First-order Decomposition Trees
Supplementary Material

Nima Taghipour Jesse Davis Hendrik Blockeel
Department of Computer Science, KU Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Abstract

In this document, we provide proofs for the theorems and present a basic algorithm
for construction of FO-dtrees for PLMs.

1 Proof of Theorem 1

Let us first recall the Theorem.

Theorem 1 A (non-counted) FO-dtree has a lifted inference solution if its clusters only consist of
(representative) randvars and 1-logvar PRVs. We call such an FO-dtree a liftable tree.

Proof. Following the discussion in the paper, each subproblem arising during inference requires
handling a parfactor involving the randvars and PRVs that appear at the cluster of the node. To
prove that each of these problems are liftable (do not require us to ground the PRVs and deal with
all their randvars directly), we need to show that the whole group of randvars in each cluster can
be partitioned into m groups of interchangeable k-tuples of randvars, with m and % independent
of the domain size. We prove this relying on the properties of counting randvars in PLMs, and the
correctness of counting conversion in LVE [2| [3]. For simplicity, let us assume that there are no
ground randvars in the cluster (the generalization to include ground randvars is trivial). Then the
model can be written as a 1-logvar parfactor as follows:

QS(PH(XH); v Pl,nl (X1,7L1)7) Pml(Xll)7 e Pm,nl (Xm,n,m)) | C,

in which for each ¢ € {1,...,m}, all X;; are logvars from a distinct domain D;, and P;; is an
PRV containing such a logvar—note that for the same ¢ some X;; (and some P;;) can have the
same name, although the PRVs are distinct. Since no PRV contains more than one logvar we can
count-convert all the logvars in this model. This merges all distinct PRVs P;;(X;) into one counting
randvar. As such, by applying counting conversion on all the logvars X;; of domain D;, we can
rewrite in the model the group of PRVs P;1(X;1), ..., P; n,(X;n,) into a counting randvar

#x, [P (X0), s Py (X))

where Pi’j are the distinct predicates among F;;, that is:
ki o]

{PLxaY = Pu(x)
j=1

After counting all the logvars the parfactor becomes of the form

¢,(#X1 [Pl/l(Xl)ﬂ"'7P1/,k1(X1)]a v#Xm[Prlnl(Xm)""7 ;n,km(Xm)D

This shows that the whole group of randvars in the model can be partitioned into m groups of
interchangeable k-tuples of randvars— one group of tuples for each counting randvar. Note that here

both k£ and m are independent of the domain size of the logvars: (i) m is the number of distinct
domains among the logvars, and (ii) & can be no larger than the number of PRVs with a co-domain
logvar in the model, that is, k¥ < max{k;}; < max{n;};. Itis straight-forward to show that this also
holds in the general case of a parfactor involving both 1-logvar and ground randvars.

2 Proof of Theorem 2

Let us first recall the Theorem.
Theorem 2 The complexity of lifted variable elimination for a counted liftable FO-dtree T is:

O(nr -logn - exp(wy) - n;z“#'r#)),

where ny is the number of nodes in T, (wg,wy) is its lifted width, n (resp., ny) is the the largest
domain size among its logvars (resp., counted logvars), and r4 is the largest range size among its
tuples of counted randvars.

Proof. We prove the theorem by bounding the complexity of each lifted operation performed
at each of the ny nodes of the tree. First consider a lifted elimination performed at some
node 7”. The complexity of this operation is proportional to |range(cluster(T"))|, as it needs
to deal with a parfactor involving the (counting) randvars in the cluster. Each cluster is a
group A = {A1,A2,...Aw/g7’)/1,’}/2, ... 77w;¢} of randvars A;, and counting randvars y; =

#x,[Pi1(Xi), ..., Pig(Xi)], where wy < wy, and wy, < wy.Thus

range(A)| = (] Irange(4:)]) - (]] Irange(1;))).
% J
For the first product, we have

H [range(Ai)| = O(exp(wy))-

Moreover, since for each counting randvar ~;, |range(vy;)| = O(n;’), where n, is the domain size
of X, and r; is the range size of the tuples of PRVs inside +;, for the second product we have

wy
[T Irange(y;)l = O((nlf)*#) = O(n* ™)
j=1

These two show that ()
W4T
[range(A)| = Olexp(uw,) - nf"* ™))

This is the complexity of each lifted elimination step. Build on this we compute the complexity of the
other two lifted operations, aggregation and counting conversion. For each of the |range(.A)| entries
in the parfactor, these two operations perform an exponentiation which has complexity O(logn),
where n is the domain size of the logvar. As such, this has complexity O(logn-exp(wy) -n;z’# ‘r#)).

Since there at most one of each operation performed at each of the n nodes, the complexity of entire
inference is

O(nr -logn - exp(wy) - ngf#'T#)).

3 Finding corresponding FO-dtrees

In this section, we provide a simple algorithm that given a model G constructs a corresponding FO-
dtree. Our method works in a top-down manner according to a recursive decomposition of G using
D PG's. We also briefly discuss possible extensions of this simple algorithm, which can transform it
into a greedy algorithm for finding ‘better’ trees.

We construct the tree top-down according to a recursive decomposition of GG, which also employs
DPGs (Algorithm [I). At the beginning we have a single root node 7" with model G. According to

a decomposition of G into {G;}; we add the children T; of T to the tree, and then recursively build
each tree T; for G;. Under DPG nodes we represent only one instance of the children. DPGs allow
us to decompose the model into partial groundings, and recursive application of this tool results in a
ground model. This allows us to reduce the problem to finding a dtree for the ground model.

FO-dtree((z)
if G is ground
return DTREE(G)
if 3X that allows DPG
Tx + DPG-NoODE(X, x,G)
Gx = {G0|0 € O}
T.ADDCHILD(FO-Dtree(Gy))
else:
T < NEWNODE()
choose logvars X that co-occur in G
(there is always at least one choice X = {X;})
Gx + {g9|X € logvar(g)}
G—\X — G \ GX
T.ADDCHILDREN(FO-Dtree(Gx), FO-Dtree(G_x))
return 7'

Algorithm 1: A simple algorithm for finding a corresponding FO-dtree.

Extension to a greedy method for finding FO-dtrees. The above is a simple algorithm that shows
the existence of a FO-dtree for each model, by finding one possible FO-dtree. While it does not
consider the quality of the found FO-dtree, it can be easily modified into an algorithm that greedily
searches for better trees, by performing better DPGs. For this we need to make two changes in
Algorithm[I} (1) rename the logvars such that the model allows for a DPG, instead of relying on the
naming of logvars in the model, and (2) select among the possible DPGs based on some criteria.

The first change requires us to align the logvars in different parfactors before performing a DPG,
that is to rename the logvars properly such that a subset of the logvars allow for DPG. This is a
simple generalization of finding an alignment between two parfactors, which is employed in lifted
multiplication. This change allows us to consider all possible DPGs of the model in our search,
without being restricted by the naming of logvars in the model. A natural way is to begin with a
model in which all logvars are standardized apart among parfactors.

The second change allows us to consider the quality of different DPGs for selection among them.
Here we give a score to possible DPGs, which is a greedy measure of the quality of their decompo-
sition. For instance, we can simply consider the cutset size of the decomposition, or the size of its
resulting clusters. A straightforward measure is comparing the lifted width of the resulting nodes,
which takes into account also the opportunities exploited by counting. These two changes should be
naturally incorporated into one module, which considers possible logvar re-namings (alignments)
that enable some DPG, measures the quality of the corresponding DPGs, and selects among them.
Search for alignments can be guided by considering the properties of logvars in the model [4],
and our result about computing properties of FO-dtree nodes based on the properties of logvars.

References

[1] Abhay Jha, Vibhav Gogate, Alexandra Meliou, and Dan Suciu. Lifted inference seen from the
other side : The tractable features. In Proceedings of the 23rd Annual Conference on Neural
Information Processing Systems (NIPS), pages 973-981. 2010.

[2] Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kael-
bling. Lifted probabilistic inference with counting formulas. In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAI), pages 1062—1608, 2008.

[3] Nima Taghipour and Jesse Davis. Generalized counting for lifted variable elimination. In
Proceedings of the 2nd International Workshop on Statistical Relational Al (StaRAI), 2012.

[4] Guy Van den Broeck. On the completeness of first-order knowledge compilation for lifted
probabilistic inference. In Proceedings of the 24th Annual Conference on Advances in Neural
Information Processing Systems (NIPS), pages 1386—1394, 2011.

	Proof of Theorem 1
	Proof of Theorem 2
	Finding corresponding FO-dtrees

