the terms in equation (4) leads to:

V ar

(
H∑
t=1

fi(t)

H∑
l=t

γl−1rl

)

=
R2

(1− γ)
2

[
1

σ2

H∑
t=1

γ2(t−1)φi(st)
2 +

γ2H

σ2

H∑
t=1

φi(st)
2 − 2γH

σ2

H∑
t=1

γt−1φi(st)
2

]

≤
R2M2

φ

(1− γ)
2
σ2

[
1− γ2H

1− γ2
+Hγ2H − 2γH

1− γH

1− γ

]
where last inequality exploits the assumption of uniformly bounded basis functions. The proof
follows from the substitution of last result in Equation 3.

Theorem 5.6. Given a Gaussian policy π(a|s,θ) ∼ N
(
θTφ(s), σ2

)
, under the assumption of

uniformly bounded rewards and basis functions (Assumption 4.1), using the following number of
H–step trajectories:

N =
R2M2

φ

δε2iσ
2 (1− γ)

2

[
1− γ2H

1− γ2
+Hγ2H − 2γH

1− γH

1− γ

]
the gradient estimate ∇̂θiJPGTµ (θ) generated by PGT is such that with probability 1− δ:∣∣∣∇̂θiJPGTµ (θ)−∇θiJµ(θ)

∣∣∣ ≤ εi.
Proof. The proof follows the same approach used to prove Theorem 5.4.

4 Numerical Simulations

In this section we show results related to some numerical simulations of policy gradient in the
linear–quadratic Gaussian regulation (LQG) problem as formulated in [5]. The LQG problem is
characterized by a transition model st+1 ∼ N

(
Ast +Bat, σ

2
)
, Gaussian policy at ∼ N

(
θ · s, σ2

)
and quadratic reward rt = −Qs2

t − Ra2
t . In our settings we put A = B = 1 and Q = R = 1/2.

The range of state and action spaces is bounded to the interval [−2, 2] and the initial state is drawn
uniformly from the same range. This scenario is particularly instructive because it allows to exactly
compute all the terms involved in the bounds. For this reason, we first present results in the exact
scenario and then we move toward the approximated one.

Figure 1 and 2 report the trend of the learning step and the performance for each iteration, respec-
tively. The scenario is the same exploited for the generation of Table 1 stated in the main article.
In particular, we have reported the behavior of the exact gradient with different learning step for
σ = 1.75. Configurations that have led to divergence are not depicted in the figures. It is worth to
notice that the proposed auto–tuning approach is able to increment the value of the learning step in
order to compensate the decrements of the gradient. Figure 2 shows that, when the learning step
is tuned using the descendant rule αt = α0

t , the policy gradient is able to learn rapidly in the first
iteration but the learning step becomes soon very small leading to a “stationary” situation in which
no significant improvement to the performance is achieved.
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